
Lecture 19, 10/25/2020: Introduction to

Martingales

1 Introduction and Background

We saw Chernoff-Hoeffding bounds for sum of independent random vari-
ables and applications. Last lecture we saw concentration bounds also hold
for negatively correlated random variables and saw an application. How-
ever, there are other settings where we don’t have independence or negative
correlation and still concentration holds.

Martingales provide a powerful framework for such bounds and are also
somewhat natural for algorithms. We saw an example of a martingale type pro-
cess in the last lecture on rounding a fractional solution for theMax K-Cover problem.

1.1 Background on Conditional Probability

Suppose Ω is a probability space and X : Ω → R is a real-valued random
variable.

If A ⊆ Ω is an event, then E[X|A] is a real value, which, in the setting when
X is discrete, is defined as:

E[X|A] =
1

Pr[A]

∑
ω∈A

Pr[ω]X(ω).

In the continuous setting it is:

1

Pr[A]

∫
A

f(x)dx

where f is the probability density function (or similar function depending on
the context).

Given random variables X and Y on Ω, the random variable E[X|Y ] is
defined as follows. If Z = E[X|Y ], then Z(ω) = E[X|Y = Y (ω)] (this is in the
discrete setting). The meaning is the following: Y partitions Ω into parts where
Y is constant in each part. Y = b for some fixed b constitutes a part which
can be alternatively thought as an event Ab = {ω|Y (ω) = b}. E[X|Y ] assigns a
value to each ω equal to E[X|Ab].
Claim: E[E[X|Y ]] = E[X].
Proof: Exercise.
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When we write E[X|Y1, Y2, ..., Yn] where Y1, ..., Yn are several random vari-
ables, then we are looking at the partition induced by Y1, ..., Yn taking on dif-
ferent values in a joint way. The events correspond to:

Ab1,b2,...,bn = {ω ∈ Ω|Yi(ω) = bi}.

Tower Property (Law of Total Expectation):
Lemma: E[E[X|Y ]|Z] = E[X|Z] (Assuming Z is a ”coarser” partition of Ω
than Y , or more formally, σ(Z) ⊆ σ(Y )).
Proof: Exercise.

Technically, a more formal way to describe this is via σ-algebras and filtra-
tions but that requires more background.

2 Martingales

Defn: A sequence of random variablesX0, X1, X2, . . . is amartingale sequence with respect to another sequence of random variables
Y0, Y1, . . . if for n ≥ 0:

1. Xn is determined by Y0, . . . , Yn.

2. E[Xn+1|Y0, . . . , Yn] = Xn.

A sequence X0, X1, . . . is a martingale if it is a martingale w.r.t. itself. That
is:

1. E[|Xn|] < ∞ and

2. E[Xn+1|X0, . . . , Xn] = Xn.

Example: Suppose a gambler starts with a random amount X0 of money on
day 0 and goes to the casino every day and plays some slot machine which is
fair. Let Yi be the winnings on day i (≤ 0 if he/she loses). Let Xi be the total
amount that player has at the end of the i-th game. Because each game is fair,
E[Yi+1] = 0.

Xn+1 = Xn + Yn+1

E[Xn+1|Y1, . . . , Yn] = Xn + E[Yn+1|Y1, . . . , Yn]

Since Yn+1 is independent of Y1, . . . , Yn and E[Yn+1] = 0:

E[Xn+1|Y1, . . . , Yn] = Xn + E[Yn+1] = Xn + 0 = Xn.

The main thing that martingales allow one to capture is that the choice of
how much to bet and which slot machine to bet on can be arbitrarily dependent
on all the information/choices up to the previous step.
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2.1 Doob Martingale

Martingales allow one to capture a particular type of phenomenon where we are
interested in a function f : U → R for some object X, and we have a random
variable X that takes values in U . In other words, X is a random object
chosen from U according to some process.

