CS 573: Algorithms, Fall 2014

Backward analysis

Lecture 27 December 4, 2014

Part I

- **1** $P = \langle p_1, \dots, p_n \rangle$ be a random ordering of n distinct numbers.
- $oxed{2} X_i = 1 \iff oxed{p_i}$ is smaller than $oxed{p_1}, \ldots, oxed{p_{i-1}}.$
- Lemma $\Pr[X_i=1]=1/i.$

- **1** $P = \langle p_1, \dots, p_n \rangle$ be a random ordering of n distinct numbers.
- Lemma $\Pr[X_i=1]=1/i.$

- **1** $P = \langle p_1, \dots, p_n \rangle$ be a random ordering of n distinct numbers.
- $oldsymbol{Q} X_i = 1 \iff oldsymbol{\mathsf{p}}_i ext{ is smaller than } oldsymbol{\mathsf{p}}_1, \dots, oldsymbol{\mathsf{p}}_{i-1}.$
- Lemma $\Pr[X_i = 1] = 1/i.$

Lemma

$$\Pr[X_i = 1] = 1/i.$$

Proof.

- Fix elements appearing in $set(P_i) = \{s_1, \ldots, s_i\}$.

Lemma

$$\Pr[X_i = 1] = 1/i.$$

Proof.

- Fix elements appearing in $set(P_i) = \{s_1, \ldots, s_i\}$.
- $\mathbf{2} \operatorname{Pr} \big[\mathbf{p}_i = \min(\mathsf{P}_i) \ \big| \operatorname{set}(\mathsf{P}_i) \big] = 1/i.$

Lemma

$$\Pr[X_i = 1] = 1/i.$$

Proof.

- Fix elements appearing in $set(P_i) = \{s_1, \ldots, s_i\}$.
- $\mathbf{2} \operatorname{Pr} \big[\mathbf{p}_i = \min(\mathsf{P}_i) \ \big| \operatorname{set}(\mathsf{P}_i) \big] = 1/i.$

$$\Pr \Big[\mathsf{p}_i = \min(\mathsf{P}_i) \Big]$$

Lemma

$$\Pr[X_i = 1] = 1/i.$$

Proof.

- Fix elements appearing in $set(P_i) = \{s_1, \ldots, s_i\}$.
- $\mathbf{Pr} \big[\mathbf{p}_i = \min(\mathbf{P}_i) \ \big| \sec(\mathbf{P}_i) \big] = 1/i.$

$$egin{aligned} \Pr\Big[\mathsf{p}_i &= \min(\mathsf{P}_i) \Big] \ &= \sum_{S \subset \mathsf{P}, |S| = i} \Pr\Big[\mathsf{p}_i &= \min(\mathsf{P}_i) \; \Big| \, \mathrm{set}(\mathsf{P}_i) = S \Big] \Pr[S] \end{aligned}$$

Lemma

$$\Pr[X_i = 1] = 1/i.$$

Proof.

- Fix elements appearing in $set(P_i) = \{s_1, \ldots, s_i\}$.
- $\mathbf{2} \ \Pr \big[\mathsf{p}_i = \min(\mathsf{P}_i) \ \big| \sec(\mathsf{P}_i) \big] = 1/i.$

$$\begin{split} & \Pr \Big[\mathbf{p}_i = \min(\mathbf{P}_i) \Big] \\ & = \sum_{S \subseteq \mathbf{P}, |S| = i} \Pr \Big[\mathbf{p}_i = \min(\mathbf{P}_i) \ \Big| \, \text{set}(\mathbf{P}_i) = S \Big] \Pr[S] \\ & = \sum_{S \subseteq \mathbf{P}, |S| = i} \frac{1}{i} \Pr[S] \end{split}$$

Lemma

$$\Pr[X_i = 1] = 1/i.$$

Proof.

- Fix elements appearing in $set(P_i) = \{s_1, \ldots, s_i\}$.
- $\mathbf{2} \operatorname{Pr} \big[\mathbf{p}_i = \min(\mathsf{P}_i) \ \big| \operatorname{set}(\mathsf{P}_i) \big] = 1/i.$

$$\begin{split} & \Pr \Big[\mathbf{p}_i = \min(\mathsf{P}_i) \Big] \\ & = \sum_{S \subseteq \mathsf{P}, |S| = i} \Pr \Big[\mathbf{p}_i = \min(\mathsf{P}_i) \ \Big| \sec(\mathsf{P}_i) = S \Big] \Pr[S] \\ & = \sum_{S \subseteq \mathsf{P}, |S| = i} \frac{1}{i} \Pr[S] \ = \frac{1}{i}. \end{split}$$

Lemma

$$\Pr[X_i = 1] = 1/i.$$

Proof.

- Fix elements appearing in $set(P_i) = \{s_1, \ldots, s_i\}$.
- $\mathbf{2} \ \Pr \big[\mathsf{p}_i = \min(\mathsf{P}_i) \ \big| \sec(\mathsf{P}_i) \big] = 1/i.$

$$egin{aligned} & \Pr\Big[\mathbf{p}_i = \min(\mathbf{P}_i)\Big] \ &= \sum_{S \subseteq \mathbf{P}, |S| = i} \Pr\Big[\mathbf{p}_i = \min(\mathbf{P}_i) \ \Big| \sec(\mathbf{P}_i) = S\Big] \Pr[S] \ &= \sum_{S \subseteq \mathbf{P}, |S| = i} rac{1}{i} \Pr[S] = rac{1}{i}. \end{aligned}$$

...the minimum changes in a random permutation...

Theorem

In a random permutation of n distinct numbers, the minimum of the prefix changes in expectation $\ln n + 1$ times.

Proof.

- ① $\mathrm{E}[Y] = \mathrm{E} \left[\sum_{i=1}^n X_i \right] = \sum_{i=1}^n \mathrm{E}[X_i] = \sum_{i=1}^n 1/i \le \ln n + 1.$

...the minimum changes in a random permutation...

$\mathsf{Theorem}$

In a random permutation of n distinct numbers, the minimum of the prefix changes in expectation $\ln n + 1$ times.

Proof.

②
$$E[Y] = E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} 1/i \le \ln n + 1.$$

...the minimum changes in a random permutation...

$\mathsf{Theorem}$

In a random permutation of n distinct numbers, the minimum of the prefix changes in expectation $\ln n + 1$ times.

Proof.

- **2** $\mathbf{E}[Y] = \mathbf{E}[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} \mathbf{E}[X_i] = \sum_{i=1}^{n} 1/i \le \ln n + 1.$

...the minimum changes in a random permutation...

$\mathsf{Theorem}$

In a random permutation of n distinct numbers, the minimum of the prefix changes in expectation $\ln n + 1$ times.

Proof.

- **2** $\mathbf{E}[Y] = \mathbf{E}[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} \mathbf{E}[X_i] = \sum_{i=1}^{n} 1/i \le \ln n + 1.$

...the minimum changes in a random permutation...

Theorem

In a random permutation of n distinct numbers, the minimum of the prefix changes in expectation $\ln n + 1$ times.

Proof.

- **2** $\mathbf{E}[Y] = \mathbf{E}[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} \mathbf{E}[X_i] = \sum_{i=1}^{n} 1/i \le \ln n + 1.$

...the minimum changes in a random permutation...

Theorem

In a random permutation of n distinct numbers, the minimum of the prefix changes in expectation $\ln n + 1$ times.

Proof.

- **2** $\mathbf{E}[Y] = \mathbf{E}[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} \mathbf{E}[X_i] = \sum_{i=1}^{n} 1/i \le \ln n + 1$.

...the minimum changes in a random permutation...

Theorem

In a random permutation of n distinct numbers, the minimum of the prefix changes in expectation $\ln n + 1$ times.

Proof.

- ② $E[Y] = E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} 1/i \le \ln n + 1.$

Lemma

 $\Pi = \pi_1 \dots \pi_n$: random permutation of $\{1, \dots, n\}$. X_i : indicator variable if π_i is the smallest number in $\{\pi_1, \dots, \pi_i\}$, for $\forall i$. Then $Z = \sum_{i=1}^n X_i = O(\log n)$., w.h.p. (i.e., $\geq 1 - 1/n^{O(1)}$).

proof

- $lackbox{0}$ \mathcal{E}_i : the event that $X_i=1$, for $i=1,\ldots,n$.
- **3** Generate permutation: Randomly pick a permutation of the given numbers, set first number to be π_n .
- Next, pick a random permutation of the remaining numbers and set the first number as π_{n-1} in output permutation.
- Repeat this process till we generate the whole permutation.

