CS 573: Algorithms, Fall 2014

Approximate Max Cut

Lecture 24 November 19, 2014 Part I

Normal distribution

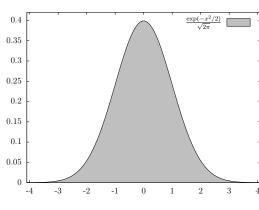
Normal distribution – proof

$$\tau^{2} = \left(\int_{x=-\infty}^{\infty} \exp\left(-\frac{x^{2}}{2}\right) dx\right)^{2}$$

$$= \int_{(x,y)\in\mathbb{R}^{2}} \exp\left(-\frac{x^{2}+y^{2}}{2}\right) dxdy \quad \text{Change of vars: } \begin{array}{l} x = r\cos\alpha, \\ y = r\sin\alpha, \\ x = r\cos\alpha, \\ y = r\sin\alpha, \\ x = r\cos\alpha, \\ y = r\sin\alpha, \\ x = r\cos\alpha, \\ x = r\sin\alpha, \\ x = r\cos\alpha, \\ x = r\sin\alpha, \\ x = r\cos\alpha, \\ x = r\sin\alpha, \\ x = r\cos\alpha, \\ x = r\sin\alpha, \\ x = r\cos\alpha, \\ x = r\sin\alpha, \\ x = r\cos\alpha, \\ x = r\cos\alpha, \\ x = r\sin\alpha, \\ x = r\sin\alpha, \\ x = r\sin\alpha, \\ x = r\cos\alpha, \\ x = r\sin\alpha, \\ x = r\cos\alpha, \\ x = r\sin\alpha, \\ x = r\cos\alpha, \\ x = r\sin\alpha, \\ x = r\cos\alpha, \\ x = r\sin\alpha, \\ x$$

One dimensional normal distribution

- 1. A random variable **X** has **normal distribution** if $\Pr[X = x] = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2).$
- 2. $X \sim N(0,1)$.



Multidimensional normal distribution

- 1. A random variable **X** has **normal distribution** if $Pr[X = x] = \frac{1}{\sqrt{2\pi}} exp(-x^2/2)$.
- 2. $X \sim N(0, 1)$.
- 3. $\mathbf{x} = (x_1, \dots, x_n)$ has \mathbf{d} -dimensional normal distributed (i.e., $\mathbf{v} \sim N^n(0, 1)$ $\iff \mathbf{v}_1, \dots, \mathbf{v}_n \sim N(0, 1)$
- 4. $\mathbf{v} \in \mathbb{R}^n$, such that $\|\mathbf{v}\| = 1$.
- 5. Let $x \sim N^n(0,1)$. Then $z = \langle v, x \rangle$ has...
- 6. ...normal distribution!

Part II

Approximate Max Cut

6/40

The movie so far...

Summary: It sucks.

- 1. Seen: Examples of using rounding techniques for approximation.
- 2. So far: Relaxed optimization problem is LP.
- 3. But... We know how to solve *convex programming*.
- 4. Convex programming \gg LP.
- 5. Convex programming can be solved in polynomial time.
- 6. Solving convex programming is outside scope: assume doable in polynomial time.
- 7. Today's lecture:
 - 7.1 Revisit MAX CUT.
 - 7.2 Show how to relax it into semi-definite programming problem.
 - 7.3 Solve relaxation.
 - 7.4 Show how to round the relaxed problem.

Problem Statement: MAX CUT

Since this is a theory class, we will define our problem.

- 1. G = (V, E): undirected graph.
- 2. $\forall ij \in \mathbf{E}$: nonnegative weights ω_{ij} .
- 3. MAX CUT (*maximum cut problem*): Compute set $S \subseteq V$ maximizing weight of edges in cut (S, \overline{S}) .
- 4. $ij \notin E \implies \omega_{ij} = O$.
- 5. **weight** of cut: $w(S, \overline{S}) = \sum_{i \in S, j \in \overline{S}} \omega_{ij}$.
- Known: problem is NP-Complete.
 Hard to approximate within a certain constant.

