Entropy and Shannon's Theorem

Lecture 24 November 18, 2014

Part I

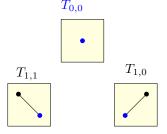
Entropy

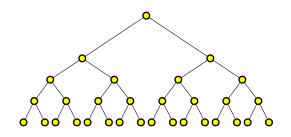
Part II

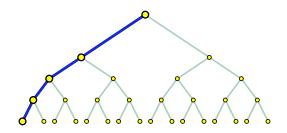
Extracting randomness

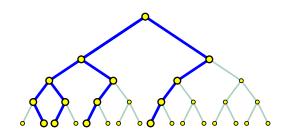
Storing all strings of length n and j bits on

- **1** $S_{n,j}$: set of all strings of length n with j ones in them.
- $oldsymbol{O}$ $T_{n,j}$: prefix tree storing all $S_{n,j}$.

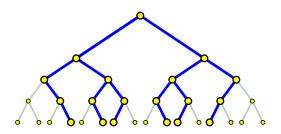








```
 S_{4,1} = \{0001, 0010, 0100, 1000\} 
 \Longrightarrow \#(0001) = 0. 
 \#(0010) = 1. 
 \#(0100) = 2. 
 \#(1000) = 3.
```



$$S_{4,2} = \{0011, 0101, 0110, 1001, 1010, 1100\}$$

$$\Rightarrow$$

$$\#(0011) = 0.$$

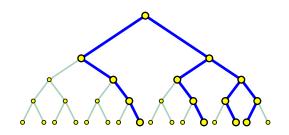
$$\#(0101) = 1.$$

$$\#(0110) = 2.$$

$$\#(1001) = 3.$$

$$\#(1010) = 4.$$

$$\#(1100) = 5.$$



$$S_{4,3} = \{0111, 1011, 1101, 1110\}$$

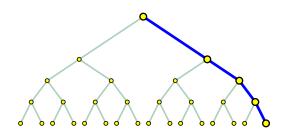
$$\Longrightarrow$$

$$\#(0111) = 0.$$

$$\#(1011) = 1.$$

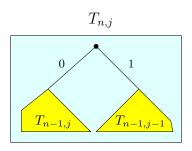
$$\#(1101) = 2.$$

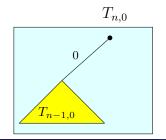
$$\#(1110) = 3.$$

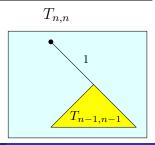


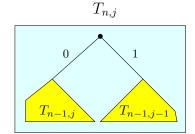
$$\begin{array}{ccc} \bullet & S_{4,4} = \{1111\} \\ & \Longrightarrow \\ & \#(1111) = 0. \end{array}$$

2

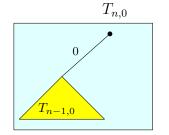


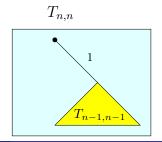


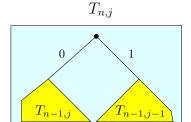




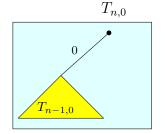
$$\#$$
 of leafs: $|T_{n,j}|=|T_{n-1,j}|+|T_{n-1,j-1}|$

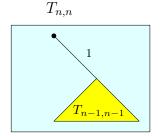


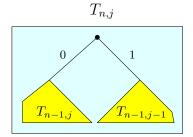




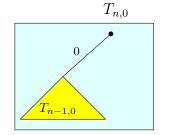
$$\#$$
 of leafs: $|T_{n,j}|=|T_{n-1,j}|+|T_{n-1,j-1}|$ ${n\choose j}={n-1\choose j}+{n-1\choose j-1}$

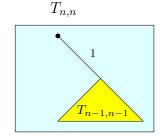






$$\#$$
 of leafs: $|T_{n,j}| = |T_{n-1,j}| + |T_{n-1,j-1}|$ $\binom{n}{j} = \binom{n-1}{j} + \binom{n-1}{j-1}$ $\Longrightarrow |T_{n,j}| = \binom{n}{j}.$

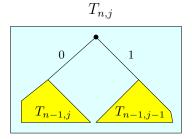




- **1** $T_{n,j}$ leafs corresponds to strings of $S_{n,j}$.
- ② Order all strings of $S_{n,j}$ order in lexicographical ordering
- \odot \equiv ordering leafs of $T_{n,j}$ from left to right.
- EncodeBinomCoeff(s) denote this polytime procedure.

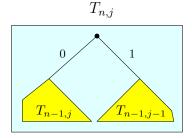
- **1** $T_{n,j}$ leafs corresponds to strings of $S_{n,j}$.
- ② Order all strings of $S_{n,j}$ order in lexicographical ordering
- \odot = ordering leafs of $T_{n,j}$ from left to right.
- lacksquare Input: $s \in S_{n,j}$: compute index of s in sorted set $S_{n,j}$.
- ullet EncodeBinomCoeff(s) denote this polytime procedure.

- **1** $T_{n,j}$ leafs corresponds to strings of $S_{n,j}$.
- ② Order all strings of $S_{n,j}$ order in lexicographical ordering
- ullet ordering leafs of $T_{n,j}$ from left to right.



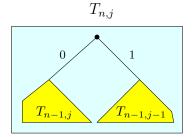
- ullet Input: $s \in S_{n,j}$: compute index of s in sorted set $S_{n,j}$.
- EncodeBinomCoeff(s) denote this polytime procedure.

- **1** $T_{n,j}$ leafs corresponds to strings of $S_{n,j}$.
- ② Order all strings of $S_{n,j}$ order in lexicographical ordering
- ullet ordering leafs of $T_{n,j}$ from left to right.



- **1** Input: $s \in S_{n,j}$: compute index of s in sorted set $S_{n,j}$.
- EncodeBinomCoeff(s) denote this polytime procedure.

- **1** $T_{n,j}$ leafs corresponds to strings of $S_{n,j}$.
- ② Order all strings of $S_{n,j}$ order in lexicographical ordering
- ullet ordering leafs of $T_{n,j}$ from left to right.

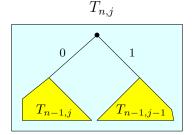


- **1** Input: $s \in S_{n,j}$: compute index of s in sorted set $S_{n,j}$.
- **Solution EncodeBinomCoeff**(s) denote this polytime procedure.

- **1** $T_{n,j}$ leafs corresponds to strings of $S_{n,j}$.
- $oldsymbol{\circ}$ Order all strings of $S_{n,j}$ order in lexicographical ordering
- \odot \equiv ordering leafs of $T_{n,j}$ from left to right.
- $lack x \in \{1,\ldots, {n \choose j}\}$: compute xth string in $S_{n,j}$ in polytime.
- **5 DecodeBinomCoeff** (x) denote this procedure.

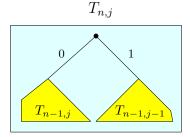
- **1** $T_{n,j}$ leafs corresponds to strings of $S_{n,j}$.
- $oldsymbol{\circ}$ Order all strings of $S_{n,j}$ order in lexicographical ordering
- ullet ordering leafs of $T_{n,j}$ from left to right.
- $x \in \{1, \ldots, \binom{n}{i}\}$: compute xth string in $S_{n,j}$ in polytime.
- **5 DecodeBinomCoeff** (x) denote this procedure.

