
Convergence of Random Walks in Undirected Graphs

1 Introduction

Let G = (V,E) be a connected graph with |V | = n. We have seen various properties of
random walks on connected graphs:

1. The stationary distribution depends only on degrees.

2. Cover time is O(mn).

3. hi,j ≤ 2m (hitting time).

4. Connection to electrical networks.

We are interested in the convergence of the random walk to its stationary distribution.
To make this formal, we define the following.

Definition 1. Given two distributions π and π̃ on V , their total variational distance is

∥π − π̃∥TV =
1

2

∑
v

|π(v)− π̃(v)|.

We say that a Markov chain converges to its stationary distribution if ∥πt − π∥TV → 0
as t → ∞, where π is the stationary distribution.

We will be interested in the rate of convergence: starting from some arbitrary distribution
π0, how long does it take to get ϵ-close to π?

Note: A random walk may be periodic, in which case it does not converge. We will work
with the lazy walk instead.

We will focus on random walks in undirected graphs using spectral analysis, relating
spectral properties to combinatorial properties of the graph.

2 Setting up the Matrices

It is useful to switch from row vectors to column vectors. So far we have been working with
distributions over states as row vectors. Since we will work with eigenvalues and eigenvectors,
it is useful to switch to plot pt as column vectors. Recall P was the probability transition
matrix of the chain. In order to work with column vectors, we use P T . Thus pt = P Tpt−1

where p is the distribution of the chain at time step t.
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2.1 Graph Setup

Consider random walk on undirected graph G = (V,E) with |V | = n. Let A be the adjacency
matrix of G. Let D be the n×n diagonal matrix with Dii = deg(i). Then D−1 is the matrix
with (D−1)ii =

1
deg(i)

.

Recall the transition matrix P was defined as Pij =
1

deg(i)
if (i, j) ∈ E. Hence P = D−1A.

We can see that P T = AD−1.
We call W = AD−1 the walk matrix.
For the lazy random walk, the walk matrix is W = 1

2
I + 1

2
AD−1.

Suppose G is d-regular. Then W = 1
d
A is symmetric. Symmetric matrices have sub-

stantial structure and there is a beautiful and powerful spectral theory for them with many
applications.

3 Review of Linear Algebra

3.1 Eigenvalues and Eigenvectors

For an n× n matrix A ∈ Rn×n, a vector v ∈ Rn is an eigenvector of A if there exists λ ∈ R
such that Av = λv, where λ is an eigenvalue.

Eigenvalues are solutions to the polynomial det(A− λI) = 0.
In general, this polynomial may not have real roots, and hence A may not have real

eigenvalues and eigenvectors. However, if A is viewed as a complex matrix, then we have
complex eigenvalues and eigenvectors, since every univariate polynomial can be factorized.

Symmetric matrices are, however, special and have substantial structure. This is captured
by the Spectral Theorem.

Theorem 2 (Spectral Theorem). Let A ∈ Rn×n be a symmetric matrix. Then A has n real
eigenvalues λ1, . . . , λn and corresponding eigenvectors v1, . . . , vn which form an orthonormal
basis of Rn. Moreover, A = V DV T where D is a diagonal matrix with Dii = λi and
V = [v1 · · · vn].

3.2 Rayleigh Quotient and Extremal Eigenvalues

A useful characterization of the eigenvectors is obtained via the Rayleigh quotient. Given A
and x ∈ Rn, consider xTAx, which is the quadratic form induced by A.

Note that
xTAx =

∑
i,j

Aijxixj.

When A is a symmetric matrix, we get

xTAx = 2
∑
i<j

Aijxixj.

Consider the problem of
max
∥x∥=1

xTAx,
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which is the same as

maxmin
xTAx

∥x∥2
.

It turns out that if A is symmetric, then

λ1 = max
∥x∥=1

xTAx, λn = min
∥x∥=1

xTAx.

In fact, one can characterize all eigenvalues via:

λk = max
Uk

min
x∈Uk
∥x∥=1

xTAx

where Uk is a k-dimensional subspace of Rn.