Lemma

 $\Pi = \pi_1 \dots \pi_n$: random permutation of $\{1, \dots, n\}$. X_i : indicator variable if π_i is the smallest number in $\{\pi_1, \dots, \pi_i\}$, for $\forall i$. Then $Z = \sum_{i=1}^n X_i = O(\log n)$., w.h.p. (i.e., $\geq 1 - 1/n^{O(1)}$).

proof

- $lackbox{0}$ \mathcal{E}_i : the event that $X_i=1$, for $i=1,\ldots,n$.
- ② Claim: $\mathcal{E}_1, \ldots, \mathcal{E}_n$ are independent.
- © Generate permutation: Randomly pick a permutation of the given numbers, set first number to be π_n .
- Next, pick a random permutation of the remaining numbers and set the first number as π_{n-1} in output permutation.
- Repeat this process till we generate the whole permutation.

Lemma

```
\Pi = \pi_1 \dots \pi_n: random permutation of \{1, \dots, n\}. X_i: indicator variable if \pi_i is the smallest number in \{\pi_1, \dots, \pi_i\}, for \forall i. Then Z = \sum_{i=1}^n X_i = O(\log n)., w.h.p. (i.e., \geq 1 - 1/n^{O(1)}).
```

proof

- $lackbox{0}$ \mathcal{E}_i : the event that $X_i=1$, for $i=1,\ldots,n$.
- ② Claim: $\mathcal{E}_1, \dots, \mathcal{E}_n$ are independent.
- **3** Generate permutation: Randomly pick a permutation of the given numbers, set first number to be π_n .
- Next, pick a random permutation of the remaining numbers and set the first number as π_{n-1} in output permutation.
- Repeat this process till we generate the whole permutation.

Lemma

```
\Pi = \pi_1 \dots \pi_n: random permutation of \{1, \dots, n\}. X_i: indicator variable if \pi_i is the smallest number in \{\pi_1, \dots, \pi_i\}, for \forall i. Then Z = \sum_{i=1}^n X_i = O(\log n)., w.h.p. (i.e., \geq 1 - 1/n^{O(1)}).
```

proof

- $lackbox{0} \ \mathcal{E}_i$: the event that $X_i=1$, for $i=1,\ldots,n$.
- ② Claim: $\mathcal{E}_1, \dots, \mathcal{E}_n$ are independent.
- **3** Generate permutation: Randomly pick a permutation of the given numbers, set first number to be π_n .
- **3** Next, pick a random permutation of the remaining numbers and set the first number as π_{n-1} in output permutation.
- Repeat this process till we generate the whole permutation.

Lemma

```
\Pi = \pi_1 \dots \pi_n: random permutation of \{1, \dots, n\}. X_i: indicator variable if \pi_i is the smallest number in \{\pi_1, \dots, \pi_i\}, for \forall i. Then Z = \sum_{i=1}^n X_i = O(\log n)., w.h.p. (i.e., \geq 1 - 1/n^{O(1)}).
```

proof

- $lackbox{0}$ \mathcal{E}_i : the event that $X_i=1$, for $i=1,\ldots,n$.
- ② Claim: $\mathcal{E}_1, \dots, \mathcal{E}_n$ are independent.
- **3** Generate permutation: Randomly pick a permutation of the given numbers, set first number to be π_n .
- **1** Next, pick a random permutation of the remaining numbers and set the first number as π_{n-1} in output permutation.
- Repeat this process till we generate the whole permutation.

- For any indices $1 < i_1 < i_2 < \ldots < i_k < n$, and observe that $\Prigl[\mathcal{E}_{i_k} \mid \mathcal{E}_{i_1} \cap \ldots \cap \mathcal{E}_{i_{k-1}}igr] = \Prigl[\mathcal{E}_{i_k}igr],$
- ② .. because \mathcal{E}_{i_1} determined after all $\mathcal{E}_{i_2}, \ldots, \mathcal{E}_k$.
- ullet By induction: $\mathbf{Pr}ig[\mathcal{E}_{i_1}\cap\mathcal{E}_{i_2}\cap\ldots\cap\mathcal{E}_{i_k}ig]=$ $\Pr[\mathcal{E}_{i_1}|\Pr[\mathcal{E}_{i_2}\cap\mathcal{E}_{i_3}\cap\ldots\cap\mathcal{E}_{i_k}]=\prod_{i=1}^k\Pr[\mathcal{E}_{i_i}]=\prod_{i=1}^k\frac{1}{i_i}$.

Sariel (UIUC) CS573 Fall 2014 7 / 24

- For any indices $1 < i_1 < i_2 < \ldots < i_k < n$, and observe that $\Prigl[\mathcal{E}_{i_k} \mid \mathcal{E}_{i_1} \cap \ldots \cap \mathcal{E}_{i_{k-1}}igr] = \Prigl[\mathcal{E}_{i_k}igr],$
- ② .. because \mathcal{E}_{i_1} determined after all $\mathcal{E}_{i_2}, \ldots, \mathcal{E}_{k_n}$
- ullet By induction: $\mathbf{Pr}ig[\mathcal{E}_{i_1}\cap\mathcal{E}_{i_2}\cap\ldots\cap\mathcal{E}_{i_k}ig]=$

Sariel (UIUC) CS573 Fall 2014 7 / 24

- For any indices $1 < i_1 < i_2 < \ldots < i_k < n$, and observe that $\Prigl[\mathcal{E}_{i_k} \mid \mathcal{E}_{i_1} \cap \ldots \cap \mathcal{E}_{i_{k-1}}igr] = \Prigl[\mathcal{E}_{i_k}igr],$
- ② .. because \mathcal{E}_{i_1} determined after all $\mathcal{E}_{i_2}, \ldots, \mathcal{E}_{k}$.
- $\Pr[\mathcal{E}_{i_1}|\Pr[\mathcal{E}_{i_2}\cap\mathcal{E}_{i_3}\cap\ldots\cap\mathcal{E}_{i_k}]=\prod_{i=1}^k\Pr[\mathcal{E}_{i_i}]=\prod_{i=1}^k\frac{1}{i_i}$.

- For any indices $1 < i_1 < i_2 < \ldots < i_k < n$, and observe that $\Prigl[\mathcal{E}_{i_k} \mid \mathcal{E}_{i_1} \cap \ldots \cap \mathcal{E}_{i_{k-1}}igr] = \Prigl[\mathcal{E}_{i_k}igr],$
- ② .. because \mathcal{E}_{i_1} determined after all $\mathcal{E}_{i_2}, \ldots, \mathcal{E}_{k}$.
- \bullet By induction: $\Pr |\mathcal{E}_{i_1} \cap \mathcal{E}_{i_2} \cap \ldots \cap \mathcal{E}_{i_k}| =$ $\Pr[\mathcal{E}_{i_1} \mid \mathcal{E}_{i_2} \cap \ldots \cap \mathcal{E}_{i_k}] \Pr[\mathcal{E}_{i_2} \cap \ldots \cap \mathcal{E}_{i_k}] =$ $\Pr[\mathcal{E}_{i_1}|\Pr[\mathcal{E}_{i_2}\cap\mathcal{E}_{i_3}\cap\ldots\cap\mathcal{E}_{i_k}]=\prod_{i=1}^k\Pr[\mathcal{E}_{i_i}]=\prod_{i=1}^k\frac{1}{i_i}$.

- For any indices $1 < i_1 < i_2 < \ldots < i_k < n$, and observe that $\Prigl[\mathcal{E}_{i_k} \mid \mathcal{E}_{i_1} \cap \ldots \cap \mathcal{E}_{i_{k-1}}igr] = \Prigl[\mathcal{E}_{i_k}igr],$
- ② .. because \mathcal{E}_{i_1} determined after all $\mathcal{E}_{i_2}, \ldots, \mathcal{E}_{k}$.
- $\Pr \left[\mathcal{E}_{i_1} \mid \mathcal{E}_{i_2} \cap \ldots \cap \mathcal{E}_{i_k} \right] \Pr \left[\mathcal{E}_{i_2} \cap \ldots \cap \mathcal{E}_{i_k} \right] =$ $\Pr[\mathcal{E}_{i_1}|\Pr[\mathcal{E}_{i_2}\cap\mathcal{E}_{i_3}\cap\ldots\cap\mathcal{E}_{i_k}] = \prod_{i=1}^k \Pr[\mathcal{E}_{i_i}] = \prod_{i=1}^k \frac{1}{i_i}.$