- **1** $T_{n,j}$ leafs corresponds to strings of $S_{n,j}$.
- ② Order all strings of $S_{n,j}$ order in lexicographical ordering
- lacktriangledown lacktriangledown ordering leafs of $T_{n,j}$ from left to right.



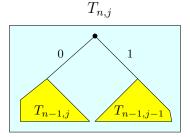
- $x \in \{1, \ldots, \binom{n}{i}\}$: compute xth string in $S_{n,j}$ in polytime.
- **5 DecodeBinomCoeff** (x) denote this procedure.

- **1** $T_{n,j}$ leafs corresponds to strings of $S_{n,j}$.
- ② Order all strings of $S_{n,j}$ order in lexicographical ordering
- ullet ordering leafs of $T_{n,j}$ from left to right.



- $x \in \{1, \ldots, \binom{n}{i}\}$: compute xth string in $S_{n,j}$ in polytime.
- DecodeBinomCoeff (x) denote this procedure.

- **1** $T_{n,j}$ leafs corresponds to strings of $S_{n,j}$.
- ② Order all strings of $S_{n,j}$ order in lexicographical ordering
- ullet ordering leafs of $T_{n,j}$ from left to right.



- $x \in \{1, \ldots, \binom{n}{i}\}$: compute xth string in $S_{n,j}$ in polytime.
- DecodeBinomCoeff (x) denote this procedure.

Encoding/decoding strings of $S_{n,j}$

Lemma

 $S_{n,j}$: Set of binary strings of length n with j ones, sorted lexicographically.

- **1** EncodeBinomCoeff(α): Input is string $\alpha \in S_{n,j}$, compute index x of α in $S_{n,j}$ in polynomial time in n.
- ② DecodeBinomCoeff(x): Input index $x \in \{1, \ldots, \binom{n}{j}\}$. Output xth string α in $S_{n,j}$, in time $O(\operatorname{polylog} n + n)$.

Extracting randomness

Theorem

Consider a coin that comes up heads with probability p>1/2. For any constant $\delta>0$ and for n sufficiently large:

- (A) One can extract, from an input of a sequence of n flips, an output sequence of $(1-\delta)n\mathbb{H}(p)$ (unbiased) independent random bits.
- (B) One can not extract more than $n\mathbb{H}(p)$ bits from such a sequence.

- There are $\binom{n}{j}$ input strings with exactly j heads.
- $ext{@}$ each has probability $p^j(1-p)^{n-j}$.
- $oldsymbol{\circ}$ map string s like that to index number in the set $S_j = \left\{1,\ldots, {n \choose j}
 ight\}.$
- ① Given that input string s has j ones (out of n bits) defines a uniform distribution on $S_{n,j}$.
- $lacksquare{0}$ x uniform distributed in $\{1,\ldots,N\}$, $N=inom{n}{j}$.
- Seen in previous lecture...
- ... extract in expectation, $\lfloor \lg N \rfloor 1$ bits from uniform random variable in the range $1, \ldots, N$.
- Extract bits using ExtractRandomness(x, N):.

- There are $\binom{n}{j}$ input strings with exactly j heads.
- $oldsymbol{2}$ each has probability $p^j(1-p)^{n-j}$.
- $oldsymbol{\circ}$ map string s like that to index number in the set $S_j = ig\{1,\ldots,inom{n}{j}ig\}.$
- ① Given that input string s has j ones (out of n bits) defines a uniform distribution on $S_{n,j}$.
- $lacksquare{0}$ x uniform distributed in $\{1,\ldots,N\}$, $N=inom{n}{j}$.
- Seen in previous lecture...
- ... extract in expectation, $\lfloor \lg N \rfloor 1$ bits from uniform random variable in the range $1, \ldots, N$.
- ① Extract bits using **ExtractRandomness**(x, N):.

- There are $\binom{n}{j}$ input strings with exactly j heads.
- $oldsymbol{2}$ each has probability $p^j(1-p)^{n-j}$.
- $oldsymbol{\circ}$ map string s like that to index number in the set $S_j = \left\{1,\ldots, {n \choose j}
 ight\}.$
- ① Given that input string s has j ones (out of n bits) defines a uniform distribution on $S_{n,j}$.
- $lacksquare{0}$ x uniform distributed in $\{1,\ldots,N\}$, $N=inom{n}{j}$.
- Seen in previous lecture...
- @ ... extract in expectation, $\lfloor \lg N \rfloor 1$ bits from uniform random variable in the range $1, \ldots, N$.
- ① Extract bits using **ExtractRandomness**(x, N):.

- There are $\binom{n}{j}$ input strings with exactly j heads.
- $oldsymbol{2}$ each has probability $p^j(1-p)^{n-j}$.
- lacktriangledown map string s like that to index number in the set $S_j = \left\{1,\ldots, {n \choose j}
 ight\}.$
- **4** Given that input string s has j ones (out of n bits) defines a uniform distribution on $S_{n,j}$.
- $lacksquare{0}$ x uniform distributed in $\{1,\ldots,N\}$, $N=inom{n}{j}$.
- Seen in previous lecture...
- ... extract in expectation, $\lfloor \lg N \rfloor 1$ bits from uniform random variable in the range $1, \ldots, N$.
- ① Extract bits using **ExtractRandomness**(x, N):.

- There are $\binom{n}{j}$ input strings with exactly j heads.
- $oldsymbol{2}$ each has probability $p^j(1-p)^{n-j}$.
- lacktriangledown map string s like that to index number in the set $S_j = \left\{1,\ldots, {n \choose j}
 ight\}.$
- **4** Given that input string s has j ones (out of n bits) defines a uniform distribution on $S_{n,j}$.
- **5** $x \leftarrow \mathsf{EncodeBinomCoeff}(s)$
- $lacksquare{0}$ x uniform distributed in $\{1,\ldots,N\}$, $N=inom{n}{j}$.
- Seen in previous lecture...
- ... extract in expectation, $\lfloor \lg N \rfloor 1$ bits from uniform random variable in the range $1, \ldots, N$.
- ① Extract bits using **ExtractRandomness**(x, N):.

- There are $\binom{n}{j}$ input strings with exactly j heads.
- $oldsymbol{2}$ each has probability $p^j(1-p)^{n-j}$.
- lacktriangledown map string s like that to index number in the set $S_j = \left\{1,\ldots, {n \choose j}
 ight\}.$
- **4** Given that input string s has j ones (out of n bits) defines a uniform distribution on $S_{n,j}$.
- **5** $x \leftarrow \mathsf{EncodeBinomCoeff}(s)$
- **6** x uniform distributed in $\{1,\ldots,N\}$, $N={n\choose j}$.
- Seen in previous lecture...
- ... extract in expectation, $\lfloor \lg N \rfloor 1$ bits from uniform random variable in the range $1, \ldots, N$.
- ① Extract bits using **ExtractRandomness**(x, N):.

- There are $\binom{n}{j}$ input strings with exactly j heads.
- $oldsymbol{2}$ each has probability $p^j(1-p)^{n-j}$.
- $oldsymbol{\circ}$ map string s like that to index number in the set $S_j = \left\{1,\ldots, {n \choose j}
 ight\}.$
- **3** Given that input string s has j ones (out of n bits) defines a uniform distribution on $S_{n,j}$.
- **5** $x \leftarrow \mathsf{EncodeBinomCoeff}(s)$
- $oldsymbol{0}$ x uniform distributed in $\{1,\ldots,N\}$, $N=inom{n}{j}$.
- Seen in previous lecture...
- ... extract in expectation, $\lfloor \lg N \rfloor 1$ bits from uniform random variable in the range $1, \ldots, N$.
- ① Extract bits using **ExtractRandomness**(x, N):.

