Lecture 11: Frequency Moments and Sketch Algorithms

October 1, 2025

1 Introduction to Heavy Hitters

 F_0 is the most frequently occurring item in the stream. It is a brittle measure. In most applications we want to know the **heavy hitters**: items that occur very frequently.

1.1 Definition

From a theoretical perspective, we call an index $i \in [n]$ a heavy hitter if

$$F_i \ge \frac{m}{c}$$

for some sufficiently large constant c.

Alternatively, fix $F_i \geq \frac{m}{k}$ for some integer k.

2 Misra-Gries Algorithm

A classical algorithm shows that one can identify items i with $F_i \geq \frac{m}{k}$.

2.1 Algorithm Description

We have a data structure D that stores k items along with a counter for each. D is initialized to the empty set.

Implicitly, it defines an estimate \hat{F}_i for each i:

- If $i \in D$ at the end, then \hat{F}_i is the counter value
- Otherwise, it is 0

Theorem 1. $|F_i - \hat{F}_i| \leq \frac{m}{k}$. Hence, if i is a heavy hitter, it will be in D. Space usage is O(k).

Although Misra-Gries is nice, it does not allow deletion and also does not provide a sketch.

3 Count-Min Sketch

Count-Min and Count sketches use hashing to identify heavy hitters and they have led to many applications.

Algorithm 1 Misra-Gries-k

```
\begin{array}{l} D \leftarrow \emptyset \\ \textbf{while} \text{ stream is not empty do} \\ e \text{ is current item} \\ \textbf{if } e \in D \textbf{ then} \\ \text{ increment counter for } e \text{ in } D \\ \textbf{else} \\ \textbf{if } |D| < k \textbf{ then} \\ \text{ add } e \text{ to } D \text{ with counter value 1} \\ \textbf{else} \\ \text{ decrease counter value by 1 for all current elements} \\ \text{ delete from } D \text{ any element with counter set to 0} \\ \textbf{end if} \\ \textbf{end while} \\ \textbf{Output: values stored in } D \text{ and the counter values} \end{array}
```

3.1 Basic Idea

Suppose we use a hash function $h:[n] \to [ck]$ for some sufficiently large constant c. Then h spreads the n items into ck buckets. Suppose the heavy hitters are i_1, \ldots, i_k . We expect that they will not collide and we can use separate counts in each bucket.

We will use amplification as usual by considering multiple hash functions rather than a single one.

3.2 Algorithm (Cormode-Muthukrishnan)

Let h_1, h_2, \ldots, h_d be d independent (pairwise independent) hash functions from [n] to [w].

Algorithm 2 Count-Min Sketch

```
Initialize C[\ell][j] = 0 for all \ell \in [d], j \in [w]

while stream is not empty do

let (i, \Delta) be current item

for \ell = 1 to d do

C[\ell][h_{\ell}(i)] \leftarrow C[\ell][h_{\ell}(i)] + \Delta
end for

end while

for i = 1 to n do

\hat{x}_i = \min_{\ell=1}^d C[\ell][h_{\ell}(i)]
end for
```

where w is the width of the sketch and d is the number of independent hash functions we use. We use $w = \frac{e}{\varepsilon}$ and $d = \log \frac{1}{\delta}$.

Lemma 1. Consider the strict turnstile model $(\bar{x} \ge 0)$. Let $d = \log \frac{1}{\delta}$ and $w = \frac{e}{\varepsilon}$. Then:

```
    â<sub>i</sub> ≥ x<sub>i</sub>
    Pr[â<sub>i</sub> - x<sub>i</sub> ≥ ε||x̄||<sub>1</sub>] ≤ δ
```

Proof. Fix i. For $\ell \in [d]$:

$$Z_{\ell} = C[\ell][h_{\ell}(i)] - x_i = \sum_{i': i' \neq i, h_{\ell}(i') = h_{\ell}(i)} x_{i'}$$
$$= x_i + \sum_{i' \neq i, h_{\ell}(i') = h_{\ell}(i)} x_{i'}$$

$$E[Z_{\ell}] = x_i + \sum_{i' \neq i} \Pr[h_{\ell}(i') = h_{\ell}(i)] \cdot x_{i'}$$

By pairwise independence: $\Pr[h_{\ell}(i') = h_{\ell}(i)] = \frac{1}{w}$

$$E[Z_{\ell}] = x_i + \frac{1}{w} \|\bar{x}\|_1$$

By Markov's inequality:

$$\Pr[Z_{\ell} \ge x_i + \varepsilon \|\bar{x}\|_1] \le \frac{1}{e}$$

Thus:

$$\Pr[\min_{\ell} Z_{\ell} \ge x_i + \varepsilon \|\bar{x}\|_1] \le \left(\frac{1}{e}\right)^d$$

by independence.

Choosing $d = \log \frac{1}{\delta}$, we have $\hat{x}_i - x_i \leq \varepsilon ||\bar{x}||_1$ with high probability for all $i \in [n]$.

Count-Min gives overestimates. Total space is O(dw) counters $= O\left(\frac{1}{\varepsilon}\log\frac{1}{\delta}\log n\right)$.

Advantages: Simple, handles dependencies.

Disadvantages: Only handles $\bar{x} \geq 0$.

Exercise: Show that Count-Min is a linear sketch.

4 Count Sketch

Count Sketch is similar to Count-Min in using d independent hash functions but uses F_2 estimation ideas and median estimator instead of min.

4.1 Algorithm (Charikar-Chen-Farach-Colton)

Let h_1, h_2, \ldots, h_d be independent hash functions from [n] to [w].

Let g_1, g_2, \ldots, g_d be independent functions from [n] to $\{-1, +1\}$.