- For any indices $1 < i_1 < i_2 < \ldots < i_k < n$, and observe that $\Prigl[\mathcal{E}_{i_k} \mid \mathcal{E}_{i_1} \cap \ldots \cap \mathcal{E}_{i_{k-1}}igr] = \Prigl[\mathcal{E}_{i_k}igr],$
- ② .. because \mathcal{E}_{i_1} determined after all $\mathcal{E}_{i_2}, \ldots, \mathcal{E}_{k}$.
- $\Pr \left[\mathcal{E}_{i_1} \mid \mathcal{E}_{i_2} \cap \ldots \cap \mathcal{E}_{i_k} \right] \Pr \left[\mathcal{E}_{i_2} \cap \ldots \cap \mathcal{E}_{i_k} \right] =$ $\Pr[\mathcal{E}_{i_1}] \Pr[\mathcal{E}_{i_2} \cap \mathcal{E}_{i_3} \cap \ldots \cap \mathcal{E}_{i_k}] = \prod_{i=1}^k \Pr[\mathcal{E}_{i_i}] = \prod_{i=1}^k \frac{1}{\delta}$

- For any indices $1 < i_1 < i_2 < \ldots < i_k < n$, and observe that $\Prigl[\mathcal{E}_{i_k} \mid \mathcal{E}_{i_1} \cap \ldots \cap \mathcal{E}_{i_{k-1}}igr] = \Prigl[\mathcal{E}_{i_k}igr],$
- ② .. because \mathcal{E}_{i_1} determined after all $\mathcal{E}_{i_2}, \ldots, \mathcal{E}_{k}$.
- $\Pr \left[\mathcal{E}_{i_1} \mid \mathcal{E}_{i_2} \cap \ldots \cap \mathcal{E}_{i_k} \right] \Pr \left[\mathcal{E}_{i_2} \cap \ldots \cap \mathcal{E}_{i_k} \right] =$ $\Pr[\mathcal{E}_{i_1}] \Pr[\mathcal{E}_{i_2} \cap \mathcal{E}_{i_3} \cap \ldots \cap \mathcal{E}_{i_k}] = \prod_{i=1}^k \Pr[\mathcal{E}_{i_i}] = \prod_{i=1}^k \frac{1}{i_i}$.

- For any indices $1 < i_1 < i_2 < \ldots < i_k < n$, and observe that $\Prigl[\mathcal{E}_{i_k} \mid \mathcal{E}_{i_1} \cap \ldots \cap \mathcal{E}_{i_{k-1}}igr] = \Prigl[\mathcal{E}_{i_k}igr],$
- ② .. because \mathcal{E}_{i_1} determined after all $\mathcal{E}_{i_2}, \ldots, \mathcal{E}_{k}$.
- $\Pr[\mathcal{E}_{i_1} \mid \mathcal{E}_{i_2} \cap \ldots \cap \mathcal{E}_{i_k}] \Pr[\mathcal{E}_{i_2} \cap \ldots \cap \mathcal{E}_{i_k}] =$ $\Pr[\mathcal{E}_{i_1}] \Pr[\mathcal{E}_{i_2} \cap \mathcal{E}_{i_3} \cap \ldots \cap \mathcal{E}_{i_k}] = \prod_{i=1}^k \Pr[\mathcal{E}_{i_i}] = \prod_{i=1}^k \frac{1}{i_i}$
- $\bullet \implies \text{variables } X_1, \ldots, X_n \text{ are independent.}$

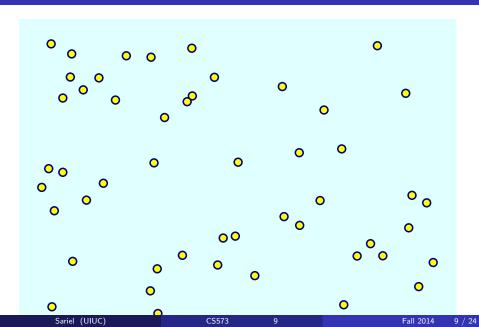
- For any indices $1 < i_1 < i_2 < \ldots < i_k < n$, and observe that $\Prigl[\mathcal{E}_{i_k} \mid \mathcal{E}_{i_1} \cap \ldots \cap \mathcal{E}_{i_{k-1}}igr] = \Prigl[\mathcal{E}_{i_k}igr],$
- ② .. because \mathcal{E}_{i_1} determined after all $\mathcal{E}_{i_2}, \ldots, \mathcal{E}_{k}$.
- \bullet By induction: $\Pr |\mathcal{E}_{i_1} \cap \mathcal{E}_{i_2} \cap \ldots \cap \mathcal{E}_{i_k}| =$ $\Pr[\mathcal{E}_{i_1} \mid \mathcal{E}_{i_2} \cap \ldots \cap \mathcal{E}_{i_k}] \Pr[\mathcal{E}_{i_2} \cap \ldots \cap \mathcal{E}_{i_k}] =$ $\Pr[\mathcal{E}_{i_1}] \Pr[\mathcal{E}_{i_2} \cap \mathcal{E}_{i_3} \cap \ldots \cap \mathcal{E}_{i_k}] = \prod_{i=1}^k \Pr[\mathcal{E}_{i_i}] = \prod_{i=1}^k \frac{1}{i_i}$
- $\bullet \implies$ variables X_1, \ldots, X_n are independent.
- Result readily follows from Chernoff's inequality.

Part II

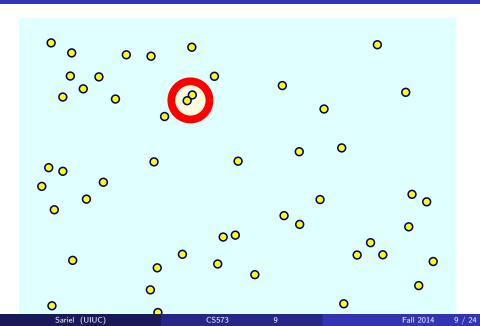
Closet pair in linear time

Finding the closest pair of points

Finding the closest pair of points



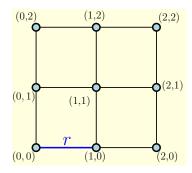
Finding the closest pair of points



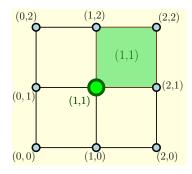
- r: Side length of grid cell.
- @ Grid cell IDed by pair of integers.
- Constant time to determine a point p's grid cell id:

$$id(p) = (\lfloor p_x/r
floor , \lfloor p_y/r
floor)$$

- Limited use of the floor function (but no word packing tricks).
- Use hashing on (grid) points
- Store points in grid...
 ...in linear time.



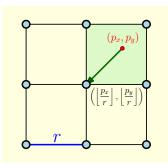
- 1 r: Side length of grid cell.
- Grid cell IDed by pair of integers.
- Onstant time to determine a point p's grid cell id: id(n) = (|n|/r| |n|/r|)
- Limited use of the floor function (but no word packing tricks).
- Use hashing on (grid) points
- Store points in grid...
 ...in linear time.



- 1 r: Side length of grid cell.
- Grid cell IDed by pair of integers.
- Constant time to determine a point p's grid cell id:

$$id(p) = (\lfloor p_x/r
floor, \lfloor p_y/r
floor)$$

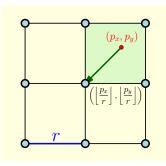
- Limited use of the floor function (but no word packing tricks).
- Use hashing on (grid) points
- Store points in grid...
 ...in linear time.



- 1 r: Side length of grid cell.
- Grid cell IDed by pair of integers.
- Constant time to determine a point p's grid cell id:

$$id(p) = (\lfloor p_x/r
floor, \lfloor p_y/r
floor)$$

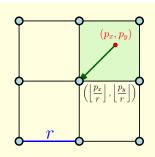
- Limited use of the floor function (but no word packing tricks).
- Use hashing on (grid) points.
- Store points in grid...
 ...in linear time.



- r: Side length of grid cell.
- Grid cell IDed by pair of integers.
- Constant time to determine a point p's grid cell id:

$$id(p) = (\lfloor p_x/r
floor, \lfloor p_y/r
floor)$$

- Limited use of the floor function (but no word packing tricks).
- Use hashing on (grid) points.
- Store points in grid...
 ...in linear time.

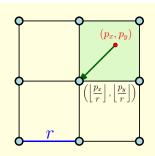


		0			r	
	0		0			
	000				0	0
0				0		00
			00	0		
0	000	0	. •	0	0	
		0		0		0

- r: Side length of grid cell.
- Grid cell IDed by pair of integers.
- Constant time to determine a point p's grid cell id:

$$id(p) = \left(\left\lfloor p_x/r
ight
floor, \left\lfloor p_y/r
ight
floor
ight)$$

- Limited use of the floor function (but no word packing tricks).
- Use hashing on (grid) points.
- Store points in grid...

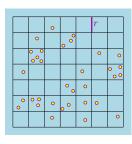


		0			r	
	0		00			
	°°°				0	0
0				0		00
			00	0		
0	00	0	0	0	0	
		0		0		0

Storing point set in grid/hash-table...

Hashing:

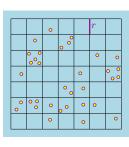
- Non-empty grid cells
- ② For non-empty grid cell: List of points in it.
- For a grid cell: Its neighboring cells.

