Electrical Networks and Random Walks

1 Ohm’s Law

Ohm’s Law: V = IR
where V' is voltage, I is current, and R is resistance.
For effective resistance:

Reeries : R =Ry + Ry
R Rs
R+ R,
Let R,, be the effective resistance between vertices u and v, defined as

the resistance between u and v when a voltage difference of 1 is applied, with
current i,, flowing from u to v.

Corollary 1. If (u,v) € E, then

Rparallel : R =

2m
Cuv =
R’LL’U
Proof. Because R, = I [from Ohm’s law definition] O

2 Example: Lollipop Graph

For a lollipop graph, we can compute the effective resistance using series and
parallel resistance formulas.

3 Electrical Flow

Let G = (V, E) be an undirected graph. We work with electrical flow, as
opposed to standard flows in directed graphs.
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3.1 Standard Flow (Directed Graphs)

Basic Setup: Suppose d : V' — R is a demand vector, where d(v) represents
the demand at v.

e d(v) > 0: flow coming into v
e d(v) < 0: flow leaving v
For a directed graph G = (V, E), flow conservation requires:

Z fe_ Z fe:d<u)

e out of u e into u

This requires ), ., d(u) = 0.

A special case is when d(v) = 0 except at source s and sink ¢.

Capacity Constraints: Typically we have capacity constraints C, for
e € EF and want 0 < f, < C..

Note: If there exists a feasible flow, then there exists an acyclic feasible
flow.

Feasibility as LP: Feasibility of flow can be written as a linear program:

S f- Y fo=dw) VueV

e out of u e into u
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3.2 Electrical Flow (Undirected Graphs)

We now consider electrical flows in undirected graphs. For each edge e, we
orient it arbitrarily and fix this orientation. Let f. be positive or negative:

o If f. > 0: flow goes along the chosen orientation
o If f. < 0: flow goes in the reverse direction

Flow Conservation: With this notation:

> fuw=dw) VueV

vEN (u)

where d(u) is the current injected into u (can be positive or negative).



Energy Minimization: Each edge e € E has a resistance r. > 0. An
electrical low minimizes energy:

The energy consumed by flow f. over edge with resistance r, is r.f>
(voltage X current).

Thus, an electrical low minimizes:

E(f) - Zrefg
eclE

Optimization Problem:

s.t. Z fup =d(u) YueV

where f. are unrestricted (no capacity constraints). The objective is
convex quadratic and the constraint is a set of linear constraints.

4 Constrained Optimization and Lagrange Mul-
tipliers
Abstract Problem:
ming(z) st. Az =0

where ¢ is convex and z € R", A is m X n.

Theorem 1. Let Z* be an optimal solution. Then Vg(z*) = ATy for some
y € R™, where Vg(z*) is the gradient of g.

Proof. Let Ker(A) = {z : Az = 0}.
We claim that Vg(z*) is orthogonal to Ker(A).
Suppose not. Then there exists z € Ker(A) such that Vg(z*) - Z > 0.
For small € > 0, let £ = z* + €z. Then:

o AT = A(T* 4+ ez)=AT*"+eAz=0b+0=0

o g(z) = g(&" + €2) = g(") + eVg(T") - 2 < g(T")



This contradicts optimality of z*.
Geometrically: If ay,...,a, € R" are the rows of A, then Ker(A) is the

set of all vectors orthogonal to the space spanned by aq, ..., ap,.
Any vector orthogonal to Ker(A) is in the span of ay,...,a,, and is of
the form:

Z y;a; = ATy for some y € R™
i=1

Therefore, Vg(z*) = ATy for some y € R™. O

5 Application to Electrical Flow

Theorem: Suppose f* = (fF)ccr is an optimum solution to the electrical
flow problem. Then there exists a potential function p : V' — R such that:

for each edge e = (u,v).

In other words, there exist voltages that induce the electrical current via
Ohm’s law.

Note: Shifting all potentials by a constant A does not change currents.
Hence, we can assume p(t) = 0 for some vertex t.