 \hat{x}_i can be negative even if $\bar{x} \geq 0$. Cancellation can happen like in F_2 estimation.

Lemma 2. Let $d = O(\log \frac{1}{\delta})$ and $w = O(\frac{1}{\epsilon^2})$. Then for any $i \in [n]$:

1. $E[\hat{x}_i] = x_i$

2. $\Pr[|\hat{x}_i - x_i| \ge \varepsilon ||\bar{x}||_2] \le \delta$

Proof. Fix i. For $\ell \in [d]$, to make analysis easier, let $Y_{i'} = \mathbb{1}_{h_{\ell}(i') = h_{\ell}(i)}$ be the indicator for $h_{\ell}(i') = h_{\ell}(i)$.

Algorithm 3 Count Sketch

```
Initialize C[\ell][j] = 0 for all \ell, j

while stream is not empty do

let (i, \Delta) be current item

for \ell = 1 to d do

C[\ell][h_{\ell}(i)] \leftarrow C[\ell][h_{\ell}(i)] + g_{\ell}(i) \cdot \Delta

end for

end while

for i \in [n] do

\hat{x}_i = \text{median}_{\ell=1}^d \{g_{\ell}(i) \cdot C[\ell][h_{\ell}(i)]\}

end for
```

$$Z_{\ell} = g_{\ell}(i) \cdot C[\ell][h_{\ell}(i)]$$

$$= g_{\ell}(i) \cdot \left(\sum_{i': h_{\ell}(i') = h_{\ell}(i)} g_{\ell}(i') \cdot Y_{i'} \cdot x_{i'} \right)$$

$$= \sum_{i'} g_{\ell}(i) \cdot g_{\ell}(i') \cdot Y_{i'} \cdot x_{i'}$$

 $E[Z_{\ell}] = x_i$ by pairwise independence of g_{ℓ} . We note that $E[Y_{i'}] = \frac{1}{w}$ and $E[g_{\ell}(i) \cdot g_{\ell}(i')] = 0$ for $i' \neq i$ by pairwise independence of h_{ℓ} .

$$Var(Z_{\ell}) = E[Z_{\ell}^{2}] - (E[Z_{\ell}])^{2}$$

$$= E\left[\sum_{i'} g_{\ell}(i) \cdot g_{\ell}(i') \cdot Y_{i'} \cdot x_{i'}\right]^{2} - x_{i}^{2}$$

$$= E\left[\sum_{i'} Y_{i'} \cdot x_{i'}^{2}\right] - x_{i}^{2}$$

$$\leq \frac{1}{n} \|\bar{x}\|_{2}^{2}$$

Hence, using Chebyshev's inequality:

$$\Pr[|Z_{\ell} - x_i| \ge \varepsilon \|\bar{x}\|_2] \le \frac{1}{w\varepsilon^2}$$

Via Chernoff bounds:

$$\Pr[\mathrm{median}_{\ell} Z_{\ell} - x_i \ge \varepsilon ||\bar{x}||_2] \le \delta$$

5 Finding Heavy Hitters

Important: Sketches do not store directly the identity of the heavy hitters. Given $i \in [n]$, we can estimate \hat{x}_i from the sketch. But outputting all i such that \hat{x}_i is high requires a linear scan through [n]. Can maintain multiple data structures and use additional information to find the heavy hitters in O(k) space and time.

6 Sparse Recovery

One nice and powerful application of Count Sketch is for sparse recovery. Suppose $\bar{x} \in \mathbb{R}^n$ is sparse or close to sparse, meaning that only k of the coordinates are non-zero. Can we recover \bar{x} without knowing which of the coordinates are going to be important? Want to use only O(k) space.

6.1 Definition

Given $\bar{x} \in \mathbb{R}^n$, let

$$\operatorname{error}_{k}(\bar{x}) = \min_{\bar{z}: \|\bar{z}\|_{0} \le k} \|\bar{x} - \bar{z}\|_{2}$$

That is, what is the best k-sparse approximation to \bar{x} ? Offline, it is easy to compute:

$$\bar{z}_i^* = \begin{cases} x_i & \text{if } i \text{ is among the largest absolute value } k \text{ coordinates of } \bar{x} \\ 0 & \text{otherwise} \end{cases}$$

Can we find \bar{z}^* in the streaming setting?

There exists a Count Sketch with $w = O\left(\frac{k}{\varepsilon^2}\right)$ and $d = O(\log n)$ that allows us to find a \bar{z} such that $\|\bar{z}\|_0 \le O(k)$ and with high probability

$$\|\bar{x} - \bar{z}\|_2 \le C \cdot \operatorname{error}_k(\bar{x})$$

In particular, if \bar{x} is k-sparse, then we get exact recovery.

7 Compressed Sensing and RIP Matrices

Count Sketch guarantees that we can recover any sparse \bar{x} with high probability. Can we guarantee probability 1 with a linear sketch? Yes!

There exist $\ell \times n$ matrices M for $\ell = O(k \log \frac{n}{k})$ such that given any k-sparse $\bar{x} \in \mathbb{R}^n$, one can recover \bar{x} from $M\bar{x}$.

Note that $M\bar{x}$ takes $O(\ell)$ space, and since $\ell = O(k \log n)$, we are not storing much more than what we want to recover.

Such matrices are called **RIP matrices** (Restricted Isometry Property).

It turns out that a random $\ell \times n$ matrix with each entry chosen independently from a $\mathcal{N}(0,1)$ Gaussian distribution satisfies the RIP. But we cannot easily verify that a given matrix is RIP.

This area is called **Compressed Sensing** and has several applications in signal processing.