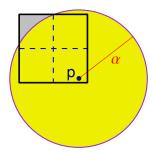


Storing point set in grid/hash-table...

Hashing:

- Non-empty grid cells
- For non-empty grid cell: List of points in it.
- For a grid cell: Its neighboring cells.





Lemma

Let P be a set of points contained inside a square \square , such that the sidelength of \square is $\alpha = \mathcal{CP}(P)$. Then $|P| \leq 4$.

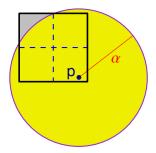
Proof.

Partition \square into four equal squares $\square_1, \ldots, \square_4$.

Each square diameter $\sqrt{2}\alpha/2 < \alpha$.

... contain at most one point of \mathbf{P} ; that is, the disk of radius α centered at a point $\mathbf{p} \in \mathbf{P}$ completely covers the subsquare containing it; see the figure on the right.

P can have four points if it is the four corners of \square .



Lemma

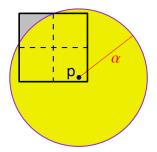
Let P be a set of points contained inside a square \square , such that the sidelength of \square is $\alpha = \mathcal{CP}(P)$. Then $|P| \leq 4$.

Proof.

Partition \square into four equal squares $\square_1, \ldots, \square_4$.

Each square diameter $\sqrt{2}\alpha/2 < \alpha$.

... contain at most one point of \mathbf{P} ; that is, the disk of radius α centered at a point $\mathbf{p} \in \mathbf{P}$ completely covers the subsquare containing it; see the figure on the right.



Lemma

Let **P** be a set of points contained inside a square \square , such that the sidelength of \square is $\alpha = \mathcal{CP}(P)$. Then $|P| \leq 4$.

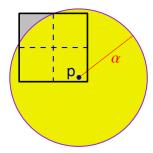
Proof.

Partition \square into four equal squares $\square_1, \ldots, \square_4$.

Each square diameter $\sqrt{2}\alpha/2 < \alpha$.

... contain at most one point of P; that is, the disk of radius α centered at a point $p \in P$ completely covers the subsquare containing it; see the figure on the right.

P can have four points if it is the four corners of \square .



Lemma

Let P be a set of points contained inside a square \square , such that the sidelength of \square is $\alpha = \mathcal{CP}(P)$. Then |P| < 4.

Proof.

Partition \square into four equal squares $\square_1, \ldots, \square_4$.

Each square diameter $\sqrt{2}\alpha/2 < \alpha$.

... contain at most one point of P; that is, the disk of radius α centered at a point $p \in P$ completely covers the subsquare containing it; see the figure on the right.

P can have four points if it is the four corners of \square .

Verify closet pair

Lemma

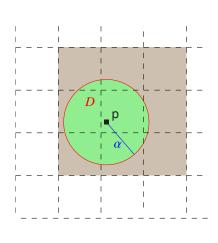
P: set of n points in the plane. α : distance. Verify in linear time whether $\mathcal{CP}(\mathsf{P}) < \alpha$, $\mathcal{CP}(\mathsf{P}) = \alpha$, or $\mathcal{CP}(\mathsf{P}) > \alpha$.

proof

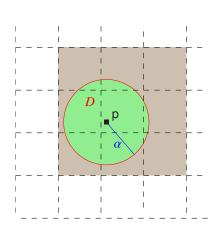
Indeed, store the points of ${\bf P}$ in the grid ${\bf G}_{\alpha}$. For every non-empty grid cell, we maintain a linked list of the points inside it. Thus, adding a new point ${\bf p}$ takes constant time. Specifically, compute ${\bf id}({\bf p})$, check if ${\bf id}({\bf p})$ already appears in the hash table, if not, create a new linked list for the cell with this ID number, and store ${\bf p}$ in it. If a linked list already exists for ${\bf id}({\bf p})$, just add ${\bf p}$ to it. This takes O(n) time overall.

Now, if any grid cell in $\mathbf{G}_{\alpha}(\mathbf{P})$ contains more than, say, 4 points of \mathbf{P} , then it must be that the $\mathcal{CP}(\mathbf{P})<\alpha$, by previous lemma.

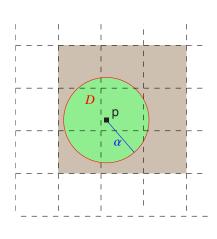
Sariel (UIUC) CS573 13 Fall 2014 13 / 24



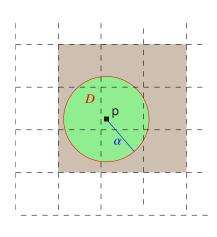
- When insert a point p: fetch all the points of P in cluster of P
- Takes constant time
- 3 If there is a point closer to $\bf p$ than α that was already inserted, then it must be stored in one of these 9 cells.
- Now, each one of those cells must contain at most 4 points of P by prev lemma.
- Otherwise, already stopped since $\mathcal{CP}(\cdot) < \alpha$.



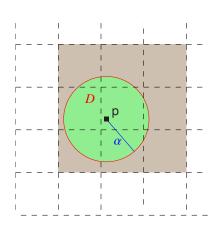
- When insert a point p: fetch all the points of P in cluster of P
- Takes constant time.
- 1 If there is a point closer to $\bf p$ than α that was already inserted, then it must be stored in one of these 9 cells.
- Now, each one of those cells must contain at most 4 points of P by prev lemma.
- Otherwise, already stopped since $\mathcal{CP}(\cdot) < \alpha$.



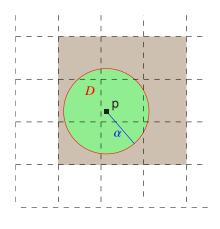
- When insert a point p: fetch all the points of P in cluster of P
- Takes constant time.
- If there is a point closer to ${\bf p}$ than ${\boldsymbol \alpha}$ that was already inserted, then it must be stored in one of these 9 cells.
- Now, each one of those cells must contain at most 4 points of P by prev lemma.
- o Otherwise, already stopped since $\mathcal{CP}(\cdot) < \alpha$.



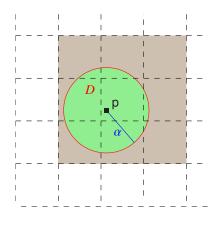
- When insert a point p: fetch all the points of P in cluster of P
- Takes constant time.
- 3 If there is a point closer to \mathbf{p} than α that was already inserted, then it must be stored in one of these 9 cells.
- Now, each one of those cells must contain at most 4 points of P by prev lemma.
- Otherwise, already stopped since $\mathcal{CP}(\cdot) < \alpha$.



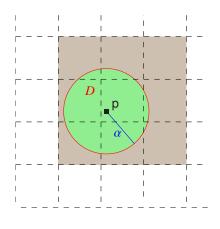
- When insert a point p: fetch all the points of P in cluster of P
- Takes constant time.
- If there is a point closer to ${\bf p}$ than ${\boldsymbol \alpha}$ that was already inserted, then it must be stored in one of these 9 cells.
- Now, each one of those cells must contain at most 4 points of P by prev lemma.
- Otherwise, already stopped since $\mathcal{CP}(\cdot) < \alpha$.



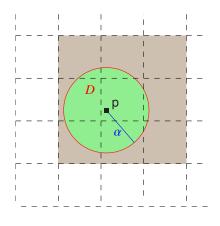
- $oldsymbol{0}$ S set of all points in cluster.
- $|S| \le 9 \cdot 4 = O(1).$
- **3** Compute closest point to **p** in S. O(1) time.
- If $d(\mathbf{p}, S) < \alpha$, we stop; otherwise, continue to next point.
- Correctness: ' $\mathcal{CP}(P) < \alpha$ ' returned only if such pair found.



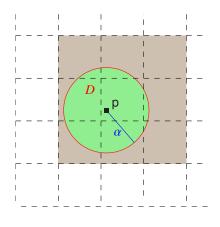
- $oldsymbol{0}$ S set of all points in cluster.
- $|S| \le 9 \cdot 4 = O(1).$
- **3** Compute closest point to **p** in S. O(1) time.
- If $d(p, S) < \alpha$, we stop; otherwise, continue to next point.
- Correctness: ' $\mathcal{CP}(P) < \alpha$ ' returned only if such pair found.



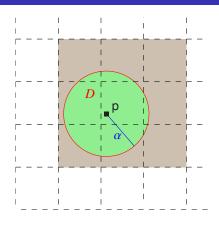
- $oldsymbol{0}$ S set of all points in cluster.
- $|S| \le 9 \cdot 4 = O(1).$
- **3** Compute closest point to \mathbf{p} in S. O(1) time.
- If $d(p, S) < \alpha$, we stop; otherwise, continue to next point.
- Correctness: ' $\mathcal{CP}(P) < \alpha$ ' returned only if such pair found.