6 Connecting Electrical Flow and Hitting Times

Fix a vertex t € V. We want to find h(u) for v € V| where h(u) is the
expected time for a random walk to hit ¢ starting at u. Let h(t) = 0.
These values satisfy the recurrence:

_ h(v) .
h<u)_1+v§u) dos (1) Vu #t

Rearranging:



We consider potentials on V' where p(u) = h(u) with p(t) = 0. This
induces flow:

(setting edge resistances r, = 1).
The outflow from w is:

Yo fuw= D (h(w) = h(v)) = deg(u) - h(u) = Y h(v)

vEN (u) vEN (u) vEN (u)

If w # t, this equals deg(u).
By flow conservation, the flow entering ¢ is:

Z d(u) = 2m — deg(t)

uFt

where d(u) = deg(u) for u # t and d(t) = —(2m — deg(t)).

Thus, h(u,t) values correspond to vertex potentials induced by:
e Injecting deg(u) current at each u

e Draining 2m — deg(t) units of current at ¢

7 Lemma: Hitting Times and Effective Re-
sistance

Lemma 1. Let G = (V, E) be an undirected graph and s,t € V. Then:
h(s) — h(t) = 2m - Rs,
where Ry, is the effective resistance between s and t.

Proof. We have seen that h(t) corresponds to potentials that route 2m - d(t)
flow current into ¢ and deg(u) flow out at each w.

Similarly, h(s) corresponds to potentials that drain 2m - d(s) units of
current at s and deg(u) flow out from each u # s.

Let p(u) = h(u) and g(u) = h(s). Consider p(u) — q(u).



The net flow at w is:

d(u) = d(u)|s — d(u)l;

= deg(u) — (2m — deg(t)) — [deg(u) — (2m — deg(s))]

= deg(s) — deg(t) + 2m — 2m

=0 except at s,t
At s: d(s) = 2m — deg(s) — [—(2m — deg(s))] = 2m
At t: d(t) = —(2m — deg(t)) — 0 = —(2m — deg(?))
Actually: At s, d(s) = —2m+deg(s)+(2m—deg(s)) = 0... [recalculating]
More directly: The potential difference is:

This induces current 2m flowing from s to ¢:

h(s) — h(t) = 2m - Reg(s,t)

8 Laplacian Matrix

Given an undirected graph G = (V| F), we associate the Laplacian matrix
L¢.

8.1 Adjacency Matrix

The adjacency matrix is:

a 1 if edge (i,j) € E
Y 0 otherwise
For undirected graphs, A is symmetric.
For directed graphs, we set A;; to indicate presence of edge (7,j), and A
is not necessarily symmetric.



8.2 [Edge-Vertex Incidence Matrix

The edge-vertex incidence matrix B is an m X n matrix (where m = |E|,
n=1V]):

B — 1 if vertex i is incident to edge e
“ 0 otherwise

In a directed graph:

B - 1 if e leaves u
“ —1 if e enters u

The set of flows satisfying a demand vector d can be written as:
Bf=d

Note that f is not restricted to be non-negative.
When working with electrical flows in undirected graphs, we orient the
edges arbitrarily and use B for the resulting edge-vertex incidence matrix.

8.3 Laplacian Definition

Recall that when solving the electrical flow optimization problem:

rnilrlzrefe2 st. Bf=d

the optimal solution f* satisfies:
2rf* = BTp

where p is the set of potentials.

We can directly write a linear system to find the potentials that satisfy
demands via Ohm’s law.

Flow Conservation:

Z fu,v = d<u>

vEN (u)

But f,, — Hu=r)

Te



Let w(u,v) = 1/r. be the conductance. Then:

> w(u,v)[p(u) — p(v)] = d(u)

vEN (u)

Expanding;:

This is a linear system:
Lep=d

where L is the Laplacian of G, defined as:

Le(u,u) = Z w(u,v) (weighted degree of )
vEN (u)

Lg(u,v) = —w(u,v) for u#wv, (u,v) €FE
Lg(u,v) =0 foru#wv, (u,v) ¢ E

8.4 Properties of the Laplacian
L is a symmetric, diagonally dominant matrix:

|Lal > > | Lyl

i

We can solve Lgp = d to compute effective resistance and h(u) values in

polynomial time. Near-linear time algorithms are known.

L¢ is singular, but for a connected graph, its rank is n— 1 (the null space

is spanned by the all-ones vector).

9 Computational Considerations
The h(u) values can be computed by solving:

Leh =b



where:

b(u) = deg(u) foru #t
b(t) = 2m — deg(t)

for a target vertex t.



