
Lecture 11: Frequency Moments and Sketch Algorithms

October 1, 2025

1 Introduction to Heavy Hitters

F0 is the most frequently occurring item in the stream. It is a brittle measure. In most applications
we want to know the heavy hitters: items that occur very frequently.

1.1 Definition

From a theoretical perspective, we call an index i ∈ [n] a heavy hitter if

Fi ≥
m

c

for some sufficiently large constant c.
Alternatively, fix Fi ≥ m

k for some integer k.

2 Misra-Gries Algorithm

A classical algorithm shows that one can identify items i with Fi ≥ m
k .

2.1 Algorithm Description

We have a data structure D that stores k items along with a counter for each. D is initialized to
the empty set.

Implicitly, it defines an estimate F̂i for each i:

• If i ∈ D at the end, then F̂i is the counter value

• Otherwise, it is 0

Theorem 1. |Fi − F̂i| ≤ m
k . Hence, if i is a heavy hitter, it will be in D. Space usage is O(k).

Although Misra-Gries is nice, it does not allow deletion and also does not provide a sketch.

3 Count-Min Sketch

Count-Min and Count sketches use hashing to identify heavy hitters and they have led to many
applications.

1

Algorithm 1 Misra-Gries-k

D ← ∅
while stream is not empty do

e is current item
if e ∈ D then

increment counter for e in D
else

if |D| < k then
add e to D with counter value 1

else
decrease counter value by 1 for all current elements
delete from D any element with counter set to 0

end if
end if

end while
Output: values stored in D and the counter values

3.1 Basic Idea

Suppose we use a hash function h : [n]→ [ck] for some sufficiently large constant c. Then h spreads
the n items into ck buckets. Suppose the heavy hitters are i1, . . . , ik. We expect that they will not
collide and we can use separate counts in each bucket.

We will use amplification as usual by considering multiple hash functions rather than a single
one.

3.2 Algorithm (Cormode-Muthukrishnan)

Let h1, h2, . . . , hd be d independent (pairwise independent) hash functions from [n] to [w].

Algorithm 2 Count-Min Sketch

Initialize C[ℓ][j] = 0 for all ℓ ∈ [d], j ∈ [w]
while stream is not empty do

let (i,∆) be current item
for ℓ = 1 to d do

C[ℓ][hℓ(i)]← C[ℓ][hℓ(i)] + ∆
end for

end while
for i = 1 to n do

x̂i = mindℓ=1C[ℓ][hℓ(i)]
end for

where w is the width of the sketch and d is the number of independent hash functions we use.
We use w = e

ε and d = log 1
δ .

Lemma 1. Consider the strict turnstile model (x̄ ≥ 0). Let d = log 1
δ and w = e

ε . Then:

1. x̂i ≥ xi

2. Pr[x̂i − xi ≥ ε∥x̄∥1] ≤ δ

2

Proof. Fix i. For ℓ ∈ [d]:

Zℓ = C[ℓ][hℓ(i)]− xi =
∑

i′:i′ ̸=i,hℓ(i′)=hℓ(i)

xi′

= xi +
∑

i′ ̸=i,hℓ(i′)=hℓ(i)

xi′

E[Zℓ] = xi +
∑
i′ ̸=i

Pr[hℓ(i
′) = hℓ(i)] · xi′

By pairwise independence: Pr[hℓ(i
′) = hℓ(i)] =

1
w

E[Zℓ] = xi +
1

w
∥x̄∥1

By Markov’s inequality:

Pr[Zℓ ≥ xi + ε∥x̄∥1] ≤
1

e

Thus:

Pr[min
ℓ

Zℓ ≥ xi + ε∥x̄∥1] ≤
(
1

e

)d

by independence.
Choosing d = log 1

δ , we have x̂i − xi ≤ ε∥x̄∥1 with high probability for all i ∈ [n].

Count-Min gives overestimates. Total space is O(dw) counters = O
(
1
ε log

1
δ log n

)
.

Advantages: Simple, handles dependencies.
Disadvantages: Only handles x̄ ≥ 0.
Exercise: Show that Count-Min is a linear sketch.

4 Count Sketch

Count Sketch is similar to Count-Min in using d independent hash functions but uses F2 estimation
ideas and median estimator instead of min.

