Convergence of Random Walks in Undirected Graphs

1 Introduction

Let G = (V, E) be a connected graph with |V| = n. We have seen various properties of
random walks on connected graphs:

1. The stationary distribution depends only on degrees.
2. Cover time is O(mn).

3. h;; < 2m (hitting time).

4. Connection to electrical networks.

We are interested in the convergence of the random walk to its stationary distribution.
To make this formal, we define the following.

Definition 1. Given two distributions 7= and 7 on V', their total variational distance is
- 1 -
I = 7llrv = 5 3 In(e) = 7))

We say that a Markov chain converges to its stationary distribution if ||7* — 7|7y — 0
as t — oo, where 7 is the stationary distribution.

We will be interested in the rate of convergence: starting from some arbitrary distribution
7V, how long does it take to get e-close to 7?

Note: A random walk may be periodic, in which case it does not converge. We will work
with the lazy walk instead.

We will focus on random walks in undirected graphs using spectral analysis, relating
spectral properties to combinatorial properties of the graph.

2 Setting up the Matrices

It is useful to switch from row vectors to column vectors. So far we have been working with
distributions over states as row vectors. Since we will work with eigenvalues and eigenvectors,
it is useful to switch to plot p' as column vectors. Recall P was the probability transition
matrix of the chain. In order to work with column vectors, we use PT. Thus p! = PTpt~!
where p is the distribution of the chain at time step t.



2.1 Graph Setup

Consider random walk on undirected graph G = (V, E') with |V| = n. Let A be the adjacency
matrix of G. Let D be the n x n diagonal matrix with D;; = deg(i). Then D! is the matrix
with (D_l)m' = @'

Recall the transition matrix P was defined as P;; = @ if (4,7) € E. Hence P = D71 A.

We can see that PT = AD™!.

We call W = AD~! the walk matrix.

For the lazy random walk, the walk matrix is W = %[ + %AD*I.

Suppose G is d-regular. Then W = éA is symmetric. Symmetric matrices have sub-
stantial structure and there is a beautiful and powerful spectral theory for them with many
applications.

3 Review of Linear Algebra

3.1 Eigenvalues and Eigenvectors

For an n x n matrix A € R"*", a vector v € R" is an eigenvector of A if there exists A € R
such that Av = A\v, where )\ is an eigenvalue.

Eigenvalues are solutions to the polynomial det(A — A\I) = 0.

In general, this polynomial may not have real roots, and hence A may not have real
eigenvalues and eigenvectors. However, if A is viewed as a complex matrix, then we have
complex eigenvalues and eigenvectors, since every univariate polynomial can be factorized.

Symmetric matrices are, however, special and have substantial structure. This is captured
by the Spectral Theorem.

Theorem 2 (Spectral Theorem). Let A € R™*" be a symmetric matrix. Then A has n real
eigenvalues Ay, ..., A, and corresponding eigenvectors vy, ..., v, which form an orthonormal
basis of R". Moreover, A = VDV7T where D is a diagonal matrix with D;; = )\; and
Vi=1lvy- vy

3.2 Rayleigh Quotient and Extremal Eigenvalues

A useful characterization of the eigenvectors is obtained via the Rayleigh quotient. Given A
and x € R", consider 27 Az, which is the quadratic form induced by A.
Note that
ITAZ' = Z Aijxixj.
i’j
When A is a symmetric matrix, we get
i<j

Consider the problem of

max o7 Az,
=zll=1



which is the same as
T Ax

max min ——.
(Edl

It turns out that if A is symmetric, then

A\ = max 27 Az, )\, = min 27 Azx.
[|lz[|=1 llzll=1

In fact, one can characterize all eigenvalues via:

A\ = max min =’ Az
U x€Uyg
[lz]|=1

where U}, is a k-dimensional subspace of R”.

3.3 Proof of Extremal Characterization

One can derive this characterization from the spectral theorem or directly. Suppose vy, ..

are orthonormal unit vectors that are eigenvectors of A and let A\; > --- > \,.
Let v € R" and ||v|| = 1 be any unit vector. Then

n n
V= g c;v; where 5 C? =1.
i=1 =1

Consider
xT Ax o a2l Ax

max —— mim ———.
o=t [|z]|2 " fell=1 [J2]|?

