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Expanders and
Random Walks

Expander graphs are almost magical

graphs that have many application
in mathematics and computer science

Dtn A multigraph a V E is an

α edge expander if 18 s α 151

for all S EV with IS 111

α a msiisk.ie

The surprising fact is that
a random

3 regulargraph has expansion
0.18

with high probability



Theorem Bollibas Let dis be an

Tner andTE 10,1
It ild c i n int
then a random d regular graph

has expansion
1 4

Corollary As n x a random

Twerter d regular graph
has

expansion 1 1 with high

probability

In particular for d 3 we

can obtain expansion 0.18

The proof is via the perbabilistic



method and not very difficult
Nevertheless it is some what technical

Simple proof give
weaker expansion

puputy

Although random regular graphs

are expanders and one can generate

them relatively easily it is

hard to compute the expansion

Therefore there have several
works that

constant expanders explicitly

Many of these
are based on group

theoretic constructions



One of the early explicit constructions
is

given by Margulis
and analyzed by

Gabbar and halil

Fix integer m and let n 2m

We construct a graph on n valices

It is a bipartite graph with A and

B with A Bl m

A last rise Zm

D Ucas last Zm

A B

00



For each vertex Usx y
in A

we add 5 edges to vertices

X y
V
x xty

V
x x yti

Vexty y Vatythy

Here addition is done mod m

It can be shown that expansion

is 211
A notion related to expansion

is

conductance

Dfn The conductance a of a

graph is

min

s voles voly



where Vol S Egdg u

Note that h is d regular then

Vol s dist and hence

for those graphs a d 014

Cheegee's Inequality

Recall that we did a spectral

analysis of the convergence of
a

random walks in undirected

graphs

Let A be the adjacency matrix of

4 Then the random walk matrix



W AD where Da is the

diagonal matrix
with D dy i

The lazy walk malix is

I AD

If h is d regular then W is

symmetric Otherwise we considered

the normalized adjacency matrix

Aa DEADE and noted that

W Dt A D which implies

that W is similar to the symmetric

matrix Aa Note that ta AD
it a is d



Let 217 he In be the real

eigenvalues of Ag Then

1 2 sins if h is

Connected we assume whos

We saw that the random walk

in on a courgences in 014ps
steps to a distribution that

has E total variation distance from

the stationary distribution where

β min 1 22 1 Kul is the

spectral gap For the lazy random

walk β 11g



β

How do we know when β is

not too small

Cheege inequality allows us to

bound conductance via another

important matrix of graphs
Called the Laplacian

La D An

The normalized Laplacian is

L I Aa where Aa is

the normalized adjacency matrix



Ly and I are positive fani definite

matrices

Oberation Let 0 7 72 In

be the eigen values of L

Then Xi 1 Xi whee 21 shn

are the eigenvalues of Aa

Thus 1 α Xr

Thermches For any graph

0 a Fx



Corollary Suppose h is d regular

Let 1 4 α α be eiguerale

of ACD Then

d
a drag

For d regular grapherNot
a d α a and also

we have 1 Xv 72

Thus if we have a constant degree

expander 1 2 1 15
random walk mixes in Ollen

steps



Randomized Complexity Class

Recall P is the set of decision

problems that have a deterministic

ply time algorithm

RP stands for randomized poly
time

L E RP a poly time randomized

algorithm A such that inputs

E Σ

if X L Alx says No

i if E L A x says YES

with purbabity

One sided eller



co RP is one sided ever for XEL

Lt co RP if I E RP

BPP is the set of languages
that

admit poly time randomized

algorithms that can make 2 sided

errors

LE BPP a randomized

polytime algorith
A 5.1

XE Σ

i if XE L
Alx outpits YES

with pub
111 if EL Alx outputs YES

with pub



RP and BPP algorithms are called

Monte Carlo algorithms They
run

in polytime but can make a

mistake

clear that

P E RP BPP



ZPP is the set of problems for

which there is a randomized

algorithm A such that x1

i if XEL
A x retain YES

i if XAL A x return No

iii The expected run time of A

on is P 1 1 for some

fixed polynomial p

Claim ZPP RP n co RP

Proof Exercise

Las Vegas algorithms



Er reduction in randomized algorithm

Easy lemma
based on repetition

Lemma Suppose I E RP and

A is a randomized poly time algorithm

for L Suppose on input A

takes in random bits and

is correct with pub
Then by

runnip A K times we can

reduce ellor to

Now Suppose we have L E BPP

How do we reduce error

dependently



independently
