
Lecture 18: Negative Correlation and Applications

1 Introduction

We have seen Chernoff-Hoeffding bounds for sums of independent random variables. However,
there are several situations where we have dependent random variables and we need to reason
about them. In some situations, we can get concentration even with dependence.

1.1 Example: Balls and Bins

Suppose we throw n balls into n bins. Let Xi be the indicator for bin i to be empty. We see that:

P [Xi = 1] =

(
1− 1

n

)n

≈ 1

e

Let X =
∑n

i=1Xi be the number of empty bins, so E[X] = n
e .

Note that X1, X2, . . . , Xn are not independent, so we cannot use the Chernoff bound directly.
However, it turns out that the Chernoff bound holds for the upper tail.

2 Negative Correlation

Definition 1. A collection X1, . . . , Xn of random variables is negatively correlated if:

E

[∏
i∈S

Xi

]
≤

∏
i∈S

E[Xi]

for all subsets S ⊆ {1, 2, . . . , n}.

Claim 1. In the example we saw with balls and bins, X1, . . . , Xn are negatively correlated.

Proof. We have E[Xi] =
(
1− 1

n

)n
.

E
[∏

i∈S Xi

]
is the probability that all bins in S are empty.

Let |S| = k. Then:

E

[∏
i∈S

Xi

]
=

(
1− k

n

)n

One can check that
(
1− k

n

)n ≤ (
1− 1

n

)kn
=

[(
1− 1

n

)n]k
.
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3 Chernoff Bound for Negatively Correlated Variables

Theorem 1. Suppose X1, . . . , Xn are binary random variables and are negatively correlated. Let
X =

∑n
i=1Xi and µ = E[X]. Then:

P [X ≥ (1 + δ)µ] ≤ e−
δ2µ
3

Note: The bound is exactly the same as for the standard upper tail in the multiplicative
Chernoff bound. The reason for that is that in a certain formal sense, the whole moment generating
function-based proof goes through.

3.1 Proof Sketch

Let X̄1, . . . , X̄n be independent binary random variables where E[X̄i] = E[Xi].
Let X̄ =

∑n
i=1 X̄i, so E[X̄] = E[X] = µ.

The MGF proof for Chernoff bound proceeds as follows:

P [X̄ ≥ (1 + δ)µ] = P [etX̄ ≥ et(1+δ)µ] ≤ E[etX̄ ]

et(1+δ)µ

The key step where independence is used is in expanding:

etX̄ =
n∏

i=1

etX̄i

After this step, we only work with bounds on E[etX̄i ], etc.
Now consider X =

∑
Xi where Xi are negatively correlated and E[Xi] = E[X̄i] for all i.

If we can show that:
E[etX ] ≤ E[etX̄ ]

then we are done. For this, we expand etX as
∑∞

j=0
tjXj

j! and use Taylor series expansion to each
term with expectation outside:

etX =
n∏

i=1

(1 + (et − 1)Xi)

and similarly:

etX̄ =

n∏
i=1

(1 + (et − 1)X̄i)

In the product, we have terms which are polynomials in t and in the variables. Consider a term
Xa1

i1
Xa2

i2
· · ·Xak

ik
and the corresponding term X̄a1

i1
X̄a2

i2
· · · X̄ak

ik
.

Since variables are binary, we can drop the exponents, so we haveXi1Xi2 · · ·Xik and X̄i1X̄i2 · · · X̄ik .
Now by negative correlation assumption:

E[Xi1Xi2 · · ·Xik ] ≤ E[X̄i1 ]E[X̄i2 ] · · ·E[X̄ik ] = E[X̄i1X̄i2 · · · X̄ik ]

Thus, term by term, we have E[etX ] ≤ E[etX̄ ], and we can proceed with the rest of the proof
with X̄ and X̄i.
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3.2 Lower Tail Bound

Sometimes people define binary random variables X1, . . . , Xn to be negatively correlated if for all
S ⊆ {1, . . . , n}:

E

[∏
i∈S

Xi

]
≤

∏
i∈S

E[Xi]

and:

E

[∏
i∈S

(1−Xi)

]
≤

∏
i∈S

(1− E[Xi])

If both conditions are satisfied, then we also get the lower tail bound for X =
∑

Xi:

P [X ≤ (1− δ)µ] ≤ e−
δ2µ
2

4 Application: Max Coverage Problem

Consider the Max Coverage problem, which is a problem related to Set Cover.
Problem: Given a universe U of n elements and m sets S1, . . . , Sm ⊆ U , and an integer k,

pick k of the given sets to maximize the size of their union. In other words, pick k sets to cover as
many elements as possible.

A simple greedy algorithm gives a (1− 1/e) approximation. However, it does not give the same
ratio for a slightly more general constraint, so we will instead consider an LP relaxation-based
approach.