This process can be defined by a sequence of random variables Y0, Y1, . . . , Yn.
And X is determined by Y0, . . . , Yn. Y0, . . . , Yi reveal partial information about
X.

Let us define
Xi = E[f(X)|Y0, . . . , Yi].

We will assume that E[|f(X)|] < ∞.
Claim: X0, . . . , Xn is a martingale sequence with respect to Y0, . . . , Yn.
Proof:

E[Xi+1|Y0, . . . , Yi] = E[E[f(X)|Y0, . . . , Yi+1]|Y0, . . . , Yi]

(by definition of Xi+1) Using the Tower Rule (E[E[A|B]|C] = E[A|C] if
σ(C) ⊆ σ(B)):

E[E[f(X)|Y0, . . . , Yi+1]|Y0, . . . , Yi] = E[f(X)|Y0, . . . , Yi]

= Xi

by definition.
Remark: In some settings it is easier to view f(X) as another random variable
Z and define Xi = E[Z|Y1, . . . , Yi].
Example: Empty bins in balls and bins. We throw m balls into n bins
independently. We think of this as a sequential process where we place ball
i in the i-th step and Yi is the random choice of the i-th ball (i.e., which bin it
falls into). Let X be the # of empty bins after all m balls are thrown. Then:

Xi = E[X|Y1, . . . , Yi]

X0 = E[X] = n

(
1− 1

n

)m

Example: Chromatic number of Random Graph G(n, p). Let G(n, p) be
a graph on n vertices where each potential edge in the graph is chosen to be
added independently with probability p. Let X be the chromatic number of
the random graph. (Technically we should write Xn,p to show dependence on n
and p.)

We can define a Doob martingale called the edge exposure martingale
where Y1, Y2, . . . correspond to the binary random variables for picking the edges
in some fixed order.

X0 = E[χ(Gn,p)]

and Xi = E[X|Y1, . . . , Yi].
We can define anotherDoob martingale called the vertex exposure martingale

where V1, V2, . . . , Vn is an ordering of vertices and Yi reveals information about
the edges of vertex i to vertices 1 to i− 1 in the random process.
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3 Azuma-Hoeffding Inequality

Recall the additive change Hoeffding inequality. Let X =
∑n

i=1 Xi where:

1. Xi are independent.

2. Xi ∈ [ai, bi].

Then:

Pr[X − E[X] ≥ λ] ≤ e
− λ2

2
∑

i(bi−ai)
2

and Pr[X − E[X] ≤ −λ] ≤ e
− λ2

2
∑

i(bi−ai)
2 .

A simpler form is when [ai, bi] = [−ci, ci], in which case we have:

Pr[X − E[X] > λ] ≤ e
−λ2

2
∑n

i=1
c2
i

Similarly for the lower tail.
Azuma-Hoeffding bound extends this to the martingale setting.

Theorem: Let X0, X1, X2, . . . be a martingale sequence where

|Xi −Xi−1| ≤ ci ∀i ≥ 1.

P r[Xn −X0 ≥ λ] ≤ e
−λ2

2
∑n

i=1
c2
i

The theorem also holds for the lower tail: Pr[Xn −X0 ≤ −λ] ≤ e
−λ2

2
∑n

i=1
c2
i .

3.1 Proof of Azuma-Hoeffding

We need an auxiliary lemma.
Lemma (Hoeffding’s Lemma): Let X be a random variable in [−1, 1] with

E[X] = 0. Then E[eaX ] ≤ ea
2/2.

Proof: The function eax is convex on [−1, 1]. For any X ∈ [−1, 1], we can write
X = 1+X

2 (+1) + 1−X
2 (−1). Hence by convexity (Jensen’s inequality):

eaX ≤ 1 +X

2
ea +

1−X

2
e−a =

ea + e−a

2
+

ea − e−a

2
X.

If X ∈ [−1, 1] with E[X] = 0, taking expectation on both sides:

E[eaX ] ≤ ea + e−a

2
+

ea − e−a

2
E[X] =

ea + e−a

2
.