- There are $\binom{n}{j}$ input strings with exactly j heads.
- 2 each has probability $p^j(1-p)^{n-j}$.
- lacktriangledown map string s like that to index number in the set $S_j = \left\{1,\ldots, {n \choose j}
 ight\}.$
- **4** Given that input string s has j ones (out of n bits) defines a uniform distribution on $S_{n,j}$.
- **5** $x \leftarrow \mathsf{EncodeBinomCoeff}(s)$
- $oldsymbol{0}$ x uniform distributed in $\{1,\ldots,N\}$, $N=inom{n}{j}$.
- Seen in previous lecture...
- ... extract in expectation, $\lfloor \lg N \rfloor 1$ bits from uniform random variable in the range $1, \ldots, N$.
- **①** Extract bits using **ExtractRandomness**(x, N):.

- There are $\binom{n}{j}$ input strings with exactly j heads.
- $oldsymbol{2}$ each has probability $p^j(1-p)^{n-j}$.
- lacktriangledown map string s like that to index number in the set $S_j = \left\{1,\ldots, {n \choose j}
 ight\}.$
- **3** Given that input string s has j ones (out of n bits) defines a uniform distribution on $S_{n,j}$.
- **5** $x \leftarrow \mathsf{EncodeBinomCoeff}(s)$
- $oldsymbol{0}$ x uniform distributed in $\{1,\ldots,N\}$, $N=inom{n}{j}$.
- Seen in previous lecture...
- ... extract in expectation, $\lfloor \lg N \rfloor 1$ bits from uniform random variable in the range $1, \ldots, N$.
- **1** Extract bits using **ExtractRandomness**(x, N):.

Exciting proof continued...

- ① Z: random variable: number of heads in input string s.
- ② B: number of random bits extracted.

$$\operatorname{E}igl[Bigr] = \sum_{k=0}^{n} \operatorname{Pr}[Z=k] \operatorname{E}igl[B \ igr| Z=kigr],$$

- $lacksquare{1}{3}$ Know: $\mathrm{E}ig[B \ ig| Z = kig] \geq \left\lfloor \lg ig(n top k ig)
 ight
 floor 1.$

$$egin{pmatrix} n \ k \end{pmatrix} \geq egin{pmatrix} n \ \lfloor n(p+arepsilon)
floor \geq rac{2^{n\mathbb{H}(p+arepsilon)}}{n+1},$$

... since $2^{n\mathbb{H}(p)}$ is a good approximation to $\binom{n}{np}$ as proved in previous lecture.

- lacksquare Z: random variable: number of heads in input string s.
- 2 B: number of random bits extracted

$$\operatorname{E}igl[Bigr] = \sum_{k=0}^n \operatorname{Pr}[Z=k] \operatorname{E}igl[B \ igr| Z=kigr],$$

- $lacksquare{1}{3}$ Know: $\mathrm{E}ig[B \ \Big| \ Z = kig] \geq \left\lfloor \lg igg(n \ k ig)
 ight
 floor 1.$

$$egin{pmatrix} n \ k \end{pmatrix} \geq egin{pmatrix} n \ \lfloor n(p+arepsilon)
floor \geq rac{2^{n\mathbb{H}(p+arepsilon)}}{n+1},$$

... since $2^{n\mathbb{H}(p)}$ is a good approximation to $\binom{n}{np}$ as proved in previous lecture.

- lacksquare Z: random variable: number of heads in input string s.
- 2 B: number of random bits extracted.

$$\mathrm{E}ig[Big] = \sum_{k=0}^n \Pr[Z=k] \, \mathrm{E}ig[B \ ig| \, Z=kig] \, ,$$

- $lacksquare{1}{3}$ Know: $\mathrm{E}ig[B \ \Big| \ Z = k ig] \geq \left\lfloor \lg ig(n top k ig)
 ight
 floor 1.$

$$egin{pmatrix} n \ k \end{pmatrix} \geq egin{pmatrix} n \ \lfloor n(p+arepsilon)
floor \geq rac{2^{n\mathbb{H}(p+arepsilon)}}{n+1},$$

① ... since $2^{n\mathbb{H}(p)}$ is a good approximation to $\binom{n}{np}$ as proved in previous lecture.

- **1** Z: random variable: number of heads in input string s.
- 2 B: number of random bits extracted.

$$\mathrm{E}ig[Big] = \sum_{k=0}^n \mathrm{Pr}[Z=k] \, \mathrm{E}ig[B \ ig| \, Z=kig] \, ,$$

- $lacksquare{1}{3}$ Know: $\mathrm{E}ig[B \ \Big| \ Z = kig] \geq \left\lfloor \lg ig(egin{matrix} n \ k \end{matrix}
 ight)
 ight
 floor 1.$

$$egin{pmatrix} n \ k \end{pmatrix} \geq egin{pmatrix} n \ \lfloor n(p+arepsilon)
floor \geq rac{2^{n\mathbb{H}(p+arepsilon)}}{n+1},$$

... since $2^{n\mathbb{H}(p)}$ is a good approximation to $\binom{n}{np}$ as proved in previous lecture.

- **1** Z: random variable: number of heads in input string s.
- 2 B: number of random bits extracted.

$$\mathrm{E}igl[Bigr] = \sum_{k=0}^n \mathrm{Pr}[Z=k] \, \mathrm{E}igl[B \, igr| \, Z=kigr] \, ,$$

- $lacksquare{1}{3}$ Know: $\mathrm{E}ig[B \ \Big| \ Z = k ig] \geq \left[\mathrm{lg} ig(egin{matrix} n \ k \end{matrix} ig) ig] 1.$

$$egin{pmatrix} n \ k \end{pmatrix} \geq egin{pmatrix} n \ \lfloor n(p+arepsilon)
floor \geq rac{2^{n\mathbb{H}(p+arepsilon)}}{n+1},$$

... since $2^{n\mathbb{H}(p)}$ is a good approximation to $\binom{n}{np}$ as proved in previous lecture.

- **1** Z: random variable: number of heads in input string s.
- 2 B: number of random bits extracted.

$$\mathrm{E}igl[Bigr] = \sum_{k=0}^n \mathrm{Pr}[Z=k]\,\mathrm{E}igl[B\,\,igr|\, Z=kigr]\,,$$

- $lacksquare{1}{3}$ Know: $\mathrm{E}ig[B \ \Big| \ Z = kig] \geq \left\lfloor \lg ig(n top k ig)
 ight
 floor 1.$
- \bullet $\varepsilon < p-1/2$: sufficiently small constant.

$$egin{pmatrix} n \ k \end{pmatrix} \geq egin{pmatrix} n \ \lfloor n(p+arepsilon)
floor \geq rac{2^{n\mathbb{H}(p+arepsilon)}}{n+1}, \end{cases}$$

① ... since $2^{n\mathbb{H}(p)}$ is a good approximation to $\binom{n}{np}$ as proved in previous lecture.