Max cut as integer program

because what can go wrong?

1. Vertices: $V = \{1, ..., n\}$.

- 2. ω_{ii} : non-negative weights on edges.
- 3. max cut $w(S, \overline{S})$ is computed by the integer quadratic program:

(Q)
$$\max \quad \frac{1}{2} \sum_{i < j} \omega_{ij} (1 - y_i y_j)$$
 subject to: $y_i \in \{-1, 1\}$ $\forall i \in V$.

- 4. Set: $S = \{i \mid y_i = 1\}$.
- 5. $\omega(S, \overline{S}) = \frac{1}{2} \sum_{i < j} \omega_{ij} (1 y_i y_j).$

9/40

Quick reminder about dot products

Everybody knows, thats how it goes

- 1. $x = (x_1, \ldots, x_d), y = (y_1, \ldots, y_d)$
- 2. $\langle x, y \rangle = \sum_{i=1}^{d} x_i y_i$.
- 3. For a vector $\mathbf{v} \in \mathbb{R}^d$: $\|\mathbf{v}\|^2 = \langle \mathbf{v}, \mathbf{v} \rangle$.
- 4. $\langle \mathbf{x}, \mathbf{y} \rangle = ||\mathbf{x}|| \, ||\mathbf{y}|| \cos \alpha$. α : Angle between \mathbf{x} and \mathbf{y} .

- 5. $x \perp y$: $\langle x, y \rangle = 0$.
- 6. x = y and ||x|| = ||y|| = 1: $\langle x, y \rangle = 1$.
- 7. x = -y and ||x|| = ||y|| = 1: $\langle x, y \rangle = -1$.

Relaxing -1, 1...

Because 1 and -1 are just vectors.

- 1. Solving quadratic integer programming is of course **NP-Hard**.
- 2. Want a relaxation...
- 3. 1 and -1 are just roots of unity.
- 4. FFT: All roots of unity are a circle.
- 5. In higher dimensions: All unit vectors are points on unit sphere.
- 6. y_i are just unit vectors.
- 7. $y_i * y_j$ is replaced by dot product $\langle y_i, y_j \rangle$.

10/40

Relaxing -1, 1...

Because 1 and -1 are just vectors.

1. max cut $w(S, \overline{S})$ as integer quadratic program:

(Q)
$$\max \quad \frac{1}{2} \sum_{i < j} \omega_{ij} (1 - y_i y_j)$$
 subject to: $y_i \in \{-1, 1\}$ $\forall i \in V$.

2. Relaxed semi-definite programming version:

(P)
$$\max \quad \gamma = \frac{1}{2} \sum_{i < j} \omega_{ij} \left(1 - \langle \mathbf{v}_i, \mathbf{v}_j \rangle \right)$$
 subject to: $\mathbf{v}_i \in \mathbb{S}^{(n)}$ $\forall i \in \mathbf{V}$.

 $\mathbb{S}^{(n)}$: **n** dimensional unit sphere in \mathbb{R}^{n+1} .

,

Discussion...

- 1. semi-definite programming: special case of convex programming.
- 2. Can be solved in polynomial time.
- 3. Solve within a factor of $(1 + \varepsilon)$ of optimal, for any $\varepsilon > 0$, in polynomial time.
- 4. Intuition: vectors of one side of the cut, and vertices on the other sides, would have faraway vectors.

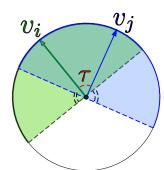
13/40

Analysis...

Intuition: with good probability, vectors in the solution of **(P)** that have large angle between them would be separated by cut.