By Taylor expansion:

ea + e−a

2
= 1 +

a2

2!
+

a4

4!
+ · · · ≤ 1 +

a2

2
+

(a2/2)2

2!
+ · · · = ea

2/2.

Corollary: If E[X] = 0 and X ∈ [−c, c], then E[eaX ] ≤ e
a2c2

2 .
Proof: Consider X ′ = X

c and apply the previous Lemma.
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3.1.1 Main Proof Steps

Let t > 0 be a parameter to be chosen later. By Markov’s inequality:

Pr[Xn −X0 ≥ λ] ≤ Pr[et(Xn−X0) ≥ etλ] ≤ E[et(Xn−X0)]

etλ
.

So it boils down to estimating E[et(Xn−X0)].
Consider the differences Zi = Xi −Xi−1. Recall that |Zi| ≤ ci and:

E[Zi|X0, . . . , Xi−1] = E[Xi −Xi−1|X0, . . . , Xi−1]

= E[Xi|X0, . . . , Xi−1]−Xi−1 = Xi−1 −Xi−1 = 0.

Consider E[etZi |X0, . . . , Xi−1]. By the Corollary with a = t and c = ci:

E[etZi |X0, . . . , Xi−1] ≤ e
t2c2i

2 .

Now:

E[et(Xn−X0)] = E[et(Zn+Zn−1+···+Z1)] = E[et(Zn−1+···+Z1) · etZn ]

Using the property E[AB] = E[A ·E[B|information about A]] and the fact that
et(Zn−1+···+Z1) is determined by X0, . . . , Xn−1:

E[et(Xn−X0)] = E[et(Zn−1+···+Z1) · E[etZn |X0, . . . , Xn−1]]

Applying the bound:

≤ E[et(Zn−1+···+Z1)]e
t2c2n

2

Repeating this recursively:

≤ E[et(Zn−2+···+Z1)] · e
t2c2n−1

2 · e
t2c2n

2

≤ e(t
2 ∑n

i=1 c2i )/2

Thus:

E[et(Xn−X0)] ≤ e
∑n

i=1 c2i
2 ·t2 .

Putting together with Markov’s inequality:

Pr[Xn −X0 ≥ λ] ≤ E[et(Xn−X0)]

etλ
≤ et

2
∑

c2i
2

etλ
= e

t2
(∑

c2i
2

)
−tλ

Choosing t = λ∑
c2i

to minimize the exponent:

t2
(∑

c2i
2

)
− tλ =

λ2

(
∑

c2i )
2

∑
c2i
2

− λ2∑
c2i

=
λ2

2
∑

c2i
− λ2∑

c2i
= − λ2

2
∑

c2i
.

P r[Xn −X0 ≥ λ] ≤ e
− λ2

2
∑n

i=1
c2
i .

Corollary: If ci ≤ C ∀i and λ = C · α
√
n, then:

Pr[|Xn −X0| ≥ C · α
√
n] ≤ 2e−

α2

2 .

(The 2 comes from bounding both tails).
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4 McDiarmid’s Inequality and Application

Chernoff-Hoeffding bound suggests that if X = X1 + X2 + · · · + Xn where
X1, . . . , Xn are independent and in a bounded range, then X has concentration.

Now consider the setting where we have an arbitrary function f : U1 ×
U2 × · · · × Un → R. In other words f is a function of n ”variables,” each of
which has domain Ui.
Defn: f : U1 × U2 × · · · × Un → R is c-Lipschitz for some c > 0 if:

|f(x1, . . . , xi−1, y, xi+1, . . . , xn)− f(x1, . . . , xi−1, z, xi+1, . . . , xn)| ≤ c

for any y, z ∈ Ui, and any fixed xj . In other words, changing one coordinate
does not change the value of the function by more than c in absolute value.