- **1** Z: random variable: number of heads in input string s.
- 2 B: number of random bits extracted.

$$\mathrm{E}igl[Bigr] = \sum_{k=0}^n \mathrm{Pr}[Z=k]\,\mathrm{E}igl[B\,\,igr|\, Z=kigr]\,,$$

- $lacksquare{1}{3}$ Know: $\mathrm{E}ig[B \ \Big| \ Z = k ig] \geq \left\lfloor \lg ig(n top k ig)
 ight
 floor 1.$
- \bullet $\varepsilon < p-1/2$: sufficiently small constant.

$$egin{pmatrix} n \ k \end{pmatrix} \geq egin{pmatrix} n \ \lfloor n(p+arepsilon)
floor \geq rac{2^{n\mathbb{H}(p+arepsilon)}}{n+1}, \end{cases}$$

1 ... since $2^{n\mathbb{H}(p)}$ is a good approximation to $\binom{n}{np}$ as proved in previous lecture.

$$\begin{split} \mathbf{E} \Big[B \Big] &= \sum_{k=0}^{n} \Pr[Z=k] \, \mathbf{E} \Big[B \, \Big| \, Z=k \Big] \, . \\ \mathbf{E} \Big[B \Big] &\geq \sum_{k=\lfloor n(p-\varepsilon) \rfloor}^{\lceil n(p+\varepsilon) \rceil} \Pr \Big[Z=k \Big] \, \mathbf{E} \Big[B \, \Big| \, Z=k \Big] \\ &\geq \sum_{k=\lfloor n(p-\varepsilon) \rfloor}^{\lceil n(p+\varepsilon) \rceil} \Pr \Big[Z=k \Big] \left(\left\lfloor \lg \left(\frac{n}{k} \right) \right\rfloor -1 \right) \\ &\geq \sum_{k=\lfloor n(p-\varepsilon) \rfloor}^{\lceil n(p+\varepsilon) \rceil} \Pr \Big[Z=k \Big] \left(\lg \frac{2^{n\mathbb{H}(p+\varepsilon)}}{n+1} -2 \right) \\ &= \left(n\mathbb{H}(p+\varepsilon) - \lg(n+1) -2 \right) \Pr[|Z-np| \leq \varepsilon \, n] \\ &\geq \left(n\mathbb{H}(p+\varepsilon) - \lg(n+1) -2 \right) \left(1 - 2 \exp \left(-\frac{n\varepsilon^2}{4p} \right) \right), \\ \text{since } \mu &= \mathbf{E}[Z] = np \text{ and} \\ &\Pr \Big[|Z-np| \geq \frac{\varepsilon}{p} pn \Big] \leq 2 \exp \left(-\frac{np}{4} \left(\frac{\varepsilon}{p} \right)^2 \right) = 2 \exp \left(-\frac{n\varepsilon^2}{4p} \right), \text{ by the Chernoff inequality.} \end{split}$$

$$\begin{split} \mathbf{E} \Big[\boldsymbol{B} \Big] &= \sum_{k=0}^n \Pr[\boldsymbol{Z} = k] \, \mathbf{E} \Big[\boldsymbol{B} \, \Big| \, \boldsymbol{Z} = k \Big] \, . \\ \mathbf{E} \Big[\boldsymbol{B} \Big] &\geq \sum_{k=\lfloor n(p-\varepsilon) \rfloor}^{\lceil n(p+\varepsilon) \rceil} \Pr[\boldsymbol{Z} = k] \, \mathbf{E} \Big[\boldsymbol{B} \, \Big| \, \boldsymbol{Z} = k \Big] \\ &\geq \sum_{k=\lfloor n(p-\varepsilon) \rfloor}^{\lceil n(p+\varepsilon) \rceil} \Pr[\boldsymbol{Z} = k] \, \bigg(\left| \lg \left(\frac{n}{k} \right) \right| - 1 \bigg) \\ &\geq \sum_{k=\lfloor n(p-\varepsilon) \rfloor}^{\lceil n(p+\varepsilon) \rceil} \Pr[\boldsymbol{Z} = k] \, \bigg(\lg \frac{2^{n\mathbb{H}(p+\varepsilon)}}{n+1} - 2 \bigg) \\ &= \Big(n\mathbb{H}(p+\varepsilon) - \lg(n+1) - 2 \Big) \Pr[|\boldsymbol{Z} - np| \leq \varepsilon n] \\ &\geq \Big(n\mathbb{H}(p+\varepsilon) - \lg(n+1) - 2 \Big) \bigg(1 - 2 \exp \bigg(- \frac{n\varepsilon^2}{4p} \bigg) \bigg), \\ \text{since } \boldsymbol{\mu} = \mathbf{E}[\boldsymbol{Z}] = np \text{ and} \\ &\Pr[|\boldsymbol{Z} - np| \geq \frac{\varepsilon}{p} pn] \leq 2 \exp \bigg(- \frac{np}{4} \Big(\frac{\varepsilon}{p} \Big)^2 \bigg) = 2 \exp \Big(- \frac{n\varepsilon^2}{4p} \Big), \text{ by the Chernoff inequality.} \end{split}$$

$$\begin{split} &\mathbf{E} \Big[B \Big] = \sum_{k=0}^{n} \Pr[Z=k] \, \mathbf{E} \Big[B \, \Big| \, Z=k \Big]. \\ &\mathbf{E} \Big[B \Big] \geq \sum_{k=\lfloor n(p-\varepsilon) \rfloor}^{\lceil n(p+\varepsilon) \rceil} \Pr \Big[Z=k \Big] \, \mathbf{E} \Big[B \, \Big| \, Z=k \Big] \\ &\geq \sum_{k=\lfloor n(p-\varepsilon) \rfloor}^{\lceil n(p+\varepsilon) \rceil} \Pr \Big[Z=k \Big] \, \left(\left\lfloor \lg \binom{n}{k} \right\rfloor -1 \right) \\ &\geq \sum_{k=\lfloor n(p-\varepsilon) \rfloor}^{\lceil n(p+\varepsilon) \rceil} \Pr \Big[Z=k \Big] \left(\lg \frac{2^{n\mathbb{H}(p+\varepsilon)}}{n+1} -2 \right) \\ &= \left(n\mathbb{H}(p+\varepsilon) - \lg(n+1) - 2 \right) \Pr[|Z-np| \leq \varepsilon n] \\ &\geq \left(n\mathbb{H}(p+\varepsilon) - \lg(n+1) - 2 \right) \left(1 - 2 \exp \left(-\frac{n\varepsilon^2}{4p} \right) \right), \\ \text{since } \mu = \mathbf{E}[Z] = np \text{ and} \\ &\mathbf{Pr} \Big[|Z-np| \geq \frac{\varepsilon}{p} pn \Big] \leq 2 \exp \left(-\frac{np}{4} \left(\frac{\varepsilon}{p} \right)^2 \right) = 2 \exp \left(-\frac{n\varepsilon^2}{4p} \right), \text{ by the Chernoff inequality.} \end{split}$$

