CS 573: Algorithms, Fall 2014

Backward analysis

Lecture 27 December 4, 2014

1/29

Backward analysis

- 1. $P = \langle p_1, \dots, p_n \rangle$ be a random ordering of n distinct numbers.
- 2. $X_i = 1 \iff p_i$ is smaller than p_1, \ldots, p_{i-1} .
- 3. Lemma $Pr[X_i = 1] = 1/i$.

Part I

Backward analysis

2/29

Proof...

Lemma

$$\Pr[X_i = 1] = 1/i.$$

Proof.

- 1. Fix elements appearing in $set(P_i) = \{s_1, \dots, s_i\}$.
- 2. $Pr[p_i = min(P_i) \mid set(P_i)] = 1/i$.

$$\begin{aligned}
&\Pr\left[\mathsf{p}_{i} = \min(\mathsf{P}_{i})\right] \\
&= \sum_{S \subseteq \mathsf{P}, |S| = i} \mathsf{Pr}\left[\mathsf{p}_{i} = \min(\mathsf{P}_{i}) \mid \operatorname{set}(\mathsf{P}_{i}) = S\right] \mathsf{Pr}[S] \\
&= \sum_{S \subseteq \mathsf{P}, |S| = i} \frac{1}{i} \mathsf{Pr}[S] = \frac{1}{i}.
\end{aligned}$$

3/29

of times...

...the minimum changes in a random permutation...

Theorem

In a random permutation of n distinct numbers, the minimum of the prefix changes in expectation $\ln n + 1$ times.

Proof.

- 1. $\mathbf{Y} = \sum_{i=1}^{n} \mathbf{X}_{i}$.
- 2. $E[Y] = E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} 1/i$ $\leq \ln n + 1$.

5/29

Proof continued...

- 1. For any indices $1 \leq i_1 < i_2 < \ldots < i_k \leq n$, and observe that $\Pr[\mathcal{E}_{i_k} \mid \mathcal{E}_{i_1} \cap \ldots \cap \mathcal{E}_{i_{k-1}}] = \Pr[\mathcal{E}_{i_k}]$,
- 2. ..because \mathcal{E}_h determined after all $\mathcal{E}_h, \dots, \mathcal{E}_k$.
- 3. By induction: $\Pr[\mathcal{E}_{i_1} \cap \mathcal{E}_{i_2} \cap \ldots \cap \mathcal{E}_{i_k}] = \Pr[\mathcal{E}_{i_1} \mid \mathcal{E}_{i_2} \cap \ldots \cap \mathcal{E}_{i_k}] \Pr[\mathcal{E}_{i_2} \cap \ldots \cap \mathcal{E}_{i_k}] = \Pr[\mathcal{E}_{i_1}] \Pr[\mathcal{E}_{i_2} \cap \mathcal{E}_{i_3} \cap \ldots \cap \mathcal{E}_{i_k}] = \prod_{i=1}^k \Pr[\mathcal{E}_{i_j}] = \prod_{i=1}^k \frac{1}{i_i}.$
- 4. \Longrightarrow variables X_1, \ldots, X_n are independent.
- 5. Result readily follows from Chernoff's inequality.

High probability

Lemma

 $\Pi = \pi_1 \dots \pi_n$: random permutation of $\{1, \dots, n\}$. X_i : indicator variable if π_i is the smallest number in $\{\pi_1, \dots, \pi_i\}$, for $\forall i$. Then $Z = \sum_{i=1}^n X_i = O(\log n)$., w.h.p. (i.e., $\geq 1 - 1/n^{O(1)}$).

proof

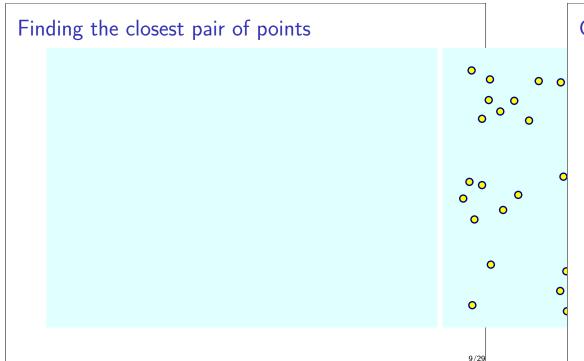
- 1. \mathcal{E}_i : the event that $X_i = 1$, for $i = 1, \ldots, n$.
- 2. Claim: $\mathcal{E}_1, \ldots, \mathcal{E}_n$ are independent.
- 3. Generate permutation: Randomly pick a permutation of the given numbers, set first number to be π_n .
- 4. Next, pick a random permutation of the remaining numbers and set the first number as π_{n-1} in output permutation.