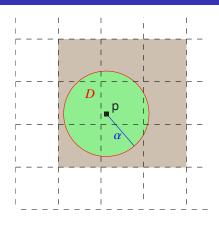
- $oldsymbol{0}$ S set of all points in cluster.
- $|S| \le 9 \cdot 4 = O(1).$
- **3** Compute closest point to \mathbf{p} in S. O(1) time.
- If $d(\mathbf{p}, S) < \alpha$, we stop; otherwise, continue to next point.
- Correctness: ' $\mathcal{CP}(P) < \alpha$ ' returned only if such pair found.



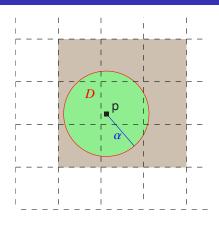
- $oldsymbol{0}$ S set of all points in cluster.
- $|S| \le 9 \cdot 4 = O(1).$
- **3** Compute closest point to \mathbf{p} in S. O(1) time.
- If $d(p, S) < \alpha$, we stop; otherwise, continue to next point.
- Correctness: 'CP(P) < α' returned only if such pair found.



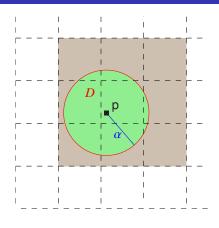
- Assume p and q: realizing closest pair.
- $||\mathbf{p} \mathbf{q}|| = \mathcal{CP}(\mathsf{P}) < \alpha.$
- When later point (say p) inserted, the set S would contain q.
- algorithm would stop and return ' $\mathcal{CP}(P) < \alpha'$.



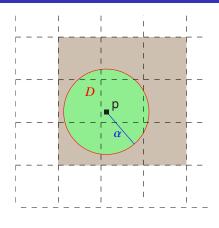
- Assume p and q: realizing closest pair.
- $||\mathbf{p} \mathbf{q}|| = \mathcal{CP}(\mathsf{P}) < \alpha.$
- When later point (say p) inserted, the set S would contain q.
- algorithm would stop and return ' $\mathcal{CP}(P) < \alpha$ '.



- Assume p and q: realizing closest pair.
- $||\mathbf{p} \mathbf{q}|| = \mathcal{CP}(\mathbf{P}) < \alpha.$
- When later point (say p) inserted, the set S would contain q.
- algorithm would stop and return ' $\mathcal{CP}(P) < \alpha$ '.



- Assume p and q: realizing closest pair.
- $||\mathbf{p} \mathbf{q}|| = \mathcal{CP}(\mathbf{P}) < \alpha.$
- When later point (say p) inserted, the set S would contain q.
- algorithm would stop and return ' $\mathcal{CP}(P) < \alpha$ '.



- Assume p and q: realizing closest pair.
- $||\mathbf{p} \mathbf{q}|| = \mathcal{CP}(\mathsf{P}) < \alpha.$
- When later point (say p) inserted, the set S would contain q.
- **1** algorithm would stop and return ' $\mathcal{CP}(P) < \alpha$ '.

5

- Pick a random permutation of the points of P.
- $\alpha_2 = \|\mathbf{p}_1 \mathbf{p}_2\|.$
- Insert points into the closet-pair distance verifying data-structure.
- $oldsymbol{lpha}_i$: the closest pair distance in the set $\mathbf{P}_i = \{\mathbf{p}_1, \dots, \mathbf{p}_i\}$, for $i = 2, \dots, n$.
- ith iteration:
 - lacksquare if $lpha_i=lpha_{i-1}$. insertion takes constant time.
 - 2 If $lpha_i < lpha_{i-1}$ then: know new closest pair distance $lpha_i$
 - $oldsymbol{0}$ rebuild the grid, and reinsert the i points of P_i from scratch into the grid G_{α_i} . Takes O(i) time.
- \odot Returns the number $lpha_n$ and points realizing it.

- Pick a random permutation of the points of P.
- $\langle \mathbf{p}_1, \dots, \mathbf{p}_n \rangle$ be this permutation.
- $\alpha_2 = \|\mathbf{p}_1 \mathbf{p}_2\|.$
- Insert points into the closet-pair distance verifying data-structure.
- $oldsymbol{lpha}_i$: the closest pair distance in the set $\mathsf{P}_i = \{\mathsf{p}_1, \ldots, \mathsf{p}_i\}$, for $i=2,\ldots,n$.
- ith iteration:
 - \bullet if $\alpha_i = \alpha_{i-1}$. insertion takes constant time.
 - ② If $\alpha_i < \alpha_{i-1}$ then: know new closest pair distance α_i .
 - **3** rebuild the grid, and reinsert the i points of \mathbf{P}_i from scratch into the grid \mathbf{G}_{α_i} . Takes O(i) time.
- \odot Returns the number $lpha_n$ and points realizing it.

- Pick a random permutation of the points of P.
- $\langle p_1, \ldots, p_n \rangle$ be this permutation.
- Insert points into the closet-pair distance verifying data-structure.
- $oldsymbol{lpha}_i$: the closest pair distance in the set $\mathsf{P}_i = \{\mathsf{p}_1, \ldots, \mathsf{p}_i\}$, for $i=2,\ldots,n$.
- ith iteration:
 - lacksquare if $lpha_i=lpha_{i-1}$. insertion takes constant time.
 - ② If $\alpha_i < \alpha_{i-1}$ then: know new closest pair distance α_i .
 - **3** rebuild the grid, and reinsert the i points of \mathbf{P}_i from scratch into the grid \mathbf{G}_{α_i} . Takes O(i) time.
- @ Returns the number $lpha_n$ and points realizing it.

- Pick a random permutation of the points of P.
- $\langle \mathbf{p}_1, \dots, \mathbf{p}_n \rangle$ be this permutation.
- Insert points into the closet-pair distance verifying data-structure.
- $oldsymbol{lpha}_i$: the closest pair distance in the set ${\sf P}_i=\{{\sf p}_1,\ldots,{\sf p}_i\}$, for $i=2,\ldots,n$.
- ith iteration:
 - ① if $\alpha_i = \alpha_{i-1}$. insertion takes constant time.
 - ② If $\alpha_i < \alpha_{i-1}$ then: know new closest pair distance α_i .
 - **1** rebuild the grid, and reinsert the i points of \mathbf{P}_i from scratch into the grid \mathbf{G}_{α_i} . Takes O(i) time.
- \odot Returns the number $lpha_n$ and points realizing it.

- Pick a random permutation of the points of P.
- $\langle \mathbf{p}_1, \dots, \mathbf{p}_n \rangle$ be this permutation.
- Insert points into the closet-pair distance verifying data-structure.
- $oldsymbol{lpha}_i$: the closest pair distance in the set $\mathsf{P}_i = \{\mathsf{p}_1, \dots, \mathsf{p}_i\}$, for $i=2,\dots,n$.
- ith iteration:
 - ① if $\alpha_i = \alpha_{i-1}$. insertion takes constant time.
 - ② If $\alpha_i < \alpha_{i-1}$ then: know new closest pair distance α_i .
 - **1** rebuild the grid, and reinsert the i points of \mathbf{P}_i from scratch into the grid \mathbf{G}_{α_i} . Takes O(i) time.
- \odot Returns the number $lpha_n$ and points realizing it.

- Pick a random permutation of the points of P.
- $\langle \mathbf{p}_1, \dots, \mathbf{p}_n \rangle$ be this permutation.
- Insert points into the closet-pair distance verifying data-structure.
- $oldsymbol{lpha}_i$: the closest pair distance in the set $\mathsf{P}_i = \{\mathsf{p}_1, \dots, \mathsf{p}_i\}$, for $i=2,\dots,n$.
- **1** ith iteration:
 - **1** if $\alpha_i = \alpha_{i-1}$. insertion takes constant time.
 - ② If $\alpha_i < \alpha_{i-1}$ then: know new closest pair distance α_i .
 - ${\tt 3}$ rebuild the grid, and reinsert the i points of ${\sf P}_i$ from scratch into the grid ${\sf G}_{\alpha_i}$. Takes O(i) time.
- @ Returns the number $lpha_n$ and points realizing it

- Pick a random permutation of the points of P.
- $\langle \mathbf{p}_1, \dots, \mathbf{p}_n \rangle$ be this permutation.
- Insert points into the closet-pair distance verifying data-structure.
- $oldsymbol{lpha}_i$: the closest pair distance in the set ${\sf P}_i=\{{\sf p}_1,\ldots,{\sf p}_i\}$, for $i=2,\ldots,n$.
- **1** ith iteration:
 - **1** if $\alpha_i = \alpha_{i-1}$. insertion takes constant time.
 - ② If $\alpha_i < \alpha_{i-1}$ then: know new closest pair distance α_i .
 - $oldsymbol{\circ}$ rebuild the grid, and reinsert the i points of P_i from scratch into the grid G_{α_i} . Takes O(i) time.
- @ Returns the number $lpha_n$ and points realizing it.