We run A k times and

take majority vote of the outputs

Lema Error is I for some

fixed c

Use Chernoff bounds

Repeating k times independently

requires Kn random bits where

n is the number of random bits

for each run Is this optimal

Can we do better

Turns out that one can reduce



error to by using only

O n k bits

How By random walks on

expanders

Let N 2h We will assume

that we can construct implicitly

a constant degree expander on

N vertices Typically we will not

be able to construct expanders for

all N but we will not worry

about that technicality for now



Let h V E be the expander

with expansion
α and degree d

We assume d 011 and α R 1

Each vertex v EV corresponds to

a n bit binary string

We will assume that given
we

can find the d neighbor of v in

poly n time For example in

Maglis

the explicit
habber habit expander

we can do this Thus we can

implement a random walk on

h for t steps
in poly t n time



and the number of random bits

required to implement
t slip

walk is 0 t since each step

requires only 011 bits to pick

a random neighbor We will assume

walk in G is ergodic otherwise

we can do the lazy random walk

For both RP and BPP amplification

we do the following

1 Pick a uniformly random v EU

2 Do a random walk for t steps

and let V Vi Vi Ve be the

vertices



3 Let r he be the

n bits random strings associated

with Us VE be risen ist

4 Let bi A lx ri be the output

of A on input with random

sking ri

Lemmas Let h V E be an

undirectedgraph whose random

walk matrix has spectral gap 1

Consider a t slip random walk

V1 V2 Vt EV
where V E V is

chosen uniformly at random

For any set BCV



Pe Lui unit B M 4 β

where f
1

Assume lemma is live Now consider

the algorithm we had using random

walks on expanders with each

vertex being a n bit random shing

Suppose we have L E R P and

A on input outputs No it
AL

and outputs YES with pub 1 µ

for XEL



Let be but by be the outputs

of A X h Alx re

The algorithm outputs Yes if any

of the outputs is Yes
Otherwise it

outputs No

Suppose L then it is clear

that A will output No

Suppose XE L What is the

pub it will output No

M i p

Expander gives
us β is a fixed

constant By basic repetition
we can

ensure that µ 1



Http 1 1

If we choose t s 1

4 1
ᵗ we will

have failure probability

t 01k suffices

the 0L notation hides

a dependence
which we

amine is a fixed constant



Proof of theemma

Let W be the random walk

makix W AD and since G is

d regular W is symmetric

Let 1 2 22 an 7 be

the eigen values of W

B C V and µ Ht
Let P be a IVANI diagonal
matrix with Poo 1 if V E D

to for any vector
x ̅ E R

P x ̅ Epi



P is like the identity matrix

What is the probability
that

V Vv Vf E B

We claim it is
HPWPF.pro 11

Here since V is chosen uniformly

at random plot I where

n V1

PWP is also a symmetric

matrix
Recall W can be written

as

dizia Zi where E E En

are the orthonormal eigenvectors



21 1 and Z In since we

normalize to unit vectors

Lemma For any
vector 5

11 P WP511 futtip 115112

Proof we can assume that Yi

if i B because it can only

help the inequality
We can also

assume 5 0 We can then assume

that I yi by scaling 5 since

it doesn't change
inequality

Thus if can be written
as

if I E where I I is

the uniform distribution



and I is orthogonal to it

PWP J PW 5 PW ñ E

becalm 5 is in support of B

Pwa PWE

P I PWE

By the inequality

11 PWPyll 11 Pull IIPWell

First we show

up all 4115 it
11 Pull Mn It pn

E since P has at
most fun is on

diagonal



By Cauchy Schwartz and
the

fact that if has support
at must

Mn
n

1 Yi In 119112

I Pull V1 µ 115112

Now consider

11 PWELL
11 Well since

P is a contraction
in le

Since E is orthogonal
to it the

finest eigen
vector of W and

Kul Knl t p
11Well 1 B 112112



Thus I PAP 511 M 1 13
1511

max eigen value of PWP

µ 1 β

Now we prove the lemma

We have 11 PAP all full PAPat

Vn µ i p Halle

rn 4 1 1 In

µ 1 β



BPP derandomization is a bit

More Thicalto prove
We state a Chernoft bound

for walks in expanders

There
Let h VIE be a regular graph

Let Us Vu Ve be vertices of a

random walk on a whee U is

chosen uniformly at random Jim
V

Let f V o is be any branded

function Then

Pa fluid Eff 1 13

inlet
Have f flu where V is chosen

uniformly at random A p is the



founly 1

spectral gap Note β 1 α if h is

eyodic

Using the
above powerful theorem

one can generalize the majority
vote

algorithm for BPP to obtain

error reduction to using

O n k random bits


