
Letiels
Negative correlation and

Applications

Tehave InChernoff Hoeffding
bounds for sums of independent

random variables There are several

situations where we have dependent

random variables and we need

to reason about them In some

situations we can get concentration

even with dependence

Example Suppose we throw n bills into

n bins Let Xi be the indicator

for bin i to be empty We see that

Pe Xi 1 1 17 te



Let X Σ Xi be the number of
1 1

empty bins
E X

Note that Xi Xs Xn are

not independent
So we cannot

use the Chanoff bound

However it tien out that Chernoft

bond holds for the upper tail

Den A collection X Xn of

random variables is negatively

correlated it

SEEN E TX TEExi
its its



Claim In the example we saw

with balls and bins Xs Xn are

negatively correlated

Proof E Xi 1 1

E IT Xi is De all bins in S

its
an empty

Let 151 K then

E Is Xi
1 1

check that 1 1 i k

Theorems Suppose Xi Xn Xn are binary

random variables and are negatively
correlated Let X E Xi and µ

EEX



Then

Pe sin Easy
Note that the bound is exactly

the same as for the standard upper

tail in the multiplicative Chernoff

bound The reason for that is that

in a certain formal sense
the whole

moment generating function based

proof goes through
We sketch the

proof

Let Xi Xi In be inendent
binrandom variables where E x ̅ Xi

Let x ̅ Efi E x ̅ E x M



The mgt proof for Chernoft bound

proceeds as follows

Pe x ̅ Hs µ Me ett 1 8 4

E eᵗx ̅
Etsy

The key step where

independence is used is in
expanding etx ̅ as IT E eᵗxi̅

i 1

After this step we only work with

bounds on EExi̅ etc

Now consider X Xi where

Xi are negatively correlated
and Xi E x ̅ i e En



If we can agree that

Ele E eᵗx ̅

then we are done For this we

expand ett as E Tetti
i

and use Taylor series expansion
to each

leim with expectation outside

T Hexi
i

and II H 1 x ̅ it

In the product we have terms

which are polynomials in t and

in the variables Consider a term

X X X X's and the



corresponding team x ̅ X X x ̅

Since variables are binary we can

drop the exponent to we have

X X X Xs and x ̅ x ̅ x ̅ x ̅

Now by negative
correlation assumption

E Xix_x Xs
E x ̅ x ̅ x ̅

Thus term by term
we have

E et E eᵗx ̅

and we can proceed with the

rest of the proof with x ̅ and

x ̅ In



Sometimes people define binary

random variables X Xn to be

negatively correlated if S n

i Ely Xi IT E Xi and
its

i E Th Xi T 1 EExi
its IES

If both conditions are satisfied

then we alsoget the lower tail

bound for X Σ Xi

Pe i s µ 5ᵗʰ



Application

Consider Max Coverage problem
which

is a problem related to fat
Cover

Given a U of n elements and

in sets S1 Sv Sm EU and

an inter k pick k of the given
sets

to maximize the size of their union

In other words pick
k sets to cover as

many
elements as possible

A simple lineedy algorithm gives
a

1 approximation However it

does not give the same
ratio for

a slightly more general constraint



so we will instead consider an

LA relaxation based approach

Variable Xi for set Si chosen or not

variable Z to whether it element j

is covered
n

max Σ Zj
51

Σ Xi K
i 1

Σ Xi Zj c n

jtSi

Zj 1 c In

is o C m



Suppose we solve above LP relaxation

Let OPTup be the value of the

opt fractional solution X Z

How can we round it

Randomized Rounding

A simple strategy
is to pick each

set Si independently with pub
XI

First let us evaluate the expected

if elements
covered

Let Yi 1 if element j is coored
8

Pe Yj 1 1 jest
xe̅



1 IT ext
i je.si

1 E
Z

7 1 z

Thus by linearity of expectation

the expected of elements covered

in 1 1 2 1 OPTep

The problem with the preceding

rounding is that we may not

satisfy the constraint
that we

pick at most k sets



How can we ensure that we satisfy

the constraint and still get a

good approximation for covering
elements

We will discuss
a rounding strategy

called pipage rounding
This is a

defendant rounding strategy

1 Solve LP to obtain fractional
solution x ̅ E

2 While x ̅ has functional
variables

Let Xi Xj be 51 Xi Xj C o 1

Let min Xi Xj 1 Xi 1 X



To a coin It heads

it Xite

Xjt Xj E

Else
it Xi E

X Xj te

3 Output sets with Xi 1

Claim After the while loop
terminates

x ̅ is integral and Em Xi k

Lemma Let Xi be the value of S

at end of all Then E X Xi



Proof In each step it is easy

to see that E Xi does not

change By induction on steps

D

Lemma The algorithm
terminates

in T steps where E T poly m

Proof In each iteration with

peels at least one variable

becomes 0 or 1 If a variable

is 0 or 1 it is not touched

again Initially at most in

fractional variables Implies in

expectation T 2m Can also



prove high probability bound

using Chanoff bounds

The main technical lemma that

we will not prove is the following

Lemma Xi Xu Xm are

negatively correlated

The proof relies on the fact that

expectations are preserved and

only two variables
are modified at

at each step It is not difficult
but we omit details



Thus the rounding ensures that
m

Σ Xi k deterministically
i

and Xi Xn Xm are negatively

Correlated

Now consider an element j

What is Pe j is covered

1 IT 1 Xi
i jtSi

By negative correlation

IT 1 Xi IT 1 EExi
i jtSi

i jESi
i es

1 Xi



J

Pe j is corned

1 IT i Xi

i jtSi

and hence we can use the

Same analysis as before

expected of elements covered

is 1 1 OPTup

Thus we maintain the constraint

and obtain a 1 approx



The alson approach generalizes

quite a bit to sub modular

function maximization subject

to an arbitrary matroid Constraint

We will not go into details

but consider the following

extension of Max K Courage

As before we have U and

sets Si Sa Sm Now

the sets are colored In other

words we pallition the
sets into

1 groups Ai Ar he



Each group h has a bond kn and

this implies that at most k
sets

can be chosen from 4h

We can write a natural LP

with this more complicated

Constraint

max Σ Zj
51

Σ Xi Ka HEEL
itch
Σ Xi Zj c n

jtSi

Zj 1 c In

is o C m



Now as before we can see that

if we randomly round by picking

each set Si independently

with probability Xi we get

expected coverage 1 1 OPTup

It is not hard to generalize

pipage rounding to this

slightly more complex constraint

This yields a 1 approx

The natural greedy algorithm
yields only a approximation

for this generalization