We have
2T Az = vT Av = o7 (Z )\icivw;[) v = Z \ic?,

where v = >, ¢u; with Y, ¢2 = 1.
Hence

max v? Av = )\, min v? Av = \,.
flvll=1 llvll=1

Similarly, minj, = v7 Av = A, etc.

3.4 Positive Semidefinite Matrices

3 Un

Definition 3. A real symmetric matrix A is positive semidefinite (PSD) if 27 Az > 0 for all

z € R™

Theorem 4. Let A be a real symmetric matrix of size n x n. A is PSD if and only if one

of the following conditions holds:
1. 2T Az > 0 for all x € R™.

2. All eigenvalues of A are non-negative: Ay, ..., A, > 0.



3. A=WTW for some W € R™".
Proof of (3) = (1):

vl Av = T WITWo = (W)t (Wv) = [|[Wo||* > 0.
Proof of (1) = (2): Recall for symmetric A,

Amin = min v Av.
[vll=1

Here A, > 0.

A is symmetric, so A = VDVT where D = diag(\1, ..., \,) with \; > 0.
Then D = vD+/D where /D = diag(v A1, ., V).

Hence A = Vv/DVDVT = WTW where W = /DVT.

4 Convergence Analysis for Regular Graphs

For d-regular undirected graphs, W = éA is symmetric. Note that W is doubly stochastic.

By spectral theorem, all eigenvalues are real. Let aq, ..., «a, be the eigenvalues of W.
Claim 5. oy =1 and o, > —1.
Proof: This is an exercise.
Claim 6. Show that o, = —1 if GG is bipartite. Otherwise, a,, > —1.
Claim 7. Consider W = %I + %AD‘l. The eigenvalues are 1,1 — Ay, 1 — Ag, ... where

0< gy A < 1.

4.1 Spectral Decomposition and Convergence

By spectral theorem, W can be written as

n

T

W = E QU]
i=1

where vy, ..., v, are the eigenvectors of W normalized to be unit vectors, and - denotes outer
product. We have vy, ..., v, are orthonormal.

We want to know Wip? where p° is the starting distribution.

Since vy, ..., v, are orthonormal, we can write p* = >, civ; where ¢; = p° - v;.

Then

Wip = Z ciozfvz-.
i
Recall oy = 1 and |oy;| < 1 for all i. Since we normalize to unit vectors, we have ¢; € R.
The spectral gap is defined as

B =min(l — o).
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Note that 0 < g < 1.

Suppose § >0, as < 1, and «,, > —1. Then oy =1 > «; for 7 > 2.

We have

Wip = claﬁvl + Z ciafvi =cv + Z ciafvi.
i>2 i>2

Since o; < 1 — G fori > 2, ast — oo, all af — 0.

Thus Wip® — civ;.

Since Y. ¢;v; = p® and vy, ..., v, are orthonormal, we have ¢; = p° - v;.

Recall that v; is the first eigenvector. Since m = W /n (uniform distribution) and the
stationary distribution for a d-regular graph, and Wwv,; = vy, we know that 7 is proportional
to W

Actually, for d-regular graphs, 7(i) = 1/n for all i, and ¥ = (1,1,...,1)T, so v; = ¥//n
(normalized).

Hence civy = (p° - W /\/n) - ¥ //n = L = 7 (the uniform/stationary distribution).

4.2 Rate of Convergence
Claim 8. Mixing time is O (% log %)

Proof: Why is Y. ¢;alv; small?
Hence

IW” =7l =

E CiOéEUi

122

< \/Z c%\/;w.

W — e < [ 3 il

i>2 i>2

By Cauchy-Schwarz,

E CZ'OZ?UZ‘
1>2

Full expansion:

Since v; are orthonormal, Y, c¢? = [|p°|> = 1.
Hence (/> ,¢f < 1.
Also, |oy|* < (1 — B)?* for i > 2.
Therefore,
[Wp” = wllrv < v/n(l - B)".
Want ||[Wip? — 7|7y < €. Need /n(1 — )t <e.
Thus (1 — ) <e/y/n.
Taking logarithms: ¢log(1 — ) < log(e//n).
Since log(1 — ) ~ —f for small 3, we get t > %log \/TE