3.3 Proof of Extremal Characterization

One can derive this characterization from the spectral theorem or directly. Suppose v1, . . . , vn
are orthonormal unit vectors that are eigenvectors of A and let λ1 ≥ · · · ≥ λn.

Let v ∈ Rn and ∥v∥ = 1 be any unit vector. Then

v =
n∑

i=1

civi where
n∑

i=1

c2i = 1.

Consider

max
∥v∥=1

xTAx

∥x∥2
, min

∥v∥=1

xTAx

∥x∥2
.

We have

xTAx = vTAv = vT

(∑
i

λiciviv
T
i

)
v =

∑
i

λic
2
i ,

where v =
∑

i civi with
∑

i c
2
i = 1.

Hence
max
∥v∥=1

vTAv = λ1, min
∥v∥=1

vTAv = λn.

Similarly, min∥v∥=1 v
TAv = λn, etc.

3.4 Positive Semidefinite Matrices

Definition 3. A real symmetric matrix A is positive semidefinite (PSD) if xTAx ≥ 0 for all
x ∈ Rn.

Theorem 4. Let A be a real symmetric matrix of size n × n. A is PSD if and only if one
of the following conditions holds:

1. xTAx ≥ 0 for all x ∈ Rn.

2. All eigenvalues of A are non-negative: λ1, . . . , λn ≥ 0.
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3. A = W TW for some W ∈ Rn×n.

Proof of (3) ⇒ (1):

vTAv = vTW TWv = (Wv)T (Wv) = ∥Wv∥2 ≥ 0.

Proof of (1) ⇒ (2): Recall for symmetric A,

λmin = min
∥v∥=1

vTAv.

Here λmin ≥ 0.
A is symmetric, so A = V DV T where D = diag(λ1, . . . , λn) with λi ≥ 0.
Then D =

√
D
√
D where

√
D = diag(

√
λ1, . . . ,

√
λn).

Hence A = V
√
D
√
DV T = W TW where W =

√
DV T .

4 Convergence Analysis for Regular Graphs

For d-regular undirected graphs, W = 1
d
A is symmetric. Note that W is doubly stochastic.

By spectral theorem, all eigenvalues are real. Let α1, . . . , αn be the eigenvalues of W .

Claim 5. α1 = 1 and αn ≥ −1.

Proof: This is an exercise.

Claim 6. Show that αn = −1 if G is bipartite. Otherwise, αn > −1.

Claim 7. Consider W = 1
2
I + 1

2
AD−1. The eigenvalues are 1, 1− λ2, 1− λ2, . . . where

0 ≤ λ2, . . . , λn ≤ 1.

4.1 Spectral Decomposition and Convergence

By spectral theorem, W can be written as

W =
n∑

i=1

αiviv
T
i

where v1, . . . , vn are the eigenvectors of W normalized to be unit vectors, and · denotes outer
product. We have v1, . . . , vn are orthonormal.

We want to know W tp0 where p0 is the starting distribution.
Since v1, . . . , vn are orthonormal, we can write p0 =

∑
i civi where ci = p0 · vi.

Then
W tp0 =

∑
i

ciα
t
ivi.

Recall α1 = 1 and |αi| ≤ 1 for all i. Since we normalize to unit vectors, we have ci ∈ R.
The spectral gap is defined as

β = min
i≥2

(1− αi).
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Note that 0 ≤ β ≤ 1.
Suppose β > 0, α2 < 1, and αn > −1. Then α1 = 1 > αi for i ≥ 2.
We have

W tp0 = c1α
t
1v1 +

∑
i≥2

ciα
t
ivi = c1v1 +

∑
i≥2

ciα
t
ivi.

Since αi < 1− β for i ≥ 2, as t → ∞, all αt
i → 0.

Thus W tp0 → c1v1.
Since

∑
i civi = p0 and v1, . . . , vn are orthonormal, we have c1 = p0 · v1.