New algorithm

- Pick a random permutation of the points of P.
- $\langle \mathbf{p}_1, \dots, \mathbf{p}_n \rangle$ be this permutation.
- Insert points into the closet-pair distance verifying data-structure.
- $oldsymbol{lpha}_i$: the closest pair distance in the set $\mathsf{P}_i = \{\mathsf{p}_1, \ldots, \mathsf{p}_i\}$, for $i=2,\ldots,n$.
- ith iteration:
 - **1** if $\alpha_i = \alpha_{i-1}$. insertion takes constant time.
 - 2 If $\alpha_i < \alpha_{i-1}$ then: know new closest pair distance α_i .
 - $oldsymbol{\circ}$ rebuild the grid, and reinsert the i points of P_i from scratch into the grid G_{α_i} . Takes O(i) time.
- @ Returns the number $lpha_n$ and points realizing it.

New algorithm

- Pick a random permutation of the points of P.
- $\langle \mathbf{p}_1, \dots, \mathbf{p}_n \rangle$ be this permutation.
- Insert points into the closet-pair distance verifying data-structure.
- **5** α_i : the closest pair distance in the set $\mathsf{P}_i = \{\mathsf{p}_1, \ldots, \mathsf{p}_i\}$, for $i = 2, \ldots, n$.
- ith iteration:
 - **1** if $\alpha_i = \alpha_{i-1}$. insertion takes constant time.
 - 2 If $\alpha_i < \alpha_{i-1}$ then: know new closest pair distance α_i .
 - $oldsymbol{\circ}$ rebuild the grid, and reinsert the i points of P_i from scratch into the grid G_{α_i} . Takes O(i) time.
- **1** Returns the number α_n and points realizing it.

Lemma

Let t be the number of different values in the sequence $\alpha_2, \alpha_3, \ldots, \alpha_n$. Then $\mathrm{E}[t] = O(\log n)$. As such, in expectation, the above algorithm rebuilds the grid $O(\log n)$ times.

proof

- **3** $\Pr[X_i = 1] = \Pr[\alpha_i < \alpha_{i-1}].$
- 4 Backward analysis. Fix P_i .
- $\mathbf{0} \ \mathsf{q} \in \mathsf{P}_i \text{ is } \textit{critical} \text{ if } \mathcal{CP}(\mathsf{P}_i \setminus \{\mathsf{q}\}) > \mathcal{CP}(\mathsf{P}_i).$
- $oldsymbol{0}$ No critical points, then $lpha_{i-1}=lpha_i$ and then $\Pr[X_i=1]=0$

Sariel (UIUC) CS573 18 Fall 2014 18 / 24

Lemma

Let t be the number of different values in the sequence $\alpha_2, \alpha_3, \ldots, \alpha_n$. Then $\mathrm{E}[t] = O(\log n)$. As such, in expectation, the above algorithm rebuilds the grid $O(\log n)$ times.

proof

- $f E[X_i] = \Pr[X_i = 1]$ and $t = \sum_{i=3}^n X_i$.
- **3** $\Pr[X_i = 1] = \Pr[\alpha_i < \alpha_{i-1}].$
- 4 Backward analysis. Fix P_i .
- $\mathbf{0} \ \mathsf{q} \in \mathsf{P}_i \text{ is } \textit{critical} \text{ if } \mathcal{CP}(\mathsf{P}_i \setminus \{\mathsf{q}\}) > \mathcal{CP}(\mathsf{P}_i).$
- $oldsymbol{0}$ No critical points, then $lpha_{i-1}=lpha_i$ and then $\Pr[X_i=1]=0$

Lemma

Let t be the number of different values in the sequence $\alpha_2, \alpha_3, \ldots, \alpha_n$. Then $\mathrm{E}[t] = O(\log n)$. As such, in expectation, the above algorithm rebuilds the grid $O(\log n)$ times.

proof

- $\mathbf{E}[X_i] = \Pr[X_i = 1]$ and $t = \sum_{i=3}^n X_i$.
- **3** $\Pr[X_i = 1] = \Pr[\alpha_i < \alpha_{i-1}].$
- 4 Backward analysis. Fix P_i .
- **3** $q \in P_i$ is *critical* if $\mathcal{CP}(P_i \setminus \{q\}) > \mathcal{CP}(P_i)$.
- $oldsymbol{0}$ No critical points, then $lpha_{i-1}=lpha_i$ and then $\Pr[X_i=1]=0$

Lemma

Let t be the number of different values in the sequence $\alpha_2, \alpha_3, \ldots, \alpha_n$. Then $\mathrm{E}[t] = O(\log n)$. As such, in expectation, the above algorithm rebuilds the grid $O(\log n)$ times.

proof

- $oldsymbol{\mathbb{E}}[X_i] = \Pr[X_i = 1]$ and $t = \sum_{i=3}^n X_i$.
- $\Pr[X_i = 1] = \Pr[\alpha_i < \alpha_{i-1}].$
- Backward analysis. Fix P_i.
- $\mathbf{0} \ \mathsf{q} \in \mathsf{P}_i \text{ is } \textit{critical} \text{ if } \mathcal{CP}(\mathsf{P}_i \setminus \{\mathsf{q}\}) > \mathcal{CP}(\mathsf{P}_i).$
- $oldsymbol{0}$ No critical points, then $lpha_{i-1}=lpha_i$ and then $\Pr[X_i=1]=0$

Lemma

Let t be the number of different values in the sequence $\alpha_2, \alpha_3, \ldots, \alpha_n$. Then $\mathrm{E}[t] = O(\log n)$. As such, in expectation, the above algorithm rebuilds the grid $O(\log n)$ times.

proof

- $oldsymbol{\mathbb{E}}[X_i] = \Pr[X_i = 1]$ and $t = \sum_{i=3}^n X_i$.
- $\Pr[X_i = 1] = \Pr[\alpha_i < \alpha_{i-1}].$
- **4** Backward analysis. Fix P_i .
- **3** $q \in P_i$ is *critical* if $\mathcal{CP}(P_i \setminus \{q\}) > \mathcal{CP}(P_i)$.
- lacksquare No critical points, then $lpha_{i-1}=lpha_i$ and then $\Pr[X_i=1]=0.$

Sariel (UIUC) CS573 18 Fall 2014 18 / 24

Lemma

Let t be the number of different values in the sequence $\alpha_2, \alpha_3, \ldots, \alpha_n$. Then $\mathrm{E}[t] = O(\log n)$. As such, in expectation, the above algorithm rebuilds the grid $O(\log n)$ times.

proof

- $oldsymbol{\mathbb{E}}[X_i] = \Pr[X_i = 1]$ and $t = \sum_{i=3}^n X_i$.
- $\Pr[X_i = 1] = \Pr[\alpha_i < \alpha_{i-1}].$
- Backward analysis. Fix P_i.
- **3** $q \in P_i$ is *critical* if $\mathcal{CP}(P_i \setminus \{q\}) > \mathcal{CP}(P_i)$.
- $oldsymbol{0}$ No critical points, then $lpha_{i-1}=lpha_i$ and then $\Pr[X_i=1]=0.$

Sariel (UIUC) CS573 18 Fall 2014 18 / 24

- lacksquare If one critical point, then $\Pr[X_i=1]=1/i$.
- ② Assume two critical points and let \mathbf{p} , \mathbf{q} be this unique pair of points of \mathbf{P}_i realizing $\mathcal{CP}(\mathbf{P}_i)$.
- \circ $\alpha_i < \alpha_{i-1} \iff \mathsf{p} \text{ or } \mathsf{q} \text{ is } \mathsf{p}_i.$
- $\Pr[X_i = 1] = 2/i.$
- Solution is a second of the second of the
- ① Linearity of expectations: $\mathbf{E}[t] = \mathbf{E}\left[\sum_{i=3}^{n} X_i\right] = \sum_{i=3}^{n} \mathbf{E}[X_i] \leq \sum_{i=3}^{n} 2/i = O(\log n)$.

