
Convergence of Random Walks in

Undited Graphs

h VIE a connectedgraph

We have seen various properties of

random walk on a

c stationary distribution depends

only on degrees

Ii defI
i Cover time is 2m n i

iii hs.tt he 2m Rft

Made connection to electrical
networks



We are interested in convergence of

the random walk to its

stationary distribution

In order to make this formal

we define the following

Den Given to distributions

IT and IT on V their total

variational distance is IT IT'll

We say that a Markov chain

converges to its stationary distribution

if IT Ill 0 as t N

where IT is the stationary distribution



We will be interested in the

rate of convergence That is

starting fern some arbitrary IT

how long does it take to get

E close to IT

Recall that a chain walk may

be periodic in which case it

does not converge We will then

work with the lazy walk

We will focus on random walk

in undirected graphs and spectral

analysis based convergence
And

then relate spectral analysis with

combinatorial property of a graph



So far we have been working with

distributions over States as tow

vectors Since we will work with

eigen values and eigenvectors a

lot it is useful to switch

to plot pli p't as

clean vectors Recall P was

the probability transition matrix

of the chain
In order to work

with column vectors we will

Use PT

Thus PTplt

where p is the distribution of

the chain at time step t



Consider random walk on undirected

graph G V E with V En

We let A be the adjacency
matrix of 4 Let D be the

n xu diagonal matrix with

Dii degli Then D will

be the matrix with D Fig

Recall the transition matrix P

was defined as Pij Egli
Hence P Tylj

We can see that PT AD

We call W AD the walk matrix



For the lazy random walk the

walk matrix is I AD

Suppose h is dregular Then

W is symmetric Symmetric

matrices have substantial structure

and there is a beautiful and

powerful spectral theory for them

with many applications



Review of Some linear algebra

For nxn matrix A E Ran

a vector V E R is an

eigenvectorof A it 7 ER sit

AT 70

7 is an eigen value

Eigen values are solutions to the

polynomial det A 7 I 0

In general this polynomial may

not have real roots
and hence

A may
not have eigenvectors

values

However if A is viewed as a

0ᵗʰ matrix then we have



Complex eigen values
Vectors since

every univariate polynomial
one

e can befactorized

Symmetric matrices
are however

special and have substantial

structure This is captured by

the Spectral theorem which has

many applications

Speffffmann symmetic
matrix Then A has a real

eigen values x X In and

corresponding eigenvectors x ̅ In

which form an orthonormal basis



of R And A VT DV where

D is a diagonal matrix with

Dii Xi and U x ̅ x ̅ in

A useful characterization of the

eigenvector is obtained via the

Raleigh coefficient

Given A and x ̅ E R

consider at An which is the

quadratic form induced by A

Note that at An Σ Aij ninjki jen
When A is a symmetric matrix
we get Acini 2 E Aij ringi