Thus t = O (% log %) suffices (absorbing the logn factor).
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4.3 Lazy Random Walk

For the lazy random walk, W = %I + %AD_I.
Recall that a1 = 1, o, < 1 with «a,, < —1 if bipartite, else o, > —1.
And of =1 — 3\; where )\; are eigenvalues of 5A (or AD™! for regular graphs).
Thusof =1—3=1/2and oy =1-1(1-6)=1/2+ 3/2.
Wait, let me reconsider. For the lazy walk with W = %I + %WO where Wy, = AD™! has

eigenvalues a; = 1, s, . .., oy, the eigenvalues of W are
, 1 n 1
o, = — — Q.
202

So o) =1, and the second eigenvalue is oy = (1 + o).
Spectral gap: ' =1—af = 1(1 — as).

5 Example: Cycle Graph
Example: G = C),, the n-cycle.

What are eigenvalues of AD~!?
Can show that they are

21k
)\k:COS<L), E=0,1,...,n—1.

n
If n is even, o, = —1. The spectral gap is = 0. Hence need to use lazy walk.
What about aq, as?
We have

o 1 /2m\? » 27 »
/\1=COS(—):1—§<F) +O<TL ):1—F+O(TL )

For large n,

Convergence time is O(1/8) = O(n?).
Not surprising!

6 General Non-Regular Graphs

For graphs that are not necessarily regular, we use the lazy walk.

W = %] + %AD*1 is the walk matrix. W is not symmetric, so we cannot use the spectral
theorem directly.

Consider the normalized adjacency matrix

A=D12AD1/?,



Aij

———2_ which is symmetric.
deg(i) deg(j)

Note that /L-j =
We can write
W =D1/2 (%I + %DWAD”Q) DYV? = p=1/2 (%I + %A) D2,

So W is similar to the symmetric matrix %I + %fl
W is similar to a symmetric matrix.

Definition 9. If X and Y are n X n matrices, we say X is similar to Y if there exists a
non-singular matrix B such that X = BY B~%.
The action of X can be understood via action of Y.

Claim 10. Eigenvalues of X and Y are the same. Hence same spectrum. Eigenvectors may
be different.

Proof: Suppose Yv = \v. Let u = B~ v (i.e., u = (BT)"'v). Then

Xu=BYB 'u= BY (B 'u) = BY Bv = BYv = B(\v) = A\(Bv) = A(B(B")'u) = \u.

BTy
Wait, let me redo this. If Yv = Av and u = BTv, then
Xu=BYB 'u=BYB YB")'v=BYv=ABv=\B")"tu=\u.

Hmm, this doesn’t quite work. Let me reconsider.
If Yo = Mv, let w = B~'v. Then v = Bu and

X(B™™)=BYB (B ") =BYB 'B v
Actually, let me use the standard approach. If Yv = A\v, define u = Bv. Then
Xu=BYB 'u=BYB 'Bv=BYv=\Bv=\u
So u is an eigenvector of X with eigenvalue \. Thus X and Y have the same eigenvalues.

Corollary 11. If X is similar to a symmetric matrix, then all eigenvalues of X are real.
Eigenvectors span R™ even though they may not be orthonormal.

Now back to W. .
We have W = D~ 1/2 (%I + %A) DY/2 where

A=D'?AD™'?

is the normalized adjacency matrix.
Let the eigenvalues of A be Ay, Ao, ..., A, with A\; = 1 and |\;| < 1 for i > 2.
The eigenvalues of W are

[\
N | —



If v1,v9,...,v, are eigenvectors of A with eigenvalues A\, A9, ..., \,, then eigenvectors of
W are
ui:Dfl/Qvi, 2:1,,n

Note that vy, ..., v, are orthonormal (from spectral theorem for fl). Thus

DV, i=1,...,n

are independent and span R".
Now we want to understand Wp® where p° is the starting distribution.
We can write p? = > ciu; where u; = D~1/2y; are eigenvectors of .
Since the eigenvectors of W span R", therefore

n n
tho = E cl-afui = E clafD_l/Qvi.
i=1 i=1

Recall D~1/2y; is eigenvector of W with eigenvalue a;.