4.1 Algorithm (Charikar-Chen-Farach-Colton)

Let h1, h2, . . . , hd be independent hash functions from [n] to [w].
Let g1, g2, . . . , gd be independent functions from [n] to {−1,+1}.
x̂i can be negative even if x̄ ≥ 0. Cancellation can happen like in F2 estimation.

Lemma 2. Let d = O(log 1
δ) and w = O

(
1
ε2

)
. Then for any i ∈ [n]:

1. E[x̂i] = xi

2. Pr[|x̂i − xi| ≥ ε∥x̄∥2] ≤ δ

Proof. Fix i. For ℓ ∈ [d], to make analysis easier, let Yi′ = ⊮hℓ(i′)=hℓ(i) be the indicator for
hℓ(i

′) = hℓ(i).

3

Algorithm 3 Count Sketch

Initialize C[ℓ][j] = 0 for all ℓ, j
while stream is not empty do

let (i,∆) be current item
for ℓ = 1 to d do

C[ℓ][hℓ(i)]← C[ℓ][hℓ(i)] + gℓ(i) ·∆
end for

end while
for i ∈ [n] do

x̂i = mediandℓ=1{gℓ(i) · C[ℓ][hℓ(i)]}
end for

Zℓ = gℓ(i) · C[ℓ][hℓ(i)]

= gℓ(i) ·

 ∑
i′:hℓ(i′)=hℓ(i)

gℓ(i
′) · Yi′ · xi′


=

∑
i′

gℓ(i) · gℓ(i′) · Yi′ · xi′

E[Zℓ] = xi by pairwise independence of gℓ.
We note that E[Yi′] =

1
w and E[gℓ(i) · gℓ(i′)] = 0 for i′ ̸= i by pairwise independence of hℓ.

Var(Zℓ) = E[Z2
ℓ]− (E[Zℓ])

2

= E

[∑
i′

gℓ(i) · gℓ(i′) · Yi′ · xi′
]2

− x2i

= E

[∑
i′

Yi′ · x2i′

]
− x2i

≤ 1

w
∥x̄∥22

Hence, using Chebyshev’s inequality:

Pr[|Zℓ − xi| ≥ ε∥x̄∥2] ≤
1

wε2

Via Chernoff bounds:
Pr[medianℓZℓ − xi ≥ ε∥x̄∥2] ≤ δ

5 Finding Heavy Hitters

Important: Sketches do not store directly the identity of the heavy hitters. Given i ∈ [n], we can
estimate x̂i from the sketch. But outputting all i such that x̂i is high requires a linear scan through
[n]. Can maintain multiple data structures and use additional information to find the heavy hitters
in O(k) space and time.

4

6 Sparse Recovery

One nice and powerful application of Count Sketch is for sparse recovery. Suppose x̄ ∈ Rn is sparse
or close to sparse, meaning that only k of the coordinates are non-zero. Can we recover x̄ without
knowing which of the coordinates are going to be important? Want to use only O(k) space.

6.1 Definition

Given x̄ ∈ Rn, let
errork(x̄) = min

z̄:∥z̄∥0≤k
∥x̄− z̄∥2

That is, what is the best k-sparse approximation to x̄?
Offline, it is easy to compute:

z̄∗i =

{
xi if i is among the largest absolute value k coordinates of x̄

0 otherwise

Can we find z̄∗ in the streaming setting?
There exists a Count Sketch with w = O

(
k
ε2

)
and d = O(log n) that allows us to find a z̄ such

that ∥z̄∥0 ≤ O(k) and with high probability

∥x̄− z̄∥2 ≤ C · errork(x̄)

In particular, if x̄ is k-sparse, then we get exact recovery.

7 Compressed Sensing and RIP Matrices

Count Sketch guarantees that we can recover any sparse x̄ with high probability. Can we guarantee
probability 1 with a linear sketch? Yes!

There exist ℓ× n matrices M for ℓ = O(k log n
k) such that given any k-sparse x̄ ∈ Rn, one can

recover x̄ from Mx̄.
Note that Mx̄ takes O(ℓ) space, and since ℓ = O(k log n), we are not storing much more than

what we want to recover.
Such matrices are called RIP matrices (Restricted Isometry Property).
It turns out that a random ℓ× n matrix with each entry chosen independently from a N (0, 1)

Gaussian distribution satisfies the RIP. But we cannot easily verify that a given matrix is RIP.
This area is called Compressed Sensing and has several applications in signal processing.

5