Lemma

$$\Pr\left[\operatorname{sign}(\langle \mathbf{v}_i, \vec{\mathbf{r}} \rangle) \neq \operatorname{sign}(\langle \mathbf{v}_j, \vec{\mathbf{r}} \rangle)\right] = \frac{1}{\pi} \operatorname{arccos}(\langle \mathbf{v}_i, \mathbf{v}_j \rangle) = \frac{\tau}{\pi}.$$



The approximation algorithm

For max cut

- 1. Given instance, compute Semi-definite program (P).
- 2. Compute optimal solution for (P).
- 3. \vec{r} : Pick random vector on the unit sphere $\mathbb{S}^{(n)}$.
- 4. induces hyperplane $h \equiv \langle \vec{r}, x \rangle = 0$
- 5. assign all vectors on one side of \boldsymbol{h} to \boldsymbol{S} , and rest to $\overline{\boldsymbol{S}}$.

$$S = \{v_i \mid \langle v_i, \vec{r} \rangle \geq 0\}.$$

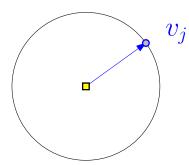
14/40

Proof...

- 1. Think $\mathbf{v_i}$, $\mathbf{v_j}$ and \vec{r} as being in the plane.
- 2. ... reasonable assumption!
 - 2.1 g: plane spanned by v_i and v_j .
 - 2.2 Only care about signs of $\langle \mathbf{v}_i, \vec{\mathbf{r}} \rangle$ and $\langle \mathbf{v}_i, \vec{\mathbf{r}} \rangle$
 - 2.3 can be decided by projecting \vec{r} on g... and normalizing it to have length 1.
 - 2.4 Sphere is symmetric \implies sampling \vec{r} from $\mathbb{S}^{(n)}$ projecting it down to g, and then normalizing it \equiv choosing uniformly a vector from the unit circle in g

15/40

Proof via figure...



$$au = \arccos(\langle \mathbf{v}_i, \mathbf{v}_j \rangle)$$

17/40

Proof...

- 1. Think \mathbf{v}_i , \mathbf{v}_i and $\vec{\mathbf{r}}$ as being in the plane.
- 2. $\operatorname{sign}(\langle \mathbf{v}_i, \vec{r} \rangle) \neq \operatorname{sign}(\langle \mathbf{v}_j, \vec{r} \rangle)$ happens only if \vec{r} falls in the double wedge formed by the lines perpendicular to \mathbf{v}_i and \mathbf{v}_i .
- 3. angle of double wedge = angle τ between \mathbf{v}_i and \mathbf{v}_i .
- 4. \mathbf{v}_i and \mathbf{v}_j are unit vectors: $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \cos(\tau)$. $\tau = \angle \mathbf{v}_i \mathbf{v}_i$.
- 5. Thus,

$$\Pr\left[\operatorname{sign}(\langle v_i, \vec{r} \rangle) \neq \operatorname{sign}(\langle v_j, \vec{r} \rangle)\right] = \frac{2\tau}{2\pi}$$
$$= \frac{1}{\pi} \cdot \operatorname{arccos}(\langle v_i, v_j \rangle),$$

as claimed.

8/40

Theorem

Theorem

Let \boldsymbol{W} be the random variable which is the weight of the cut generated by the algorithm. We have

$$\mathsf{E}ig[oldsymbol{W} ig] = rac{1}{\pi} \sum_{i < j} \omega_{ij} \operatorname{arccos}ig(\langle oldsymbol{v}_i, oldsymbol{v}_j
angle ig)$$
 .

Proof

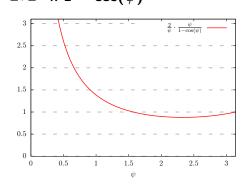
- 1. X_{ij} : indicator variable = 1 \iff edge ij is in the cut.
- 2. $\mathsf{E}[X_{ij}] = \mathsf{Pr}\big[\mathrm{sign}(\langle v_i, \vec{r} \rangle) \neq \mathrm{sign}(\langle v_j, \vec{r} \rangle)\big]$ = $\frac{1}{\pi} \arccos(\langle v_i, v_j \rangle)$, by lemma.
- 3. $\pmb{W} = \sum_{i < j} \omega_{ij} \pmb{X}_{ij}$, and by linearity of expectation...