Consider the problem of

Max min atAn
11m11 1

which is same as

max min I.ATx ̅ to

Turns out that if A is

symmetric then

7 mn t.FIx ̅ O

in max itñ O

In fact one can characterize all

eigen values



max7k mn
at V 1TUk ñxO

Where Uk is a K dimensional

Subspace of R

One can derive this characterization

from the spectral theorem or

directly
Suppose it I In are orthonormal

unit vectors that are eigenvalues
of A and let 7 7 an

Let V ER and 11011 1 be any

unit vector n

Then I Editi where Exit I
i 1 e



Consider

min max

TEY
AT

Vn
µ 1

max vt.AT
VER
11511 1

vt.AT Exist where I Exini
in

hence max v AT In
1151 1

TER
6 Similarly min 71

Hill 1
JER

etc



Df A real symmetric matrix
A is positive tuni definite Psd

A 7,0 if it AT 70 I ER

Theorem
mimetic matrix A
n

is psd if one of

the following conditions holds

It AT 0 T ER

All eigenvalues of A are

nonnegative of 7,47 7m

A WtW for some WER

Proof

v1 Av ut wt wo
ut u 2,0



Recall for symmetric A

A min v1 AJ
TER
1511 1

Here 7,70

A is symmetric

A V'D U where

D fi if X so i

then D D ID
where D Fi

Hence A Vᵗ D T D V W w



Back to Random Walks

Tenfied Trider d egular
graphs

W AD is symmetric

Note that W is doubly stochastic

By spectral theorem
all eigenvalues

are real Let 4,7 x αn

be the eigen values of W

Claim α and an 1

Proof Exercise

Exe Show that In 1 G is

bipartite Otherwise an CI



Claim Consider W I AD

Eigenvalues are 11 11 1
the

1 7 0

ConvergenceAnalysis

By spectral theorem

W can be written as

i vi vi

where Vie I In are the

eigenvectorsof W normalized to be unit

vector and denotes outerproduct

T T In are orthonormal



We want to know Wtp 0 where

plo is the starting distribution

Since w̅ I I 8 are orthonormal

we can write plo as Citi

where Ci plot Vi

Then W p Cixi plo

Recall α 1 and I In since we

normalize
to unit
vector

Spectral gap p min 21 2,1 141

Note O β 1



Suppose 13 0 22 1 and 2nd 1

1 2 42 Xn 1

wtplo at as 1 0

Since α 1

c plo v7

Since Epl and I In

IT I which is the

uniform distribution and
the

stationary distribution



Rate of Lmergence

Claim Mixing time is 0111,1

Proof
why I Encitivi

Hence

div Wipo 11 Wtp III
11 Eci it till



full Ecixi villa
by Cauchy Schwarts

Since w̅ are othormal

Encitiville Eucix
11 PEEE

E.ie
ci ltilli Mpollie1

Hence div wtpo.TT i pith
want 1 B k

at lull B hair



t R bps suffice

Lazy random walk

W IAA
Recall 4 1 α we 11ft

α'n 1117,0

β nun l 1 tin

1 1 22

Example G Cn the n cycle

What are eigen values of AD

Can show that they are



Li Costhe
If n is even αn 1

spectral gap is 0 Hence need to

use lazy walk

What about α In

ax i E it
as a o an x 1 12
on as no 1 21

2

α so 1 212

Pe
Convergence time is 11m

Not surprising



General graphs

not necessarily regular

Lazy walk

W I AT

is walk matrix

W is not symmetric to cannot

use dial therein directly

Consider normalized adjacency
matrix

A FADE
Aij trying

symmetric



We can write

Was DE I DEAD

Symmetric

W is similar to a symmetric
matrix

Df X Y are nxu matrices

is similar to Y if

there exists a non singular matrix

B St BYE

The action of X can be understood

via action of Y



Claim Eigenvalues of X Y

Same Hence Same spectrum

Eigen vectors may
be different

Proof Suppose

Yi 75

Let ñ BT D ñ w̅

then a BY B
1

w̅

B Y T B XT

75

X is eigen value of
X

1



Corollary If is similar to

symmetric matrix then
all

Eigen
values are real Eigenvectors

span R even though they may
not be orthonormal

Now back to W

W D I A D E DE

W is similar to I DEADE
m

normalized
adjacency
matrix



Eigenvalues of A are

17 217 4 27 1

Eigenvalues of W are

α I e
to n

If it is in are eigenvectors

7 I DEADE then

eigenvectors of W are

DE ti é l to n

Note w̅ w̅ are orthonormal

DE Vi i l ton are

lineally indep and span
R



earlynly

Now we want to understand

Wtpo where po is the

starting distribution

To Ee D vi for some c

Ca

Since the eigenvectors of W

Span R

Therefore Wtpo cint D vi

é l

recall D vi is eigenvector of

W with eigenvalue
11



Wt D vi IE D ve

Wtp E.io ieefD'l2vi

Recall 1 2 7,22 7,27 1

1 1
1

1
2,0

β Bu Pn

If pull then

Wtpi c D T Eski b it

Since β
CI Pa ibu.tl

Wtpo c D o as to



Converges to C D UT

stationary distribution

What is c D it

Recall to Ec D vi
i 1

D Citi

w̅ 5 In a orthonormal

C D pi Vi

Recall it is first eigenvector of

I D AAD which is



claim t.PTn FmD t

Therefore C D pi i

D ups D t

Fm

Wtp c it it

In D tram i

In DT.tn
1n'illazyzyalkk



lazyzywalka
Hence converges

to stationary
n

distribution what ever is the starting

distribution Note lazy walk

only assumes connectivity

Since Be 21 which is true

if h is connected

Mixingtime

I In D T
is stationary
distribution

It Wtto
IT Eyelive.ttpilot



Want to know how long life

III 51

PT T cil it
é 2

D PET Eicillitit

I all in Hull by Cauchy
Schwantz

115 IptTIME HE ETuilt

Eci Left
i v

Since I in are

orthonormal



Eat 1

4 β7
ᵗ É c
e L

Note Etc.is ici 11D poll

Imin

drin is min degree

11 D pi 5 HE atmin.li β

115 pi 5111 atmayllte.IM



HE THE dynein 11 p

Apr 1TH FI 1 13

Therefore how laye should I be

FE i pts

i

dat

1 A 1 would suffice
β

D



To get TDV E

need 11 41

Next lecture

Which graphs have spectralgap

Constant This will ensure that

random walk converges in

Ollogn steps