5. Repeat this process till we generate the whole permutation.

0/2

Part II

Closet pair in linear time

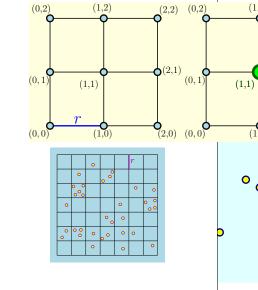


Grids...

- 1. **r**: Side length of grid cell.
- 2. Grid cell IDed by pair of integers.
- 3. Constant time to determine a point **p**'s grid cell id:

$$id(p) = (\lfloor p_x/r \rfloor, \lfloor p_y/r \rfloor)$$

- 4. Limited use of the floor function (but no word packing tricks).
- 5. Use hashing on (grid) points.
- 6. Store points in grid... ...in linear time.

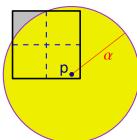


Storing point set in grid/hash-table...

Hashing:

- 1. Non-empty grid cells
- 2. For non-empty grid cell: List of points in it.
- 3. For a grid cell: Its neighboring cells.

Closet pair in a square



Lemma

Let P be a set of points contained inside a square \square , such that the sidelength of \square is $\alpha = \mathcal{CP}(P)$. Then |P| < 4.

Proof.

Partition \square into four equal squares $\square_1, \ldots, \square_4$. Each square diameter $\sqrt{2}\alpha/2 < \alpha$.

... contain at most one point of \mathbf{P} ; that is, the disk of radius α centered at a point $\mathbf{p} \in \mathbf{P}$ completely covers the subsquare containing it; see the figure on the right.

P can have four points if it is the four corners of \square .

1/29

12/29

Verify closet pair

Lemma

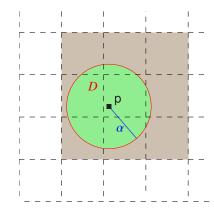
P: set of **n** points in the plane. α : distance. Verify in linear time whether $\mathcal{CP}(P) < \alpha$, $\mathcal{CP}(P) = \alpha$, or $\mathcal{CP}(P) > \alpha$.

proof

Indeed, store the points of ${\bf P}$ in the grid ${\bf G}_{\alpha}$. For every non-empty grid cell, we maintain a linked list of the points inside it. Thus, adding a new point ${\bf p}$ takes constant time. Specifically, compute ${\bf id}({\bf p})$, check if ${\bf id}({\bf p})$ already appears in the hash table, if not, create a new linked list for the cell with this ID number, and store ${\bf p}$ in it. If a linked list already exists for ${\bf id}({\bf p})$, just add ${\bf p}$ to it. This takes O(n) time overall. Now, if any grid cell in ${\bf G}_{\alpha}({\bf P})$ contains more than, say, 4 points of ${\bf P}$, then it must be that the ${\cal CP}({\bf P})<\alpha$, by previous lemma.

13/29

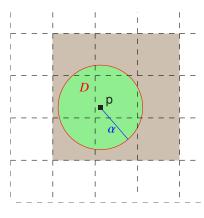
Proof continued



- When insert a point p: fetch all the points of P in cluster of P
- 2. Takes constant time.
- 3. If there is a point closer to ${\bf p}$ than ${\boldsymbol \alpha}$ that was already inserted, then it must be stored in one of these ${\bf 9}$ cells.
- Now, each one of those cells must contain at most
 points of P by prev lemma.
- 5. Otherwise, already stopped since $\mathcal{CP}(\cdot) < \alpha$.

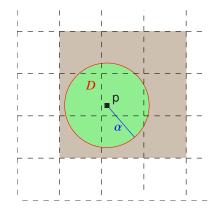
14/20

Proof continued



- 1. **S** set of all points in cluster.
- 2. $|S| < 9 \cdot 4 = O(1)$.
- 3. Compute closest point to **p** in **S**. **O**(1) time.
- If d(p, S) < α, we stop; otherwise, continue to next point.
- 5. Correctness: $(\mathcal{CP}(P) < \alpha')$ returned only if such pair found.

Proof continued



- 1. Assume **p** and **q**: realizing closest pair.
- 2. $\|\mathbf{p} \mathbf{q}\| = \mathcal{CP}(\mathbf{P}) < \alpha$.
- 3. When later point (say **p**) inserted, the set **S** would contain **q**.
- 4. algorithm would stop and return ' $\mathcal{CP}(P) < \alpha$ '.