$$\mathsf{E}[W] = \sum_{i < j} \omega_{ij} \, \mathsf{E}[X_{ij}] = rac{1}{\pi} \sum_{i < j} \omega_{ij} \, \mathsf{arccos}ig(\langle \mathbf{v}_i, \mathbf{v}_j
angleig) \, .$$

Lemma

Lemma

For
$$-1 \leq y \leq 1$$
, we have $\dfrac{\arccos(y)}{\pi} \geq \alpha \cdot \dfrac{1}{2}(1-y)$, where $\alpha = \min_{0 \leq \psi \leq \pi} \dfrac{2}{\pi} \dfrac{\psi}{1-\cos(\psi)}$.



21/40

Lemma restated + proof

Lemma

For
$$-1 \leq y \leq 1$$
, we have $\frac{\mathsf{arccos}(y)}{\pi} \geq \alpha \cdot \frac{1}{2}(1-y)$, where $\alpha = \min_{0 \leq \psi \leq \pi} \frac{2}{\pi} \frac{\psi}{1-\mathsf{cos}(\psi)}$.

Proof.

- 1. $y = \cos(\psi)$.
- 2. Inequality becomes: $\frac{\psi}{\pi} \geq \alpha \frac{1}{2} (1 \cos \psi)$. Reorganizing,
- 3. $\Longrightarrow \frac{2}{\pi} \frac{\psi}{1-\cos\psi} \ge \alpha$, holds by definition of α .

2/40

Lemma

Lemma

 $\alpha > 0.87856$.

Proof.

Using simple calculus, one can see that α achieves its value for $\psi = 2.331122...$, the nonzero root of $\cos \psi + \psi \sin \psi = 1$.

Result

Theorem

The above algorithm computes in expectation a cut with total weight $\alpha \cdot \mathrm{Opt} \geq 0.87856\mathrm{Opt}$, where Opt is the weight of the maximal cut.

Proof.

Consider the optimal solution to **(P)**, and lets its value be $\gamma \geq \mathrm{Opt}$. By lemma:

$$egin{aligned} \mathsf{E}[W] &= rac{1}{\pi} \sum_{i < j} \omega_{ij} \arccos(\langle extbf{v}_i, extbf{v}_j
angle) \ &\geq \sum_{i < j} \omega_{ij} lpha rac{1}{2} (1 - \langle extbf{v}_i, extbf{v}_j
angle) = lpha \gamma \geq lpha \cdot \mathrm{Opt}. \end{aligned}$$

23/40

SDP: Semi-definite programming

- 1. $x_{ij} = \langle v_i, v_i \rangle$.
- 2. $M: n \times n$ matrix with x_{ii} as entries.
- 3. $x_{ii} = 1$, for i = 1, ..., n.
- 4. V: matrix having vectors v_1, \ldots, v_n as its columns.
- 5. $M = V^T V$.
- 6. $\forall v \in \mathbb{R}^n$: $v^T M v = v^T A^T A v = (Av)^T (Av) > 0$.
- 7. **M** is **positive semidefinite** (PSD).
- 8. Fact: Any PSD matrix P can be written as $P = B^T B$.
- 9. Furthermore, given such a matrix P of size $n \times n$, we can compute B such that $P = B^T B$ in $O(n^3)$ time.
- 10. Known as *Cholesky decomposition*.

25 /40

SDP: Semi-definite programming

1. SDP is

(SD)
$$\max \frac{1}{2} \sum_{i < j} \omega_{ij} (1 - x_{ij})$$
 subject to: $x_{ii} = 1$ for $i = 1, \dots, n$ $\left(x_{ij}\right)_{i=1,\dots,n,j=1,\dots,n}$ is a PSD matrix.

- 2. find optimal value of a linear function...
- 3. ... over a set which is the intersection of:
 - 3.1 linear constraints, and
 - 3.2 set of positive semi-definite matrices.