$$\begin{split} \mathbf{E} \Big[B \Big] &= \sum_{k=0}^n \Pr[Z=k] \, \mathbf{E} \Big[B \, \Big| \, Z=k \Big]. \\ \mathbf{E} \Big[B \Big] &\geq \sum_{k=\lfloor n(p-\varepsilon)\rfloor}^{\lceil n(p+\varepsilon)\rceil} \Pr \Big[Z=k \Big] \, \mathbf{E} \Big[B \, \Big| \, Z=k \Big] \\ &\geq \sum_{k=\lfloor n(p-\varepsilon)\rfloor}^{\lceil n(p+\varepsilon)\rceil} \Pr \Big[Z=k \Big] \left(\left\lfloor \lg \binom{n}{k} \right\rfloor -1 \right) \\ &\geq \sum_{k=\lfloor n(p-\varepsilon)\rfloor}^{\lceil n(p+\varepsilon)\rceil} \Pr \Big[Z=k \Big] \left(\lg \frac{2^{n\mathbb{H}(p+\varepsilon)}}{n+1} -2 \right) \\ &= \left(n\mathbb{H}(p+\varepsilon) - \lg(n+1) - 2 \right) \Pr[|Z-np| \leq \varepsilon n] \\ &\geq \left(n\mathbb{H}(p+\varepsilon) - \lg(n+1) - 2 \right) \left(1 - 2 \exp \left(-\frac{n\varepsilon^2}{4p} \right) \right), \\ \text{since } \mu &= \mathbf{E}[Z] = np \text{ and} \\ &\Pr[|Z-np| \geq \frac{\varepsilon}{p} pn] \leq 2 \exp \left(-\frac{np}{4} \left(\frac{\varepsilon}{p} \right)^2 \right) = 2 \exp \left(-\frac{n\varepsilon^2}{4p} \right), \text{ by the Chernoff inequality.} \end{split}$$

$$\begin{split} &\mathbf{E} \Big[B \Big] = \sum_{k=0}^{n} \Pr[Z=k] \, \mathbf{E} \Big[B \, \Big| \, Z=k \Big]. \\ &\mathbf{E} \Big[B \Big] \geq \sum_{k=\lfloor n(p-\varepsilon) \rfloor}^{\lceil n(p+\varepsilon) \rceil} \Pr \Big[Z=k \Big] \, \mathbf{E} \Big[B \, \Big| \, Z=k \Big] \\ &\geq \sum_{k=\lfloor n(p-\varepsilon) \rfloor}^{\lceil n(p+\varepsilon) \rceil} \Pr \Big[Z=k \Big] \, \bigg(\Big\lfloor \lg \binom{n}{k} \Big\rfloor -1 \bigg) \\ &\geq \sum_{k=\lfloor n(p-\varepsilon) \rfloor}^{\lceil n(p+\varepsilon) \rceil} \Pr \Big[Z=k \Big] \bigg(\lg \frac{2^{n\mathbb{H}(p+\varepsilon)}}{n+1} -2 \bigg) \\ &= \Big(n\mathbb{H}(p+\varepsilon) - \lg(n+1) - 2 \Big) \Pr[|Z-np| \leq \varepsilon n] \\ &\geq \Big(n\mathbb{H}(p+\varepsilon) - \lg(n+1) - 2 \Big) \bigg(1 - 2 \exp \bigg(-\frac{n\varepsilon^2}{4p} \bigg) \bigg), \\ \text{since } \mu = \mathbf{E}[Z] = np \text{ and} \\ &\mathbf{Pr} \Big[|Z-np| \geq \frac{\varepsilon}{p} pn \Big] \leq 2 \exp \bigg(-\frac{np}{4} \Big(\frac{\varepsilon}{p} \Big)^2 \bigg) = 2 \exp \Big(-\frac{n\varepsilon^2}{4p} \Big), \text{ by the Chernoff inequality.} \end{split}$$

$$\begin{split} &\mathbf{E} \Big[B \Big] = \sum_{k=0}^{n} \Pr[Z=k] \, \mathbf{E} \Big[B \, \Big| \, Z=k \Big]. \\ &\mathbf{E} \Big[B \Big] \geq \sum_{k=\lfloor n(p-\varepsilon)\rfloor}^{\lceil n(p+\varepsilon) \rceil} \Pr \Big[Z=k \Big] \, \mathbf{E} \Big[B \, \Big| \, Z=k \Big] \\ &\geq \sum_{k=\lfloor n(p-\varepsilon) \rfloor}^{\lceil n(p+\varepsilon) \rceil} \Pr \Big[Z=k \Big] \left(\left\lfloor \lg \binom{n}{k} \right\rfloor -1 \right) \\ &\geq \sum_{k=\lfloor n(p-\varepsilon) \rfloor}^{\lceil n(p+\varepsilon) \rceil} \Pr \Big[Z=k \Big] \left(\lg \frac{2^{n\mathbb{H}(p+\varepsilon)}}{n+1} -2 \right) \\ &= \left(n\mathbb{H}(p+\varepsilon) - \lg(n+1) -2 \right) \Pr[|Z-np| \leq \varepsilon n] \\ &\geq \left(n\mathbb{H}(p+\varepsilon) - \lg(n+1) -2 \right) \left(1 - 2 \exp \left(-\frac{n\varepsilon^2}{4p} \right) \right), \\ \text{since } \mu = \mathbf{E}[Z] = np \text{ and} \\ &\mathbf{Pr} \Big[|Z-np| \geq \frac{\varepsilon}{p} pn \Big] \leq 2 \exp \left(-\frac{np}{4} \left(\frac{\varepsilon}{p} \right)^2 \right) = 2 \exp \left(-\frac{n\varepsilon^2}{4p} \right), \text{ by the Chernoff inequality.} \end{split}$$

$$\begin{split} &\mathbf{E} \Big[B \Big] = \sum_{k=0}^n \Pr[Z=k] \, \mathbf{E} \Big[B \, \Big| \, Z=k \Big]. \\ &\mathbf{E} \Big[B \Big] \geq \sum_{k=\lfloor n(p-\varepsilon) \rfloor}^{\lceil n(p+\varepsilon) \rceil} \Pr \Big[Z=k \Big] \, \mathbf{E} \Big[B \, \Big| \, Z=k \Big] \\ &\geq \sum_{k=\lfloor n(p-\varepsilon) \rfloor}^{\lceil n(p+\varepsilon) \rceil} \Pr \Big[Z=k \Big] \, \bigg(\Big| \lg \left(\frac{n}{k} \right) \Big| -1 \bigg) \\ &\geq \sum_{k=\lfloor n(p-\varepsilon) \rfloor}^{\lceil n(p+\varepsilon) \rceil} \Pr \Big[Z=k \Big] \bigg(\lg \frac{2^{n\mathbb{H}(p+\varepsilon)}}{n+1} - 2 \bigg) \\ &= \Big(n\mathbb{H}(p+\varepsilon) - \lg(n+1) - 2 \Big) \Pr[|Z-np| \leq \varepsilon n] \\ &\geq \Big(n\mathbb{H}(p+\varepsilon) - \lg(n+1) - 2 \Big) \bigg(1 - 2 \exp \bigg(-\frac{n\varepsilon^2}{4p} \bigg) \bigg), \\ \text{since } \mu = \mathbf{E}[Z] = np \text{ and} \\ &\mathbf{Pr} \Big[|Z-np| \geq \frac{\varepsilon}{p} pn \Big] \leq 2 \exp \bigg(-\frac{np}{4} \Big(\frac{\varepsilon}{p} \Big)^2 \bigg) = 2 \exp \Big(-\frac{n\varepsilon^2}{4p} \Big), \text{ by the Chernoff inequality.} \end{split}$$