Recall that v1 is the first eigenvector. Since π = ⊮/n (uniform distribution) and the
stationary distribution for a d-regular graph, and Wv1 = v1, we know that π is proportional
to ⊮.

Actually, for d-regular graphs, π(i) = 1/n for all i, and ⊮ = (1, 1, . . . , 1)T , so v1 = ⊮/
√
n

(normalized).
Hence c1v1 = (p0 · ⊮/

√
n) · ⊮/

√
n = 1

n
⊮ = π (the uniform/stationary distribution).

4.2 Rate of Convergence

Claim 8. Mixing time is O
(

1
β
log 1

ϵ

)
.

Proof: Why is
∑

i ciα
t
ivi small?

Hence ∥∥W tp0 − π
∥∥
TV

=

∥∥∥∥∥∑
i≥2

ciα
t
ivi

∥∥∥∥∥ .
By Cauchy-Schwarz, ∥∥∥∥∥∑

i≥2

ciα
t
ivi

∥∥∥∥∥ ≤
√∑

i

c2i

√∑
i

|αi|2t.

Full expansion:

∥W tp0 − π∥TV ≤
√∑

i≥2

c2i ·
√∑

i≥2

|αi|2t.

Since vi are orthonormal,
∑

i c
2
i = ∥p0∥2 = 1.

Hence
√∑

i≥2 c
2
i ≤ 1.

Also, |αi|2t ≤ (1− β)2t for i ≥ 2.
Therefore,

∥W tp0 − π∥TV ≤
√
n(1− β)t.

Want ∥W tp0 − π∥TV ≤ ϵ. Need
√
n(1− β)t ≤ ϵ.

Thus (1− β)t ≤ ϵ/
√
n.

Taking logarithms: t log(1− β) ≤ log(ϵ/
√
n).

Since log(1− β) ≈ −β for small β, we get t ≥ 1
β
log

√
n
ϵ
.

Thus t = O
(

1
β
log 1

ϵ

)
suffices (absorbing the log n factor).
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4.3 Lazy Random Walk

For the lazy random walk, W = 1
2
I + 1

2
AD−1.

Recall that α1 = 1, αn ≤ 1 with αn < −1 if bipartite, else αn > −1.
And α′

i = 1− 1
2
λi where λi are eigenvalues of 1

d
A (or AD−1 for regular graphs).

Thus α′
1 = 1− 1

2
= 1/2 and α′

2 = 1− 1
2
(1− β) = 1/2 + β/2.

Wait, let me reconsider. For the lazy walk with W = 1
2
I + 1

2
W0 where W0 = AD−1 has

eigenvalues α1 = 1, α2, . . . , αn, the eigenvalues of W are

α′
i =

1

2
+

1

2
αi.

So α′
1 = 1, and the second eigenvalue is α′

2 =
1
2
(1 + α2).

Spectral gap: β′ = 1− α′
2 =

1
2
(1− α2).

5 Example: Cycle Graph

Example: G = Cn, the n-cycle.
What are eigenvalues of AD−1?
Can show that they are

λk = cos

(
2πk

n

)
, k = 0, 1, . . . , n− 1.

If n is even, αn = −1. The spectral gap is β = 0. Hence need to use lazy walk.
What about α1, α2?
We have

λ1 = cos

(
2π

n

)
= 1− 1

2

(
2π

n

)2

+O(n−4) = 1− 2π2

n2
+O(n−4).

For large n,

β = 1− λ1 ≈
2π2

n2
.

Convergence time is O(1/β) = O(n2).
Not surprising!

6 General Non-Regular Graphs

For graphs that are not necessarily regular, we use the lazy walk.
W = 1

2
I+ 1

2
AD−1 is the walk matrix. W is not symmetric, so we cannot use the spectral

theorem directly.
Consider the normalized adjacency matrix

Ã = D−1/2AD−1/2.
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Note that Ãij =
Aij√

deg(i) deg(j)
, which is symmetric.