A more refined definition is that f is (c1, . . . , cn)-Lipschitz if:

|f(x1, . . . , xi−1, y, xi+1, . . . , xn)− f(x1, . . . , xi−1, z, xi+1, . . . , xn)| ≤ ci

∀i, ∀y, z ∈ Ui, and ∀xj .
Theorem (McDiarmid’s Inequality): Suppose f is (c1, . . . , cn)-Lipschitz.
LetX1, X2, . . . , Xn be independent random variables whereXi ∈ Ui. Then:

Pr[|f(X1, . . . , Xn)− E[f(X1, . . . , Xn)]| ≥ λ] ≤ 2e
−λ2

2
∑

i c2
i

Note that independence is required. In some settings it can be relaxed.

4.1 Proof Sketch (Reduction to Azuma’s Inequality)

We reduce this to the Azuma’s inequality via the Doob martingale. The main
thing to note is where independence is used.

Let X denote (X1, . . . , Xn) and Zi = E[f(X)|X1, . . . , Xi]. Z0 = E[f(X)].
Recall that Z0, . . . , Zn is a Doob martingale sequence. We wish to apply

Azuma’s inequality to Z0, . . . , Zn. For this we need to bound Zi − Zi−1.

Zi − Zi−1 = E[f(X)|X1, . . . , Xi]− E[f(X)|X1, . . . , Xi−1].

Since X1, . . . , Xn are independent, Xi+1, . . . , Xn are independent of X1, . . . , Xi.
It can be shown (using ci-Lipschitz property and independence):

|Zi−Zi−1| ≤ sup
u1,...,ui−1

|E[f(u1, . . . , ui−1, a,Xi+1, . . . , Xn)]−E[f(u1, . . . , ui−1, b,Xi+1, . . . , Xn)]| ≤ ci

where a, b ∈ Ui. (The intermediate step involves sup over X1 = u1, . . . , Xi−1 =
ui−1 of the difference of conditional expectations, which is bounded by ci when
applying the expectation over Xi+1, . . . , Xn). We used ci-Lipschitzness on f
and independence of Xi+1, . . . , Xn from X1, . . . , Xi.

Now we can apply Azuma’s inequality to Z0, . . . , Zn and conclude that

Pr[Zn − Z0 > λ] ≤ e
− λ2

2
∑

c2
i .

We have Z0 = E[f(X)] and Zn = f(X).
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4.2 Application: Balls and Bins

We throw m balls into n bins independently. Let X1, . . . , Xm be the random
choices of the m balls. Xi ∈ [n] ∀i ∈ [m]. Define f(X1, X2, . . . , Xm) to be
the # of empty bins. E[f(X1, . . . , Xm)] is easy to calculate and is equal to
n
(
1− 1

n

)m
.

We claim f is 1-Lipschitz (specifically, ci = 1 for all i). This is easy to
verify. Changing the assignment of one ball can change the number of empty
bins by at most 1.

Thus we get concentration (using
∑

c2i =
∑m

i=1 1
2 = m):

Pr[|f(X1, . . . , Xm)− n

(
1− 1

n

)m

| > λ] ≤ 2e
−λ2

2m .

Hence if λ = α
√
m, the probability is ≤ 2e−

α2

2 .

4.3 Application: Chromatic number of Random Graphs

Consider Random graph G(n, p). Let χ(G) be the chromatic number. For
instance, it is known that E[χ(G(n, 1

2 ))] ≈
n

2 log2 n . What about concentration?

We consider the vertex exposure martingale. Fix an ordering of vertices
and let Yi for vertex i denote the random vector of edges to vertices 1 to i− 1.
Let f(Y1, . . . , Yn) be the chromatic number of G(n, p).

We claim f is 1-Lipschitz. Changing the edges incident to a single vertex
can change the chromatic number by at most 1.

Thus the chromatic number ofG(n, p) is concentrated around its mean.
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