- lacksquare Fix arepsilon>0, such that $\mathbb{H}(p+arepsilon)>(1-\delta/4)\mathbb{H}(p)$, p is fixed.
- ① For n sufficiently large: $-\lg(n+1) \geq -\frac{\delta}{10} n \mathbb{H}(p)$.

$$egin{aligned} \mathbf{E}[B] &\geq \left(1 - rac{\delta}{4} - rac{\delta}{10}
ight) n \mathbb{H}(p) \left(1 - rac{\delta}{10}
ight) \ &\geq (1 - \delta) \ n \mathbb{H}(p) \ , \end{aligned}$$

- lacksquare Fix arepsilon>0, such that $\mathbb{H}(p+arepsilon)>(1-\delta/4)\mathbb{H}(p)$, p is fixed.
- $oxed{3}$ For n sufficiently large: $-\lg(n+1) \geq -rac{\delta}{10} n \mathbb{H}(p)$.

$$egin{aligned} \mathbf{E}[B] &\geq \left(1 - rac{\delta}{4} - rac{\delta}{10}
ight) n \mathbb{H}(p) \left(1 - rac{\delta}{10}
ight) \ &\geq (1 - \delta) \ n \mathbb{H}(p) \ , \end{aligned}$$

- $\P \text{ Fix } \varepsilon > 0 \text{, such that } \mathbb{H}(p+\varepsilon) > (1-\delta/4)\mathbb{H}(p) \text{, } p \text{ is fixed.}$
- **3** For n sufficiently large: $-\lg(n+1) \geq -\frac{\delta}{10} n \mathbb{H}(p)$.

$$egin{aligned} \mathbf{E}[B] &\geq \left(1 - rac{\delta}{4} - rac{\delta}{10}
ight) n \mathbb{H}(p) \left(1 - rac{\delta}{10}
ight) \ &\geq (1 - \delta) \ n \mathbb{H}(p) \ , \end{aligned}$$

- ① Fix $\varepsilon>0$, such that $\mathbb{H}(p+\varepsilon)>(1-\delta/4)\mathbb{H}(p)$, p is fixed.
- **3** For n sufficiently large: $-\lg(n+1) \geq -\frac{\delta}{10} n \mathbb{H}(p)$.
- \bullet ... also $2\exp\left(-rac{narepsilon^2}{4p}
 ight) \leq rac{\delta}{10}$.

$$egin{aligned} \mathbf{E}[B] &\geq \left(1 - rac{\delta}{4} - rac{\delta}{10}
ight) n \mathbb{H}(p) \left(1 - rac{\delta}{10}
ight) \ &\geq (1 - \delta) \ n \mathbb{H}(p) \ , \end{aligned}$$

- lacksquare Fix arepsilon>0, such that $\mathbb{H}(p+arepsilon)>(1-\delta/4)\mathbb{H}(p)$, p is fixed.
- **3** For n sufficiently large: $-\lg(n+1) \ge -\frac{\delta}{10} n \mathbb{H}(p)$.
- \bullet ... also $2\exp\left(-rac{narepsilon^2}{4p}
 ight) \leq rac{\delta}{10}$.
- \bullet For n large enough;

$$egin{aligned} \mathrm{E}[B] &\geq \left(1 - rac{\delta}{4} - rac{\delta}{10}
ight) n \mathbb{H}(p) igg(1 - rac{\delta}{10}igg) \ &\geq (1 - \delta) \ n \mathbb{H}(p) \,, \end{aligned}$$

- Need to prove upper bound.
- ① If input sequence x has probability $\Pr[X=x]$, then $y=\mathsf{Ext}(x)$ has probability to be generated $\geq \Pr[X=x]$.
- \odot All sequences of length |y| have equal probability to be generated (by definition).
- $\textcircled{0} \ \ 2^{|\mathsf{Ext}(x)|} \Pr[X = x] \leq 2^{|\mathsf{Ext}(x)|} \Pr[y = \mathsf{Ext}(x)] \leq 1.$
- $) \implies |\mathsf{Ext}(x)| \le \lg(1/\Pr[X=x])$
- $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$

- Need to prove upper bound.
- ② If input sequence x has probability $\Pr[X=x]$, then $y = \mathsf{Ext}(x)$ has probability to be generated $> \Pr[X = x]$.
- **a** $2^{|\mathsf{Ext}(x)|} \Pr[X = x] < 2^{|\mathsf{Ext}(x)|} \Pr[y = \mathsf{Ext}(x)] < 1.$
- $\Longrightarrow |\mathsf{Ext}(x)| \leq \lg(1/\Pr[X=x])$
- \bullet \to $|B| = \sum_x \Pr[X = x] |\mathsf{Ext}(x)|$ $\leq \sum_x \Pr[X=x | \lg \frac{1}{\Pr[X=x]} = \mathbb{H}(X)$.

Sariel (UIUC) CS573 Fall 2014 15 / 25

- Need to prove upper bound.
- ② If input sequence x has probability $\Pr[X = x]$, then $y = \mathsf{Ext}(x)$ has probability to be generated $\geq \Pr[X = x]$.
- 3 All sequences of length |y| have equal probability to be generated (by definition).
- $\textcircled{0} \ \ 2^{|\mathsf{Ext}(x)|} \Pr[X = x] \leq 2^{|\mathsf{Ext}(x)|} \Pr[y = \mathsf{Ext}(x)] \leq 1.$
- $) \implies |\mathsf{Ext}(x)| \le \lg(1/\Pr[X=x])$
- $\begin{array}{l} \bullet \ \ \mathrm{E}\big[B\big] = \sum_x \Pr\big[X = x\big] \, |\mathsf{Ext}(x)| \\ \leq \sum_x \Pr\big[X = x\big] \lg \tfrac{1}{\Pr[X = x]} = \mathbb{H}(X) \,. \end{array}$

- Need to prove upper bound.
- ② If input sequence x has probability $\Pr[X = x]$, then $y = \mathsf{Ext}(x)$ has probability to be generated $\geq \Pr[X = x]$.
- 3 All sequences of length |y| have equal probability to be generated (by definition).
- $) \implies |\mathsf{Ext}(x)| \le \lg(1/\Pr[X=x])$
- $\begin{array}{l} \bullet \ \ \mathrm{E}\big[B\big] = \sum_x \Pr\big[X = x\big] \, |\mathsf{Ext}(x)| \\ \leq \sum_x \Pr\big[X = x\big] \lg \tfrac{1}{\Pr[X = x]} = \mathbb{H}(X) \,. \end{array}$

- Need to prove upper bound.
- ② If input sequence x has probability $\Pr[X = x]$, then $y = \mathsf{Ext}(x)$ has probability to be generated $\geq \Pr[X = x]$.
- **3** All sequences of length |y| have equal probability to be generated (by definition).

- $\begin{array}{l} \bullet \ \ \mathrm{E}\big[B\big] = \sum_x \Pr\big[X = x\big] \, |\mathsf{Ext}(x)| \\ \leq \sum_x \Pr\big[X = x\big] \lg \tfrac{1}{\Pr[X = x]} = \mathbb{H}(X) \,. \end{array}$

- Need to prove upper bound.
- ② If input sequence x has probability $\Pr[X = x]$, then $y = \mathsf{Ext}(x)$ has probability to be generated $\geq \Pr[X = x]$.
- **3** All sequences of length |y| have equal probability to be generated (by definition).