We can write

W = D−1/2

(
1

2
I +

1

2
D−1/2AD−1/2

)
D1/2 = D−1/2

(
1

2
I +

1

2
Ã

)
D1/2.

So W is similar to the symmetric matrix 1
2
I + 1

2
Ã.

W is similar to a symmetric matrix.

Definition 9. If X and Y are n × n matrices, we say X is similar to Y if there exists a
non-singular matrix B such that X = BY B−1.

The action of X can be understood via action of Y .

Claim 10. Eigenvalues of X and Y are the same. Hence same spectrum. Eigenvectors may
be different.

Proof: Suppose Y v = λv. Let u = B−Tv (i.e., u = (BT )−1v). Then

Xu = BY B−1u = BY (B−1u) = BY
1

B−Tv
Bv = BY v = B(λv) = λ(Bv) = λ(B(BT )−1u) = λu.

Wait, let me redo this. If Y v = λv and u = BTv, then

Xu = BY B−1u = BY B−1(BT )−1v = BY v = λBv = λ(BT )−1u = λu.

Hmm, this doesn’t quite work. Let me reconsider.
If Y v = λv, let u = B−1v. Then v = Bu and

X(B−Tv) = BY B−1(B−Tv) = BY B−1B−Tv.

Actually, let me use the standard approach. If Y v = λv, define u = Bv. Then

Xu = BY B−1u = BY B−1Bv = BY v = λBv = λu.

So u is an eigenvector of X with eigenvalue λ. Thus X and Y have the same eigenvalues.

Corollary 11. If X is similar to a symmetric matrix, then all eigenvalues of X are real.
Eigenvectors span Rn even though they may not be orthonormal.

Now back to W .
We have W = D−1/2

(
1
2
I + 1

2
Ã
)
D1/2 where

Ã = D−1/2AD−1/2

is the normalized adjacency matrix.
Let the eigenvalues of Ã be λ1, λ2, . . . , λn with λ1 = 1 and |λi| ≤ 1 for i ≥ 2.
The eigenvalues of W are

αi =
1

2
+

1

2
λi, i = 1, . . . , n.
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If v1, v2, . . . , vn are eigenvectors of Ã with eigenvalues λ1, λ2, . . . , λn, then eigenvectors of
W are

ui = D−1/2vi, i = 1, . . . , n.

Note that v1, . . . , vn are orthonormal (from spectral theorem for Ã). Thus

D−1/2vi, i = 1, . . . , n

are independent and span Rn.
Now we want to understand W tp0 where p0 is the starting distribution.
We can write p0 =

∑
i ciui where ui = D−1/2vi are eigenvectors of W .

Since the eigenvectors of W span Rn, therefore

W tp0 =
n∑

i=1

ciα
t
iui =

n∑
i=1

ciα
t
iD

−1/2vi.

Recall D−1/2vi is eigenvector of W with eigenvalue αi.
We have

W tD−1/2vi = αt
iD

−1/2vi.

Thus

W tp0 =
n∑

i=1

ciα
t
iD

−1/2vi.

Recall α1 = 1, α2, . . . , αn satisfy |αi| < 1 for i ≥ 2 (since λi are eigenvalues of a normalized
adjacency matrix and |λi| ≤ 1 with λ1 = 1).

If p0 is a unit vector (a point mass), then

W tp0 = c1D
−1/2v1 +

n∑
i=2

ciα
t
iD

−1/2vi.

Since αi < 1 for i ≥ 2, as t → ∞,

W tp0 → c1D
−1/2v1.

Converges to c1D
−1/2v1 = stationary distribution.

What is c1D
−1/2v1?

Recall p0 =
∑n

i=1 ciD
−1/2vi. Thus

ciD
−1/2vi =?

