
Electrical Networks and Random Walks

1 Ohm’s Law

Ohm’s Law: V = IR
where V is voltage, I is current, and R is resistance.
For effective resistance:

Rseries : R = R1 +R2

Rparallel : R =
R1R2

R1 +R2

Let Ruv be the effective resistance between vertices u and v, defined as
the resistance between u and v when a voltage difference of 1 is applied, with
current iuv flowing from u to v.

Corollary 1. If (u, v) ∈ E, then

Cuv =
2m

Ruv

Proof. Because Ruv = I [from Ohm’s law definition]

2 Example: Lollipop Graph

For a lollipop graph, we can compute the effective resistance using series and
parallel resistance formulas.

3 Electrical Flow

Let G = (V,E) be an undirected graph. We work with electrical flow, as
opposed to standard flows in directed graphs.
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3.1 Standard Flow (Directed Graphs)

Basic Setup: Suppose d : V → R is a demand vector, where d(v) represents
the demand at v.

• d(v) > 0: flow coming into v

• d(v) < 0: flow leaving v

For a directed graph G = (V,E), flow conservation requires:∑
e out of u

fe −
∑

e into u

fe = d(u)

This requires
∑

u∈V d(u) = 0.
A special case is when d(v) = 0 except at source s and sink t.
Capacity Constraints: Typically we have capacity constraints Ce for

e ∈ E and want 0 ≤ fe ≤ Ce.
Note: If there exists a feasible flow, then there exists an acyclic feasible

flow.
Feasibility as LP: Feasibility of flow can be written as a linear program:∑

e out of u

fe −
∑

e into u

fe = d(u) ∀u ∈ V

0 ≤ fe ≤ Ce ∀e ∈ E

3.2 Electrical Flow (Undirected Graphs)

We now consider electrical flows in undirected graphs. For each edge e, we
orient it arbitrarily and fix this orientation. Let fe be positive or negative:

• If fe > 0: flow goes along the chosen orientation

• If fe < 0: flow goes in the reverse direction

Flow Conservation: With this notation:∑
v∈N(u)

fu,v = d(u) ∀u ∈ V

where d(u) is the current injected into u (can be positive or negative).
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Energy Minimization: Each edge e ∈ E has a resistance re ≥ 0. An
electrical flow minimizes energy:

The energy consumed by flow fe over edge with resistance re is ref
2
e

(voltage × current).
Thus, an electrical flow minimizes:

E(f) =
∑
e∈E

ref
2
e

Optimization Problem:

min
∑
e∈E

ref
2
e

s.t.
∑

v∈N(u)

fu,v = d(u) ∀u ∈ V

where fe are unrestricted (no capacity constraints). The objective is
convex quadratic and the constraint is a set of linear constraints.

4 Constrained Optimization and Lagrange Mul-

tipliers

Abstract Problem:
min g(x̄) s.t. Ax̄ = b

where g is convex and x̄ ∈ Rn, A is m× n.

Theorem 1. Let x̄∗ be an optimal solution. Then ∇g(x̄∗) = ATy for some
y ∈ Rm, where ∇g(x̄∗) is the gradient of g.

Proof. Let Ker(A) = {x̄ : Ax̄ = 0}.
We claim that ∇g(x̄∗) is orthogonal to Ker(A).
Suppose not. Then there exists z̄ ∈ Ker(A) such that ∇g(x̄∗) · z̄ > 0.
For small ε > 0, let x̄ = x̄∗ + εz̄. Then:

• Ax̄ = A(x̄∗ + εz̄) = Ax̄∗ + εAz̄ = b+ 0 = b

• g(x̄) = g(x̄∗ + εz̄) ≈ g(x̄∗) + ε∇g(x̄∗) · z̄ < g(x̄∗)
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This contradicts optimality of x̄∗.
Geometrically: If a1, . . . , am ∈ Rn are the rows of A, then Ker(A) is the

set of all vectors orthogonal to the space spanned by a1, . . . , am.
Any vector orthogonal to Ker(A) is in the span of a1, . . . , am, and is of

the form:
m∑
i=1

yiai = ATy for some y ∈ Rm

Therefore, ∇g(x̄∗) = ATy for some y ∈ Rm.

5 Application to Electrical Flow

Theorem: Suppose f ∗ = (f ∗e )e∈E is an optimum solution to the electrical
flow problem. Then there exists a potential function p : V → R such that:

f ∗e =
p(u)− p(v)

re

for each edge e = (u, v).
In other words, there exist voltages that induce the electrical current via

Ohm’s law.
Note: Shifting all potentials by a constant ∆ does not change currents.

Hence, we can assume p(t) = 0 for some vertex t.

6 Connecting Electrical Flow and Hitting Times

Fix a vertex t ∈ V . We want to find h(u) for u ∈ V , where h(u) is the
expected time for a random walk to hit t starting at u. Let h(t) = 0.