- $\mathbf{0} \ \mathbf{E}[B] = \sum_{x} \Pr[X = x] |\mathsf{Ext}(x)| \\ \leq \sum_{x} \Pr[X = x] \lg \frac{1}{\Pr[X = x]} = \mathbb{H}(X).$

- Need to prove upper bound.
- ② If input sequence x has probability $\Pr[X = x]$, then $y = \mathsf{Ext}(x)$ has probability to be generated $\geq \Pr[X = x]$.
- **3** All sequences of length |y| have equal probability to be generated (by definition).

- $\begin{array}{l} \bullet \ \ \mathrm{E}\big[B\big] = \sum_x \Pr\big[X = x\big] \, |\mathsf{Ext}(x)| \\ \leq \sum_x \Pr\big[X = x\big] \lg \frac{1}{\Pr[X = x]} = \mathbb{H}(X) \, . \end{array}$

- Need to prove upper bound.
- ② If input sequence x has probability $\Pr[X = x]$, then $y = \mathsf{Ext}(x)$ has probability to be generated $\geq \Pr[X = x]$.
- **3** All sequences of length |y| have equal probability to be generated (by definition).

- $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$

- Need to prove upper bound.
- ② If input sequence x has probability $\Pr[X=x]$, then $y = \mathsf{Ext}(x)$ has probability to be generated $> \Pr[X = x]$.
- 3 All sequences of length |y| have equal probability to be generated (by definition).
- $2^{|\mathsf{Ext}(x)|}\Pr[X=x] < 2^{|\mathsf{Ext}(x)|}\Pr[y=\mathsf{Ext}(x)] < 1.$
- $\bullet \implies |\mathsf{Ext}(x)| < \lg(1/\Pr[X=x])$
- $lackbox{f 0} \; \mathrm{E}igl[Bigr] = \sum_x \Prigl[X=xigr] |\mathsf{Ext}(x)|$ $\leq \sum_{x} \Pr |X = x| \lg \frac{1}{\Pr[X = x]} = \mathbb{H}(X)$.

Sariel (UIUC) CS573 Fall 2014 15 / 25

Part III

Coding: Shannon's Theorem

- binary symmetric channel with parameter p
- 2 sequence of bits x_1, x_2, \ldots , an
- output: $y_1, y_2, \ldots,$ a sequence of bits such that...
- ${f O} \ \Pr[x_i=y_i]=1-p$ independently for each i.

- binary symmetric channel with parameter p
- $oldsymbol{2}$ sequence of bits x_1, x_2, \ldots , an
- $oldsymbol{0}$ output: $y_1, y_2, \ldots,$ a sequence of bits such that...
- ① $\Pr[x_i = y_i] = 1 p$ independently for each i.

- **1 binary symmetric channel** with parameter **p**
- 2 sequence of bits x_1, x_2, \ldots , an
- $oldsymbol{0}$ output: $y_1, y_2, \ldots,$ a sequence of bits such that...
- ${f 0} \ \Pr[x_i=y_i]=1-p$ independently for each i.

- binary symmetric channel with parameter p
- 2 sequence of bits x_1, x_2, \ldots , an
- ullet output: $y_1, y_2, \ldots,$ a sequence of bits such that...
- $\Pr[x_i = y_i] = 1 p$ independently for each i.

Encoding/decoding with noise

- **1** (k, n) encoding function Enc: $\{0, 1\}^k \to \{0, 1\}^n$ takes as input a sequence of k bits and outputs a sequence of n bits.
- $m{m{a}}(k,n)$ decoding function $m{m{Dec}}: \{0,1\}^n o \{0,1\}^k$ takes as input a sequence of $m{n}$ bits and outputs a sequence of $m{k}$ bits.

Encoding/decoding with noise

Definition

- **1** (k, n) encoding function Enc: $\{0, 1\}^k \to \{0, 1\}^n$ takes as input a sequence of k bits and outputs a sequence of n bits.
- ② (k,n) decoding function $Dec: \{0,1\}^n \to \{0,1\}^k$ takes as input a sequence of n bits and outputs a sequence of k bits.

Claude Elwood Shannon

Claude Elwood Shannon (April 30, 1916 - February 24, 2001), an American electrical engineer and mathematician, has been called "the father of information theory".

His master thesis was how to building boolean circuits for any boolean function.

Shannon's theorem (1948)

Theorem (Shannon's theorem)

For a binary symmetric channel with parameter p < 1/2 and for any constants $\delta, \gamma > 0$, where n is sufficiently large, the following holds:

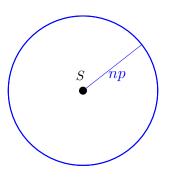
- (i) For an $k \leq n(1 \mathbb{H}(p) \delta)$ there exists (k, n) encoding and decoding functions such that the probability the receiver fails to obtain the correct message is at most γ for every possible k-bit input messages.
- (ii) There are no (k, n) encoding and decoding functions with $k \geq n(1 \mathbb{H}(p) + \delta)$ such that the probability of decoding correctly is at least γ for a k-bit input message chosen uniformly at random.

Sariel (UIUC) CS573 20 Fall 2014 20 / 25

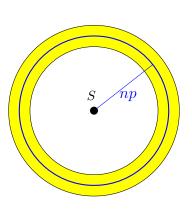
$$S = s_1 s_2 \dots s_n$$

S

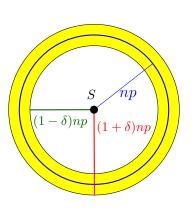
$$S = s_1 s_2 \dots s_n$$



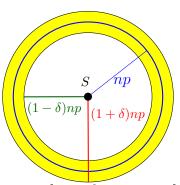
$$S = s_1 s_2 \dots s_n$$



$$S = s_1 s_2 \dots s_n$$



$$S = s_1 s_2 \dots s_n$$



One ring to rule them all!

- senders sent string $S = s_1 s_2 \dots s_n$.
- ② receiver got string $T = t_1 t_2 \dots t_n$.
- $oldsymbol{0}$ U: Hamming distance between S and T: $U = \sum_i igl[s_i
 eq t_i igr]$.
- $lacksquare{1}{2}$ By assumption: $\mathbf{E}[U]=pn$, and U is a binomial variable.
- ① By Chernoff inequality: $U\in \left[(1-\delta)np,(1+\delta)np\right]$ with high probability, where δ is tiny constant.
- $m{O}$ $m{T}$ is in a ring $m{R}$ centered at $m{S}$, with inner radius $(1-\delta)nm{p}$ and outer radius $(1+\delta)nm{p}$.
- This ring has

$$\sum_{i=(1-\delta)np}^{(1+\delta)np} inom{n}{i} \leq 2inom{n}{(1+\delta)np} \leq lpha = 2\cdot 2^{n\mathbb{H}((1+\delta)p)}.$$