SDP: Semi-definite programming

- 1. If PSD $P = B^T B$ has a diagonal of 1
- 2. \Longrightarrow **B** has columns which are unit vectors.
- 3. If solve SDP (P), get back semi-definite matrix...
- 4. ... recover the vectors realizing the solution (i.e., compute **B**)
- 5. Now, do the rounding.
- 6. SDP (P) can be restated as

(SD)
$$\max \quad \frac{1}{2} \sum_{i < j} \omega_{ij} (1 - x_{ij})$$
subject to:
$$x_{ii} = 1 \quad \text{for } i = 1, \dots, n$$
$$\left(x_{ij}\right)_{i=1,\dots,n,j=1,\dots,n} \text{ is a PSD matrix.}$$

26/40

Lemma

Lemma

Let $\mathcal U$ be the set of $\mathbf n \times \mathbf n$ positive semidefinite matrices. The set $\mathcal U$ is convex.

Proof.

Consider $A, B \in \mathcal{U}$, and observe that for any $t \in [0, 1]$, and vector $v \in \mathbb{R}^n$, we have:

$$v^{T}(tA + (1-t)B)v = v^{T}(tAv + (1-t)Bv)$$
$$= tv^{T}Av + (1-t)v^{T}Bv \ge 0 + 0 \ge 0,$$

since \boldsymbol{A} and \boldsymbol{B} are positive semidefinite.

More on positive semidefinite matrices

- 1. PSD matrices corresponds to ellipsoids.
- 2. $x^T A x = 1$: the set of vectors solve this equation is an ellipsoid.
- 3. Eigenvalues of a PSD are all non-negative real numbers.
- 4. Given matrix: can in polynomial time decide if it is PSD.
- 5. ... by computing the eigenvalues of the matrix.
- 6. \Longrightarrow SDP: optimize a linear function over a convex domain.
- 7. SDP can be solved using interior point method, or the ellipsoid method.
- 8. See Boyd and Vandenberghe [2004], Grötschel et al. [1993] for more details.
- 9. Membership oracle: ability to decide in polynomial time, given a solution, whether its feasible or not.

29/40

Bibliographical Notes

- 1. Relies on two conjectures: "Unique Games Conjecture" and "Majority is Stablest".
- 2. "Majority is Stablest" conjecture was proved by **Mossel** et al. [2005].
- 3. Not clear if the "Unique Games Conjecture" is true, see the discussion in **Khot et al. [2004]**.
- 4. Goemans and Williamson work spurred wide research on using SDP for approximation algorithms.

Bibliographical Notes

- 1. Approx. algorithm presented by Goemans and Williamson Goemans and Williamson [1995].
- 2. **Håstad** [2001] showed that MAX CUT can not be approximated within a factor of $16/17 \approx 0.941176$.
- 3. Khot et al. [2004] showed a hardness result that matches the constant of Goemans and Williamson (i.e., one can not approximate it better than α , unless P = NP).

0/40

- S. Boyd and L. Vandenberghe. *Convex Optimization*. Cambridge, 2004. URL
 - http://www.stanford.edu/~boyd/cvxbook/.
- M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. *J. Assoc. Comput. Mach.*, 42(6):1115–1145, November 1995.
- M. Grötschel, L. Lovász, and A. Schrijver. *Geometric Algorithms and Combinatorial Optimization*, volume 2 of *Algorithms and Combinatorics*. Springer-Verlag, Berlin Heidelberg, 2nd edition, 1993.
- J. Håstad. Some optimal inapproximability results. *J. Assoc. Comput. Mach.*, 48(4):798–859, 2001. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/502090.502098.
- S. Khot, G. Kindler, E. Mossel, and R. O'Donnell. Optimal inapproximability results for max cut and other 2-variable csps. In *Proc. 45th Annu. IEEE Sympos. Found. Comput. Sci.* (FOCS), pages 146–154, 2004. To appear in SICOMP.

E. Mossel, R. O'Donnell, and K. Oleszkiewicz. Noise stability of functions with low influences invariance and optimality. In <i>Proc. 46th Annu. IEEE Sympos. Found. Comput. Sci.</i> (FOCS), pages 21–30, 2005.			
31/4	10		
	7		