4.1 LP Relaxation

Variables:

• xi for set Si (chosen or not)

• zj for whether element j is covered

max
n∑

j=1

zj

s.t.
m∑
i=1

xi ≤ k∑
i:j∈Si

xi ≥ zj ∀j ∈ [n]

zj ≤ 1 ∀j ∈ [n]

xi ≥ 0 ∀i ∈ [m]

Suppose we solve the above LP relaxation. Let OPTLP be the value of the optimal fractional
solution (x∗, z∗).
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4.2 Randomized Rounding (Naive Approach)

A simple strategy is to pick each set Si independently with probability x∗i .
Let us evaluate the expected number of elements covered. Let Yj = 1 if element j is covered.

P [Yj = 1] = 1−
∏

i:j∈Si

(1− x∗i )

Since 1− x ≥ e−x/(1−x) ≥ e−2x for x ≤ 1/2:

P [Yj = 1] ≥ 1−
∏

i:j∈Si

e−x∗
i = 1− e

−
∑

i:j∈Si
x∗
i ≥ 1− e−z∗j ≥

z∗j
2

(Using 1− e−z ≥ z/2 for z ≤ 1.)
Thus, by linearity of expectation, the expected number of elements covered is:

≥
n∑

j=1

z∗j
2

=
1

2
·OPTLP

Problem: We may not satisfy the constraint that we pick at most k sets.

5 Pipage Rounding

How can we ensure that we satisfy the constraint and still get a good approximation for covering
elements? We will discuss a rounding strategy called pipage rounding. This is a dependent
rounding strategy.

5.1 Algorithm

1. Solve LP to obtain fractional solution x̄ ∈ [0, 1]m

2. While x̄ has fractional variables:

(a) Let xi, xj be such that 0 < xi, xj < 1

(b) Let ϵ = min{xi, 1− xj , 1− xi, xj}
(c) Toss a coin. If heads:

• xi ← xi + ϵ

• xj ← xj − ϵ

Else:

• xi ← xi − ϵ

• xj ← xj + ϵ

3. Output sets with xi = 1

Claim 2. After the while loop terminates, x̄ is integral and
∑m

i=1 xi = k.

Lemma 1. Let Xi be the value of xi at end of algorithm. Then E[Xi] = x∗i .

Proof. In each step, it is easy to see that E[xi] does not change. By induction on steps.

Lemma 2. The algorithm terminates in T steps where E[T ] ≤ poly(m).

Proof. In each iteration with probability 1/2, at least one variable becomes 0 or 1. If a variable
is 0 or 1, it is not touched again. Initially, at most m fractional variables implies in expectation
T ≤ 2m. Can also prove high probability bound using Chernoff bounds.

4



5.2 Main Technical Lemma

Lemma 3. X1, . . . , Xm are negatively correlated.

The proof relies on the fact that expectations are preserved and only two variables are modified
at each step. It is not difficult but we omit details.

5.3 Analysis

Thus, the rounding ensures that
∑m

i=1Xi = k deterministically and X1, . . . , Xm are negatively
correlated.

Now consider an element j. What is P [j is covered]?

P [j is covered] = 1−
∏

i:j∈Si

(1−Xi)

By negative correlation:∏
i:j∈Si

(1−Xi) ≤
∏

i:j∈Si

(1− E[Xi]) =
∏

i:j∈Si

(1− x∗i )

Therefore:
P [j is covered] ≥ 1−

∏
i:j∈Si

(1− x∗i )

and hence we can use the same analysis as before: expected number of elements covered is
(1− 1/e) ·OPTLP.

Thus, we maintain the constraint and obtain a (1− 1/e) approximation.

6 Generalization: Matroid Constraints

The above approach generalizes quite a bit to submodular function maximization subject to an
arbitrary matroid constraint. We will not go into details but consider the following extension of
Max K-Coverage.

As before, we have U and sets S1, . . . , Sm. Now the sets are colored. In other words, we partition
the sets into ℓ groups A1, . . . , Aℓ.

Each group h has a bound kh, and this implies that at most kh sets can be chosen from Ah.
We can write a natural LP with this more complicated constraint:

max
n∑

j=1

zj

s.t.
∑
i∈Ah

xi ≤ kh ∀h ∈ [ℓ]

∑
i:j∈Si

xi ≥ zj ∀j ∈ [n]

zj ≤ 1 ∀j ∈ [n]

xi ≥ 0 ∀i ∈ [m]

Now, as before, we can see that if we randomly round by picking each set Si independently with
probability x∗i , we get expected coverage (1− 1/e) ·OPTLP.
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It is not hard to generalize pipage rounding to this slightly more complex constraint. This yields
a (1− 1/e) approximation.

Note: The natural greedy algorithm yields only a 1/2 approximation for this generalization.
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