Sariel (UIUC) CS573 19 Fall 2014 19 / 24

- lacksquare If one critical point, then $\Pr[X_i=1]=1/i$.
- Assume two critical points and let \mathbf{p} , \mathbf{q} be this unique pair of points of \mathbf{P}_i realizing $\mathcal{CP}(\mathbf{P}_i)$.
- $oldsymbol{\circ} lpha_i < lpha_{i-1} \iff oldsymbol{\mathsf{p}} \ \mathsf{or} \ oldsymbol{\mathsf{q}} \ \mathsf{is} \ oldsymbol{\mathsf{p}}_i$
- $\Pr[X_i = 1] = 2/i.$
- 6 Cannot be more than two critical points.
- ① Linearity of expectations: $\mathbf{E}[t] = \mathbf{E}\left[\sum_{i=3}^{n} X_i\right] = \sum_{i=3}^{n} \mathbf{E}[X_i] \leq \sum_{i=3}^{n} 2/i = O(\log n).$

Sariel (UIUC) CS573 19 Fall 2014 19 / 24

- lacksquare If one critical point, then $\Pr[X_i=1]=1/i$.
- ② Assume two critical points and let \mathbf{p} , \mathbf{q} be this unique pair of points of \mathbf{P}_i realizing $\mathcal{CP}(\mathbf{P}_i)$.
- $\Pr[X_i = 1] = 2/i.$
- 6 Cannot be more than two critical points.
- ① Linearity of expectations: $\mathbf{E}[t] = \mathbf{E}\left[\sum_{i=3}^n X_i\right] = \sum_{i=3}^n \mathbf{E}[X_i] \leq \sum_{i=3}^n 2/i = O(\log n)$.

- lacksquare If one critical point, then $\Pr[X_i=1]=1/i$.
- ② Assume two critical points and let \mathbf{p} , \mathbf{q} be this unique pair of points of \mathbf{P}_i realizing $\mathcal{CP}(\mathbf{P}_i)$.
- $\Pr[X_i = 1] = 2/i.$
- Cannot be more than two critical points.
- ① Linearity of expectations: $\mathbf{E}[t] = \mathbf{E}\left[\sum_{i=3}^{n} X_i\right] = \sum_{i=3}^{n} \mathbf{E}[X_i] \leq \sum_{i=3}^{n} 2/i = O(\log n).$

- lacksquare If one critical point, then $\Pr[X_i=1]=1/i$.
- ② Assume two critical points and let \mathbf{p} , \mathbf{q} be this unique pair of points of \mathbf{P}_i realizing $\mathcal{CP}(\mathbf{P}_i)$.
- $\Pr[X_i = 1] = 2/i.$
- Cannot be more than two critical points.
- ① Linearity of expectations: $\mathbf{E}[t] = \mathbf{E}\left[\sum_{i=3}^{n} X_i\right] = \sum_{i=3}^{n} \mathbf{E}[X_i] \leq \sum_{i=3}^{n} 2/i = O(\log n).$

- lacksquare If one critical point, then $\Pr[X_i=1]=1/i$.
- ② Assume two critical points and let \mathbf{p} , \mathbf{q} be this unique pair of points of \mathbf{P}_i realizing $\mathcal{CP}(\mathbf{P}_i)$.
- $\Pr[X_i = 1] = 2/i.$
- Solution Cannot be more than two critical points.
- **1** Linearity of expectations: $\mathrm{E}[t] = \mathrm{E} \left[\sum_{i=3}^n X_i \right] = \sum_{i=3}^n \mathrm{E}[X_i] \leq \sum_{i=3}^n 2/i = O(\log n).$

- lacksquare If one critical point, then $\Pr[X_i=1]=1/i$.
- ② Assume two critical points and let \mathbf{p} , \mathbf{q} be this unique pair of points of \mathbf{P}_i realizing $\mathcal{CP}(\mathbf{P}_i)$.
- $\Pr[X_i = 1] = 2/i.$
- Onnot be more than two critical points.
- **1** Linearity of expectations: $\mathrm{E}[t] = \mathrm{E}\left[\sum_{i=3}^n X_i\right] = \sum_{i=3}^n \mathrm{E}[X_i] \leq \sum_{i=3}^n 2/i = O(\log n).$

Sariel (UIUC) CS573 19 Fall 2014 19 / 24

Theorem

 ${\bf P}$: set of ${\bf n}$ points in the plane. Compute the closest pair of ${\bf P}$ in expected linear time.

Proof.

- $\bullet X_i = 1 \iff \alpha_i \neq \alpha_{i-1}.$
- ② Running time is proportional to $R=1+\sum_{i=3}^n (1+X_i\cdot i)$.
- ① Expected running time of the algorithm is $O(\mathrm{E}[R]) = O(n)$. lacktriangle

Theorem

 ${\bf P}$: set of ${\bf n}$ points in the plane. Compute the closest pair of ${\bf P}$ in expected linear time.

Proof.

- ② Running time is proportional to $R=1+\sum_{i=3}^n (1+X_i\cdot i)$.
- ① Expected running time of the algorithm is $O(\mathrm{E}[R]) = O(n)$. lacktriangle

Theorem

 ${\bf P}$: set of ${\bf n}$ points in the plane. Compute the closest pair of ${\bf P}$ in expected linear time.

Proof.

- ② Running time is proportional to $R = 1 + \sum_{i=3}^{n} (1 + X_i \cdot i)$.
- **③** $\mathbf{E}[R] = \mathbf{E}[1 + \sum_{i=3}^{n} (1 + X_i \cdot i)] \le n + \sum_{i=3}^{n} \mathbf{E}[X_i] \cdot i \le n + \sum_{i=3}^{n} i \cdot \Pr[X_i = 1] \le n + \sum_{i=3}^{n} i \cdot \frac{2}{i} \le 3n$, by linearity of expectation and since $\mathbf{E}[X_i] = \Pr[X_i = 1] \le 2/i$.
- ① Expected running time of the algorithm is $O(\mathrm{E}[R]) = O(n)$. lacktriangle

Theorem

 ${\bf P}$: set of ${\bf n}$ points in the plane. Compute the closest pair of ${\bf P}$ in expected linear time.

Proof.

- ② Running time is proportional to $R = 1 + \sum_{i=3}^{n} (1 + X_i \cdot i)$.
- **③** $\mathbf{E}[R] = \mathbf{E}\left[1 + \sum_{i=3}^{n} (1 + X_i \cdot i)\right] \le n + \sum_{i=3}^{n} \mathbf{E}[X_i] \cdot i \le n + \sum_{i=3}^{n} i \cdot \Pr[X_i = 1] \le n + \sum_{i=3}^{n} i \cdot \frac{2}{i} \le 3n$, by linearity of expectation and since $\mathbf{E}[X_i] = \Pr[X_i = 1] \le 2/i$.
- ① Expected running time of the algorithm is $O(\mathrm{E}[R]) = O(n)$. lacktriangle

Theorem

 ${\bf P}$: set of ${\bf n}$ points in the plane. Compute the closest pair of ${\bf P}$ in expected linear time.

Proof.

- ② Running time is proportional to $R=1+\sum_{i=3}^n (1+X_i\cdot i)$.
- **③** $\mathbf{E}[R] = \mathbf{E}\left[1 + \sum_{i=3}^{n} (1 + X_i \cdot i)\right] \le n + \sum_{i=3}^{n} \mathbf{E}[X_i] \cdot i \le n + \sum_{i=3}^{n} i \cdot \Pr[X_i = 1] \le n + \sum_{i=3}^{n} i \cdot \frac{2}{i} \le 3n$, by linearity of expectation and since $\mathbf{E}[X_i] = \Pr[X_i = 1] \le 2/i$.
- lacksquare Expected running time of the algorithm is $O(\mathrm{E}[R]) = O(n)$. lacksquare

Theorem

 ${\bf P}$: set of ${\bf n}$ points in the plane. Compute the closest pair of ${\bf P}$ in expected linear time.

Proof.

- ② Running time is proportional to $R = 1 + \sum_{i=3}^{n} (1 + X_i \cdot i)$.
- $\begin{array}{l} \bullet \quad \mathrm{E}[R] = \mathrm{E} \big[1 + \sum_{i=3}^n (1 + X_i \cdot i) \big] \leq n + \sum_{i=3}^n \mathrm{E}[X_i] \cdot i \leq \\ n + \sum_{i=3}^n i \cdot \Pr[X_i = 1] \leq n + \sum_{i=3}^n i \cdot \frac{2}{i} \leq 3n, \text{ by linearity} \\ \text{of expectation and since } \mathrm{E}[X_i] = \Pr[X_i = 1] \leq 2/i. \end{array}$
- ① Expected running time of the algorithm is $O(\mathrm{E}[R]) = O(n)$. lacktriangle

Theorem

 ${\bf P}$: set of ${\bf n}$ points in the plane. Compute the closest pair of ${\bf P}$ in expected linear time.

Proof.