16/2

15/29

New algorithm

- 1. Pick a random permutation of the points of **P**.
- 2. $\langle \mathbf{p}_1, \dots, \mathbf{p}_n \rangle$ be this permutation.
- 3. $\alpha_2 = \|\mathbf{p}_1 \mathbf{p}_2\|$.
- 4. Insert points into the closet-pair distance verifying data-structure.
- 5. α_i : the closest pair distance in the set $P_i = \{p_1, \dots, p_i\}$, for $i = 2, \dots, n$.
- 6. *i*th iteration:
 - 6.1 if $\alpha_i = \alpha_{i-1}$. insertion takes constant time.
 - 6.2 If $\alpha_i < \alpha_{i-1}$ then: know new closest pair distance α_i .
 - 6.3 rebuild the grid, and reinsert the *i* points of P_i from scratch into the grid G_{α_i} . Takes O(i) time.
- 7. Returns the number α_n and points realizing it.

17/20

Proof continued...

- 1. If one critical point, then $Pr[X_i = 1] = 1/i$.
- 2. Assume two critical points and let \mathbf{p} , \mathbf{q} be this unique pair of points of \mathbf{P}_i realizing $\mathcal{CP}(\mathbf{P}_i)$.
- 3. $\alpha_i < \alpha_{i-1} \iff \mathbf{p} \text{ or } \mathbf{q} \text{ is } \mathbf{p}_i$.
- 4. $\Pr[X_i = 1] = 2/i$.
- 5. Cannot be more than two critical points.
- 6. Linearity of expectations: $\mathbf{E}[t] = \mathbf{E}\left[\sum_{i=3}^{n} X_i\right] = \sum_{i=3}^{n} \mathbf{E}[X_i] \leq \sum_{i=3}^{n} 2/i = O(\log n)$.

7.

Weak analysis...

Lemma

Let **t** be the number of different values in the sequence $\alpha_2, \alpha_3, \ldots, \alpha_n$. Then $\mathbf{E}[t] = O(\log n)$. As such, in expectation, the above algorithm rebuilds the grid $O(\log n)$ times.

proof

- 1. $X_i = 1 \iff \alpha_i < \alpha_{i-1}$.
- 2. $E[X_i] = Pr[X_i = 1]$ and $t = \sum_{i=3}^{n} X_i$.
- 3. $Pr[X_i = 1] = Pr[\alpha_i < \alpha_{i-1}].$
- 4. Backward analysis. Fix P_i .
- 5. $q \in P_i$ is *critical* if $\mathcal{CP}(P_i \setminus \{q\}) > \mathcal{CP}(P_i)$.
- 6. No critical points, then $\alpha_{i-1} = \alpha_i$ and then $\Pr[X_i = 1] = 0$.

8/29

Expected linear time analysis...

Theorem

P: set of **n** points in the plane. Compute the closest pair of **P** in expected linear time.

Proof.

- 1. $X_i = 1 \iff \alpha_i \neq \alpha_{i-1}$.
- 2. Running time is proportional to $R = 1 + \sum_{i=3}^{n} (1 + X_i \cdot i)$.
- 3. $\mathsf{E}[R] = \mathsf{E}\left[1 + \sum_{i=3}^{n} (1 + X_i \cdot i)\right] \le n + \sum_{i=3}^{n} \mathsf{E}[X_i] \cdot i \le n + \sum_{i=3}^{n} i \cdot \mathsf{Pr}[X_i = 1] \le n + \sum_{i=3}^{n} i \cdot \frac{2}{i} \le 3n$, by linearity of expectation and since $\mathsf{E}[X_i] = \mathsf{Pr}[X_i = 1] < 2/i$.
- 4. Expected running time of the algorithm is O(E[R]) = O(n).

Part III Computing nets

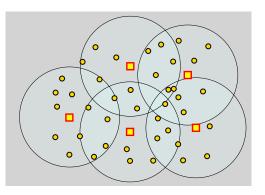
Nets The Ma

The Main Tool

r-net

 $N \subseteq P$ is an r-net if

- ightharpoonup Every point in f P has distance < r to a point in m N
- ▶ For any two $\mathbf{p}, \mathbf{q} \in \mathbf{N}$, we have $\mathbf{d}(\mathbf{p}, \mathbf{q}) \ge \mathbf{r}$.



22/2