We have
W'D™?p; = ol D™,
Thus n
Wipl = Z ciaﬁD_l/Qvi.
i=1
Recall oy = 1, ag, .. ., a, satisfy |a;| < 1fori > 2 (since \; are eigenvalues of a normalized

adjacency matrix and |\;| <1 with A\ = 1).
If p¥ is a unit vector (a point mass), then

Wip = ch’l/Qvl + Z ciafD’l/Qvi.

i=2
Since o; < 1 for ¢ > 2, as t — oo,

wipd — ClD_1/2U1.

Converges to ¢; D~'/?y; = stationary distribution.
What is ¢; D~ 2v,?

Recall p° = 3" ¢;D~Y2v;. Thus
D™y =2

Wait, we need to be more careful. We have p® = > ¢;u; where u; are eigenvectors of W.

Now, u; = D~Y/20; where v; is the first eigenvector of A.

For the normalized adjacency matrix A = D~/2AD~1/2 the first eigenvector (corre-
sponding to eigenvalue 1) is proportional to D=2 /|| D=1/2)¢|.

Actually, for a connected graph, the first eigenvector of A is v; = D2 /|| DV/2K|.

Let me reconsider. We have A = D-1/2AD~1/2,



Note that A(DV2K) = D~'2AF = D~'/2d where d is the degree vector. So A(DVK) =
D¢ (since d = DW¥ and thus D~'/2DW = DY),

Thus v; = DV2K/||DV2K|| is the first eigenvector of A with eigenvalue 1.

Then u; = D~Y2y; = D=Y2. DV /|| DY2K|| = /|| DY2K|.

Hmm, this is proportional to ¥, but normalized differently.

Actually, the stationary distribution is 7 = Vo;d) where vol(G) = ), d; = 2m.

(e
So m = 2 (where DF is the degree vector).

Now, ciuy = c; D™V 20, = ¢, D™Y2 . DV2) /|| DYV || = c /|| DV

Recall p° = Y. cu;. In particular, ¢; = p® - uy /[Juq ||* = p° - uy (if w; are normalized).

Hmm, let me think about this more carefully.

Actually, let’s use the following: wu; are eigenvectors of W, and they may or may not be
orthonormal. But v; are orthonormal eigenvectors of A.

If p° = >, cu; and v; = D'2y,;, then... hmm, this is getting messy.

_ dr

Let me try a different approach. The claim is that ul = T where d is the degree vector.

T _ _d¥
— vol(G)”

More precisely, the stationary distribution is 7

Therefore, ¢; D~1?v, = .

So Wip? — 7 as t — oc.

Thus the lazy random walk converges to the stationary distribution whatever the starting
distribution is. Note that the lazy walk only assumes connectivity (i.e., does not require
regularity).

Since 8 > A9 which is true if G is connected, the mixing time analysis applies.

6.1 Mixing Time
Let m = #(G) be the stationary distribution. We have Wp® = 7 + (lower order terms).

It turns out that ||[Wp° — 7|7y < ||p° — 7||7v.

More precisely, |[W'p° — 7|7y = || X0 cial D~ 20|

By Cauchy-Schwarz, ||, cialD™ 20 || < />0, ¢ - />, [ou® < ||p°]|8" where 8 =
min, (1 — |oy|) for i > 2.

Actually, more carefully: [|[W'p® — 7|7y < C - ' where C' depends on the starting
distribution and graph structure.

In particular, if p® is a point mass at vertex v, then [|[WWp°? — 7||py < \/ﬁﬁt where dpin
is the minimum degree.

AISO? HPOH < \/ max; di/dmin (I‘Ollghly).

Therefore, to get [W'p” — 7llrv < ¢, we need t > 5log ;.

1/2

7 Conclusion

To summarize:

e For d-regular graphs, the walk matrix W = éA is symmetric, and we can use spectral
analysis directly.



e For general graphs, the lazy walk W = %] + %AD*1 is similar to a symmetric matrix,
so spectral analysis still applies.

e The convergence rate depends on the spectral gap f = 1 — ap, where ay is the second-
largest eigenvalue.

e The mixing time is O (% log %)

8 Next Lecture

Which graphs have spectral gap that is a constant? (i.e., § = €(1)). This will ensure that
random walk converges in O(logn) steps.
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