Wait, we need to be more careful. We have p0 =
∑

i ciui where ui are eigenvectors of W .
Now, u1 = D−1/2v1 where v1 is the first eigenvector of Ã.
For the normalized adjacency matrix Ã = D−1/2AD−1/2, the first eigenvector (corre-

sponding to eigenvalue 1) is proportional to D−1/2⊮/∥D−1/2⊮∥.
Actually, for a connected graph, the first eigenvector of Ã is v1 = D1/2⊮/∥D1/2⊮∥.
Let me reconsider. We have Ã = D−1/2AD−1/2.
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Note that Ã(D1/2⊮) = D−1/2A⊮ = D−1/2d where d is the degree vector. So Ã(D1/2⊮) =
D1/2⊮ (since d = D⊮ and thus D−1/2D⊮ = D1/2⊮).

Thus v1 = D1/2⊮/∥D1/2⊮∥ is the first eigenvector of Ã with eigenvalue 1.
Then u1 = D−1/2v1 = D−1/2 ·D1/2⊮/∥D1/2⊮∥ = ⊮/∥D1/2⊮∥.
Hmm, this is proportional to ⊮, but normalized differently.
Actually, the stationary distribution is π = d

vol(G)
where vol(G) =

∑
i di = 2m.

So π = D⊮
2m

(where D⊮ is the degree vector).
Now, c1u1 = c1D

−1/2v1 = c1D
−1/2 ·D1/2⊮/∥D1/2⊮∥ = c1⊮/∥D1/2⊮∥.

Recall p0 =
∑

i ciui. In particular, c1 = p0 · u1/∥u1∥2 = p0 · u1 (if ui are normalized).
Hmm, let me think about this more carefully.
Actually, let’s use the following: ui are eigenvectors of W , and they may or may not be

orthonormal. But vi are orthonormal eigenvectors of Ã.
If p0 =

∑
i ciui and vi = D1/2ui, then... hmm, this is getting messy.

Let me try a different approach. The claim is that uT
1 = dT

∥d∥ where d is the degree vector.

More precisely, the stationary distribution is πT = dT

vol(G)
.

Therefore, c1D
−1/2v1 = π.

So W tp0 → π as t → ∞.
Thus the lazy random walk converges to the stationary distribution whatever the starting

distribution is. Note that the lazy walk only assumes connectivity (i.e., does not require
regularity).

Since β ≥ λ2 which is true if G is connected, the mixing time analysis applies.

6.1 Mixing Time

Let π = d
vol(G)

be the stationary distribution. We have W tp0 = π + (lower order terms).

It turns out that ∥W tp0 − π∥TV ≤ ∥p0 − π∥TV .
More precisely, ∥W tp0 − π∥TV =

∥∥∑
i≥2 ciα

t
iD

−1/2vi
∥∥ .

By Cauchy-Schwarz,
∥∥∑

i≥2 ciα
t
iD

−1/2vi
∥∥ ≤

√∑
i c

2
i ·
√∑

i |αi|2t ≤ ∥p0∥βt where β =
mini(1− |αi|) for i ≥ 2.

Actually, more carefully: ∥W tp0 − π∥TV ≤ C · βt where C depends on the starting
distribution and graph structure.

In particular, if p0 is a point mass at vertex v, then ∥W tp0 − π∥TV ≤ 1√
dmin

βt where dmin

is the minimum degree.
Also, ∥p0∥ ≤

√
maxi di/dmin (roughly).

Therefore, to get ∥W tp0 − π∥TV ≤ ϵ, we need t ≥ 1
β
log 1

ϵ
.

7 Conclusion

To summarize:

• For d-regular graphs, the walk matrix W = 1
d
A is symmetric, and we can use spectral

analysis directly.
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• For general graphs, the lazy walk W = 1
2
I + 1

2
AD−1 is similar to a symmetric matrix,

so spectral analysis still applies.

• The convergence rate depends on the spectral gap β = 1−α2, where α2 is the second-
largest eigenvalue.

• The mixing time is O
(

1
β
log 1

ϵ

)
.

8 Next Lecture

Which graphs have spectral gap that is a constant? (i.e., β = Ω(1)). This will ensure that
random walk converges in O(log n) steps.
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