These values satisfy the recurrence:

h(u) = 1 +
∑

v∈N(u)

h(v)

deg(u)
∀u 6= t

Rearranging:

deg(u) · h(u)−
∑

v∈N(u)

h(v) = deg(u)
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We consider potentials on V where p(u) = h(u) with p(t) = 0. This
induces flow:

fu,v =
p(u)− p(v)

ru,v
=
h(u)− h(v)

1
= h(u)− h(v)

(setting edge resistances re = 1).
The outflow from u is:∑

v∈N(u)

fu,v =
∑

v∈N(u)

(h(u)− h(v)) = deg(u) · h(u)−
∑

v∈N(u)

h(v)

If u 6= t, this equals deg(u).
By flow conservation, the flow entering t is:∑

u6=t

d(u) = 2m− deg(t)

where d(u) = deg(u) for u 6= t and d(t) = −(2m− deg(t)).
Thus, h(u, t) values correspond to vertex potentials induced by:

• Injecting deg(u) current at each u

• Draining 2m− deg(t) units of current at t

7 Lemma: Hitting Times and Effective Re-

sistance

Lemma 1. Let G = (V,E) be an undirected graph and s, t ∈ V . Then:

h(s)− h(t) = 2m ·Rs,t

where Rs,t is the effective resistance between s and t.

Proof. We have seen that h(t) corresponds to potentials that route 2m · d(t)
flow current into t and deg(u) flow out at each u.

Similarly, h(s) corresponds to potentials that drain 2m · d(s) units of
current at s and deg(u) flow out from each u 6= s.

Let p(u) = h(u) and q(u) = h(s). Consider p(u)− q(u).
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The net flow at u is:

d(u) = d(u)|s − d(u)|t
= deg(u)− (2m− deg(t))− [deg(u)− (2m− deg(s))]

= deg(s)− deg(t) + 2m− 2m

= 0 except at s, t

At s: d(s) = 2m− deg(s)− [−(2m− deg(s))] = 2m
At t: d(t) = −(2m− deg(t))− 0 = −(2m− deg(t))
Actually: At s, d(s) = −2m+deg(s)+(2m−deg(s)) = 0... [recalculating]
More directly: The potential difference is:

p(s)− p(t) = h(s)− h(t)

This induces current 2m flowing from s to t:

h(s)− h(t) = 2m ·Reff(s, t)

8 Laplacian Matrix

Given an undirected graph G = (V,E), we associate the Laplacian matrix
LG.

8.1 Adjacency Matrix

The adjacency matrix is:

Aij =

{
1 if edge (i, j) ∈ E
0 otherwise

For undirected graphs, A is symmetric.
For directed graphs, we set Aij to indicate presence of edge (i, j), and A

is not necessarily symmetric.
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8.2 Edge-Vertex Incidence Matrix

The edge-vertex incidence matrix B is an m × n matrix (where m = |E|,
n = |V |):

Bei =

{
1 if vertex i is incident to edge e

0 otherwise

In a directed graph:

Bei =

{
1 if e leaves u

−1 if e enters u

The set of flows satisfying a demand vector d can be written as:

Bf = d

Note that f is not restricted to be non-negative.
When working with electrical flows in undirected graphs, we orient the

edges arbitrarily and use B for the resulting edge-vertex incidence matrix.

8.3 Laplacian Definition

Recall that when solving the electrical flow optimization problem:

min
∑
e

ref
2
e s.t. Bf = d

the optimal solution f ∗ satisfies:

2rf ∗ = BTp

where p is the set of potentials.
We can directly write a linear system to find the potentials that satisfy

demands via Ohm’s law.
Flow Conservation: ∑

v∈N(u)

fu,v = d(u)

But fu,v = p(u)−p(v)
re

.
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Let w(u, v) = 1/re be the conductance. Then:∑
v∈N(u)

w(u, v)[p(u)− p(v)] = d(u)

Expanding: ∑
v∈N(u)

w(u, v)p(u)−
∑

v∈N(u)

w(u, v)p(v) = d(u)

This is a linear system:
LGp = d

where LG is the Laplacian of G, defined as:

LG(u, u) =
∑

v∈N(u)

w(u, v) (weighted degree of u)

LG(u, v) = −w(u, v) for u 6= v, (u, v) ∈ E

LG(u, v) = 0 for u 6= v, (u, v) /∈ E

8.4 Properties of the Laplacian

LG is a symmetric, diagonally dominant matrix:

|Lii| ≥
∑
i 6=j

|Lij|

We can solve LGp = d to compute effective resistance and h(u) values in
polynomial time. Near-linear time algorithms are known.

LG is singular, but for a connected graph, its rank is n−1 (the null space
is spanned by the all-ones vector).

9 Computational Considerations

The h(u) values can be computed by solving:

LGh = b
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where:
b(u) = deg(u) for u 6= t

b(t) = 2m− deg(t)

for a target vertex t.

9