- ② Running time is proportional to $R=1+\sum_{i=3}^n (1+X_i\cdot i)$.
- **③** $\mathbf{E}[R] = \mathbf{E} \Big[1 + \sum_{i=3}^n (1 + X_i \cdot i) \Big] \le n + \sum_{i=3}^n \mathbf{E}[X_i] \cdot i \le n + \sum_{i=3}^n i \cdot \Pr[X_i = 1] \le n + \sum_{i=3}^n i \cdot \frac{2}{i} \le 3n$, by linearity of expectation and since $\mathbf{E}[X_i] = \Pr[X_i = 1] \le 2/i$.
- **③** Expected running time of the algorithm is $O(\mathrm{E}[R]) = O(n)$.

2011

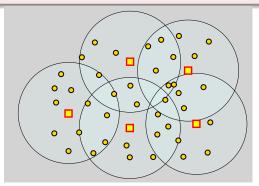
Part III

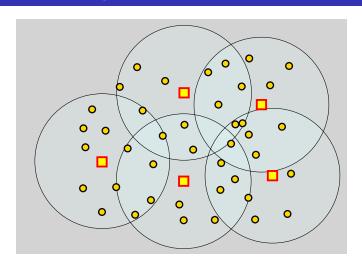
Computing nets

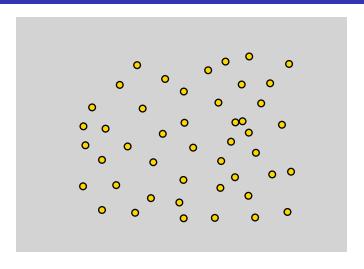
r-net

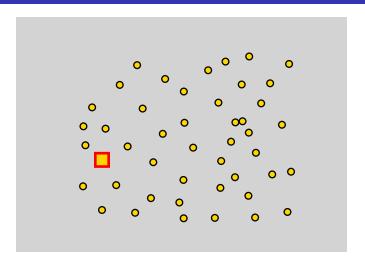
 $N \subseteq P$ is an r-net if

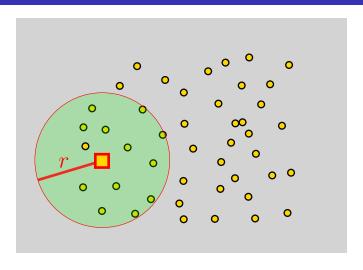
- ullet Every point in ${\sf P}$ has distance < r to a point in N
- ullet For any two $\mathbf{p},\mathbf{q}\in N$, we have $d(\mathbf{p},\mathbf{q})\geq r$.

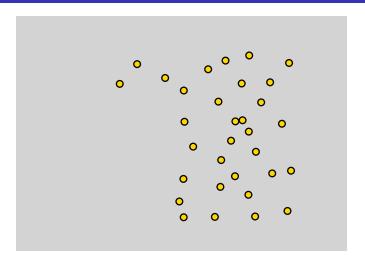


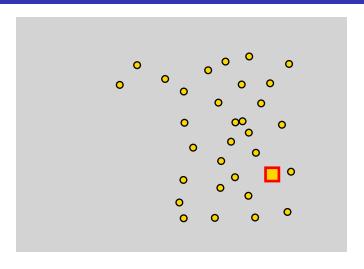


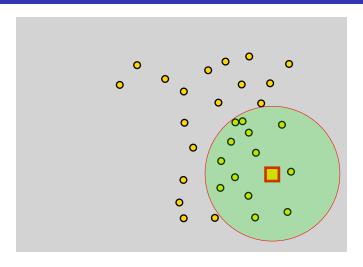


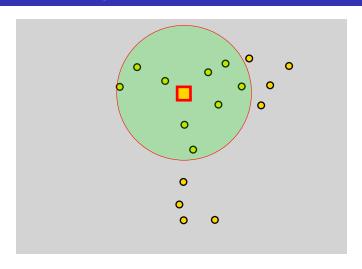


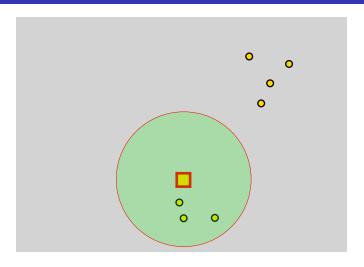


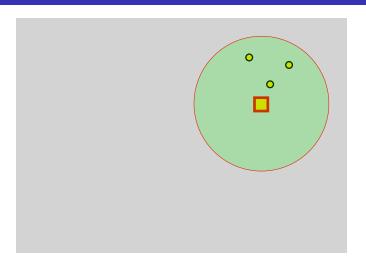


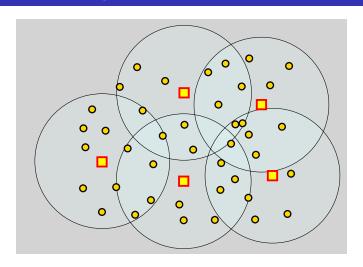




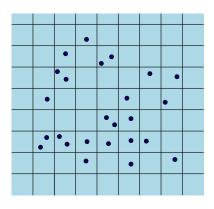




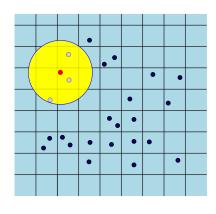




...in linear time



...in linear time

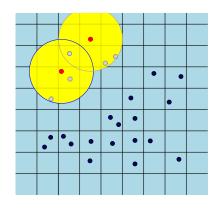


Repeatedly:

- (1) Pick any unmarked point.
- (2) Mark all neighbors in distance < r.

- (A) Neighbors in distance $\langle r,$ are in neighboring cells.
- (B) Neighboring Cells found in O(1) time.
- (C) Cells contain lists of points.

...in linear time

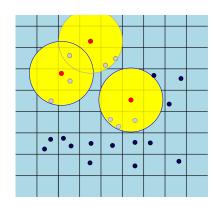


Repeatedly:

- (1) Pick any unmarked point.
- (2) Mark all neighbors in distance $\langle r$.

- (A) Neighbors in distance $\langle r,$ are in neighboring cells.
- (B) Neighboring Cells found in O(1) time.
- (C) Cells contain lists of points.

...in linear time

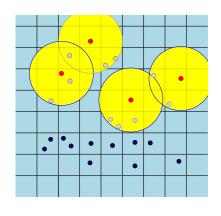


Repeatedly:

- (1) Pick any unmarked point.
- (2) Mark all neighbors in distance $\langle r$.

- (A) Neighbors in distance $\langle r,$ are in neighboring cells.
- (B) Neighboring Cells found in O(1) time.
- (C) Cells contain lists of points.

...in linear time

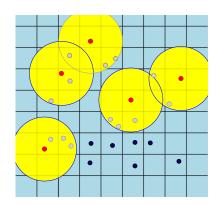


Repeatedly:

- (1) Pick any unmarked point.
- (2) Mark all neighbors in distance < r.

- (A) Neighbors in distance $\langle r,$ are in neighboring cells.
- (B) Neighboring Cells found in O(1) time.
- (C) Cells contain lists of points.

...in linear time

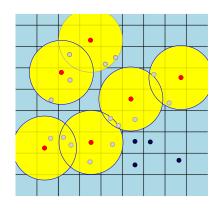


Repeatedly:

- (1) Pick any unmarked point.
- (2) Mark all neighbors in distance < r.

- (A) Neighbors in distance $\langle r, \rangle$ are in neighboring cells.
- (B) Neighboring Cells found in O(1) time.
- (C) Cells contain lists of points.

...in linear time

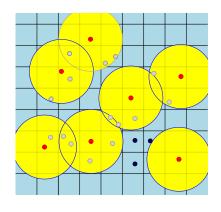


Repeatedly:

- (1) Pick any unmarked point.
- (2) Mark all neighbors in distance < r.

- (A) Neighbors in distance $\langle r,$ are in neighboring cells.
- (B) Neighboring Cells found in O(1) time.
- (C) Cells contain lists of points.

...in linear time

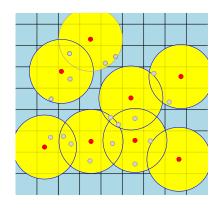


Repeatedly:

- (1) Pick any unmarked point.
- (2) Mark all neighbors in distance < r.

- (A) Neighbors in distance $\langle r,$ are in neighboring cells.
- (B) Neighboring Cells found in O(1) time.
- (C) Cells contain lists of points.

...in linear time



Repeatedly:

- (1) Pick any unmarked point.
- (2) Mark all neighbors in distance < r.

- (A) Neighbors in distance $\langle r, \rangle$ are in neighboring cells.
- (B) Neighboring Cells found in O(1) time.
- (C) Cells contain lists of points.

Sariel (UIUC) CS573 25 Fall 2014 25 / 2-

Sariel (UIUC) CS573 26 Fall 2014 26 / 2-

Sariel (UIUC) CS573 27 Fall 2014 27 / 2-

Sariel (UIUC) CS573 28 Fall 2014 28 / 24