Lecture 11: Frequency Moments and Sketch Algorithms

October 1, 2025

1 Introduction to Heavy Hitters

Fp is the most frequently occurring item in the stream. It is a brittle measure. In most applications
we want to know the heavy hitters: items that occur very frequently.

1.1 Definition

From a theoretical perspective, we call an index ¢ € [n] a heavy hitter if

m
F, > —
c

for some sufficiently large constant c.
Alternatively, fix F; > 7* for some integer k.

2 Misra-Gries Algorithm

A classical algorithm shows that one can identify items ¢ with F; > 7.

2.1 Algorithm Description

We have a data structure D that stores k items along with a counter for each. D is initialized to
the empty set.
Implicitly, it defines an estimate F; for each i:

e If i € D at the end, then F} is the counter value
e Otherwise, it is 0
Theorem 1. |F; — F}| < . Hence, if i is a heavy hitter, it will be in D. Space usage is O(k).

Although Misra-Gries is nice, it does not allow deletion and also does not provide a sketch.

3 Count-Min Sketch

Count-Min and Count sketches use hashing to identify heavy hitters and they have led to many
applications.



Algorithm 1 Misra-Gries-k
D+ 0
while stream is not empty do
e is current item
if e € D then
increment counter for e in D
else
if |D| < k then
add e to D with counter value 1
else
decrease counter value by 1 for all current elements
delete from D any element with counter set to 0
end if
end if
end while
Output: values stored in D and the counter values

3.1 Basic Idea

Suppose we use a hash function h : [n] — [ck] for some sufficiently large constant c. Then h spreads
the n items into ck buckets. Suppose the heavy hitters are 1,...,7;. We expect that they will not
collide and we can use separate counts in each bucket.

We will use amplification as usual by considering multiple hash functions rather than a single
one.

3.2 Algorithm (Cormode-Muthukrishnan)

Let hy, ha,...,hq be d independent (pairwise independent) hash functions from [n] to [w].

Algorithm 2 Count-Min Sketch
Initialize C[¢][j] = 0 for all £ € [d], j € [w]
while stream is not empty do
let (i, A) be current item
for / =1toddo
ClAhe(i)] — ClAhe(0)] + A
end for
end while
fori=1tondo
& = minf_, C[[he(0)

end for

where w is the width of the sketch and d is the number of independent hash functions we use.
We use w = £ anddzlog%.

Lemma 1. Consider the strict turnstile model (z > 0). Let d = log% and w = £. Then:
1. ii'i Z ZT;

2. Pr[;%i —x; > €Hf3||1] <d



Proof. Fix i. For ¢ € [d]:

Zy = Cl[he(i)] — 2 = > Ty

i/ %4,y (i) =hy (3)

=x; + Z Ty

i,k (i) =hy (4)

E(Z] = @i+ Y Prlhy(i') = he(i)] -z
il i
By pairwise independence: Pr[hy(i") = hy(i)] = %
1,
E[Zg] = Ty + *”IHl
w

By Markov’s inequality:

Q|

Pr[Z; > z; + ¢||Z]1] <
Thus:
1\ 4
Pr[rnein Zy >z +e||z]h] < <>
e

by independence.
Choosing d = log §, we have &; — x; < e||Z||; with high probability for all i € [n]. O

Count-Min gives overestimates. Total space is O(dw) counters = O (% log % log n)
Advantages: Simple, handles dependencies.

Disadvantages: Only handles z > 0.

Exercise: Show that Count-Min is a linear sketch.

4 Count Sketch

Count Sketch is similar to Count-Min in using d independent hash functions but uses F» estimation
ideas and median estimator instead of min.

4.1 Algorithm (Charikar-Chen-Farach-Colton)

Let hy, ha, ..., hq be independent hash functions from [n] to [w].
Let g1, 92, ...,94 be independent functions from [n] to {—1,+1}.
Z; can be negative even if £ > 0. Cancellation can happen like in F5 estimation.

Lemma 2. Let d = O(log §) and w = O (6%) Then for any i € [n]:
1. E[i’l] = Ty
2. Pr(|z; — x| > e||z]]2] <6

Proof. Fix i. For { € [d], to make analysis easier, let Yy = Wy, ;—p,;) be the indicator for
he(i") = hy(i).



Algorithm 3 Count Sketch

Initialize C[¢][j] = 0 for all ¢, j
while stream is not empty do
let (i, A) be current item
for /=1toddo
ClARe()] — CLAT)] + gei) - A
end for
end while
for i € [n] do
& = mediang_, {g/() - CA)[he(i)]}
end for

Zy = go(i) - C[0][he(7)]
= ge(i) - S i)Yy ay
i:he(i")=he(4)

= 9e(i) - go(i') - Yir - i

E[Zy] = z; by pairwise independence of g;.
We note that E[Yy] = 1 and E[ge(i) - g¢(i')] = 0 for ¢’ # i by pairwise independence of hy.

Var(Z,) = E(Z7] — (E[Z))?

2
—B|Y i) guli) - Yir-aa| —a?
/L'/
=E|) Yy ai| —af
Z‘/
1 2
< |7
< Ljags

Hence, using Chebyshev’s inequality:
1

Pr(|Ze — i > el|Z]2] < —

we

Via Chernoff bounds:
Pr[median,Zy — x; > €||z||2] < ¢

5 Finding Heavy Hitters

Important: Sketches do not store directly the identity of the heavy hitters. Given i € [n], we can
estimate #; from the sketch. But outputting all ¢ such that Z; is high requires a linear scan through
[n]. Can maintain multiple data structures and use additional information to find the heavy hitters

in O(k) space and time.



6 Sparse Recovery

One nice and powerful application of Count Sketch is for sparse recovery. Suppose T € R" is sparse
or close to sparse, meaning that only k of the coordinates are non-zero. Can we recover  without
knowing which of the coordinates are going to be important? Want to use only O(k) space.

6.1 Definition

Given T € R", let
errorg(x) = min ||T — Z||2
@ z:||zllo<k | |
That is, what is the best k-sparse approximation to z7
Offline, it is easy to compute:

—*
Zi

x; if 7 is among the largest absolute value k coordinates of T
0  otherwise

Can we find z* in the streaming setting?
There exists a Count Sketch with w = O (8%) and d = O(logn) that allows us to find a Z such
that ||z]lo < O(k) and with high probability

|z — z||2 < C - errorg(z)

In particular, if Z is k-sparse, then we get exact recovery.

7 Compressed Sensing and RIP Matrices

Count Sketch guarantees that we can recover any sparse  with high probability. Can we guarantee
probability 1 with a linear sketch? Yes!

There exist £ x n matrices M for £ = O(klog 7) such that given any k-sparse z € R", one can
recover T from MZ.

Note that Mz takes O(¢) space, and since £ = O(klogn), we are not storing much more than
what we want to recover.

Such matrices are called RIP matrices (Restricted Isometry Property).

It turns out that a random ¢ x n matrix with each entry chosen independently from a N (0,1)
Gaussian distribution satisfies the RIP. But we cannot easily verify that a given matrix is RIP.

This area is called Compressed Sensing and has several applications in signal processing.