- lacksquare senders sent string $S = s_1 s_2 \dots s_n$.
- 2 receiver got string $T = t_1 t_2 \dots t_n$.
- ① U: Hamming distance between S and T: $U = \sum_i [s_i
 eq t_i]$.
- $lacksquare{1}{2}$ By assumption: $\mathbf{E}[U]=pn$, and U is a binomial variable.
- ① By Chernoff inequality: $U \in [(1-\delta)np, (1+\delta)np]$ with high probability, where δ is tiny constant.
- ② T is in a ring R centered at S, with inner radius $(1 \delta)np$ and outer radius $(1 + \delta)np$.
- This ring has

$$\sum_{i=(1-\delta)np}^{(1+\delta)np} inom{n}{i} \leq 2inom{n}{(1+\delta)np} \leq lpha = 2\cdot 2^{n\mathbb{H}((1+\delta)p)}.$$

- lacksquare senders sent string $S = s_1 s_2 \dots s_n$.
- 2 receiver got string $T = t_1 t_2 \dots t_n$.
- $oldsymbol{0}$ U: Hamming distance between S and T: $U=\sum_i igl|s_i
 eq t_iigr|$.
- $lacksquare{1}{2}$ By assumption: $\mathbf{E}[U]=pn$, and U is a binomial variable.
- ① By Chernoff inequality: $U\in \left[(1-\delta)np,(1+\delta)np\right]$ with high probability, where δ is tiny constant.
- ② T is in a ring R centered at S, with inner radius $(1 \delta)np$ and outer radius $(1 + \delta)np$.
- This ring has

$$\sum_{i=(1-\delta)np}^{(1+\delta)np} \binom{n}{i} \leq 2 \binom{n}{(1+\delta)np} \leq \alpha = 2 \cdot 2^{n\mathbb{H}((1+\delta)p)}.$$

- lacksquare senders sent string $S = s_1 s_2 \dots s_n$.
- 2 receiver got string $T = t_1 t_2 \dots t_n$.
- $lacksquare{0}\ U$: Hamming distance between S and T: $U=\sum_i \!\! \left[s_i
 eq t_i
 ight].$
- $lacksquare{1}{2}$ By assumption: $\mathbf{E}[U]=pn$, and U is a binomial variable.
- ① By Chernoff inequality: $U\in \left[(1-\delta)np,(1+\delta)np\right]$ with high probability, where δ is tiny constant.
- $m{O}$ $m{T}$ is in a ring $m{R}$ centered at $m{S}$, with inner radius $(1-\delta)nm{p}$ and outer radius $(1+\delta)nm{p}$.
- This ring has

$$\sum_{i=(1-\delta)np}^{(1+\delta)np} \binom{n}{i} \leq 2 \binom{n}{(1+\delta)np} \leq \alpha = 2 \cdot 2^{n\mathbb{H}((1+\delta)p)}.$$

- lacksquare senders sent string $S = s_1 s_2 \dots s_n$.
- 2 receiver got string $T = t_1 t_2 \dots t_n$.
- $lacksquare{0}\ U$: Hamming distance between S and T: $U=\sum_i \! \left[s_i
 eq t_i
 ight].$
- **3** By assumption: $\mathbf{E}[U] = pn$, and U is a binomial variable.
- ullet By Chernoff inequality: $U\in \left[(1-\delta)np,(1+\delta)np
 ight]$ with high probability, where δ is tiny constant.
- **1** T is in a ring R centered at S, with inner radius $(1 \delta)np$ and outer radius $(1 + \delta)np$.
- This ring has

$$\sum_{i=(1-\delta)np}^{(1+\delta)np} \binom{n}{i} \leq 2 \binom{n}{(1+\delta)np} \leq \alpha = 2 \cdot 2^{n\mathbb{H}((1+\delta)p)}.$$

- lacksquare senders sent string $S = s_1 s_2 \dots s_n$.
- 2 receiver got string $T = t_1 t_2 \dots t_n$.
- **1** U: Hamming distance between S and T: $U = \sum_i [s_i
 eq t_i]$.
- **5** By assumption: $\mathbf{E}[U] = pn$, and U is a binomial variable.
- **1** By Chernoff inequality: $U \in \left[(1 \delta) np, (1 + \delta) np \right]$ with high probability, where δ is tiny constant.
- **1** T is in a ring R centered at S, with inner radius $(1 \delta)np$ and outer radius $(1 + \delta)np$.
- This ring has

$$\sum_{i=(1-\delta)np}^{(1+\delta)np} inom{n}{i} \leq 2inom{n}{(1+\delta)np} \leq lpha = 2\cdot 2^{n\mathbb{H}((1+\delta)p)}.$$

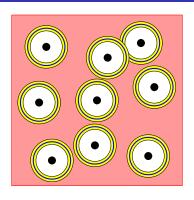
- lacksquare senders sent string $S = s_1 s_2 \dots s_n$.
- $oldsymbol{2}$ receiver got string $T=t_1t_2\ldots t_n$.
- $oldsymbol{0}$ U: Hamming distance between S and T: $U = \sum_i [s_i
 eq t_i]$.
- **5** By assumption: $\mathbf{E}[U] = pn$, and U is a binomial variable.
- **1** By Chernoff inequality: $U \in \left[(1 \delta) np, (1 + \delta) np \right]$ with high probability, where δ is tiny constant.
- **1** T is in a ring R centered at S, with inner radius $(1 \delta)np$ and outer radius $(1 + \delta)np$.
- This ring has

$$\sum_{i=(1-\delta)np}^{(1+\delta)np} inom{n}{i} \leq 2inom{n}{(1+\delta)np} \leq lpha = 2\cdot 2^{n\mathbb{H}((1+\delta)p)}.$$

- lacksquare senders sent string $S = s_1 s_2 \dots s_n$.
- ② receiver got string $T=t_1t_2\dots t_n$.
- $oldsymbol{0}$ U: Hamming distance between S and T: $U = \sum_i [s_i
 eq t_i]$.
- **5** By assumption: $\mathbf{E}[U] = pn$, and U is a binomial variable.
- **1** By Chernoff inequality: $U \in \left[(1 \delta) np, (1 + \delta) np \right]$ with high probability, where δ is tiny constant.
- **1** T is in a ring R centered at S, with inner radius $(1 \delta)np$ and outer radius $(1 + \delta)np$.
- This ring has

$$\sum_{i=(1-\delta)np}^{(1+\delta)np} \binom{n}{i} \leq 2 \binom{n}{(1+\delta)np} \leq \alpha = 2 \cdot 2^{n\mathbb{H}((1+\delta)p)}.$$

Many rings for many codewords...



- ① Pick as many disjoint rings as possible: R_1, \ldots, R_{κ} .
- If every word in the hypercube would be covered...
- ullet ... use $\mathbf{2}^n$ codewords $\implies \kappa \geq$

$$\kappa \geq rac{2^n}{|R|} \geq rac{2^n}{2 \cdot 2^{n\mathbb{H}((1+\delta)p)}} pprox 2^{n(1-\mathbb{H}((1+\delta)p))}.$$

- ① Consider all possible strings of length k such that $2^k \leq \kappa$.
- ullet Map ith string in $\{0,1\}^k$ to the center C_i of the ith ring R_i .
- $lack {f 0}$ If send $C_i \Longrightarrow$ receiver gets a string in R_i .
- O Decoding is easy find the ring R_i containing the received string, take its center string C_i , and output the original string it was mapped to.
- $egin{aligned} egin{aligned} egin{aligned} & ext{How many bits?} \ & k = \lfloor \log \kappa
 floor & = n ig(1 \mathbb{H}\left((1 + \delta)p
 ight)ig) pprox n(1 \mathbb{H}\left(p
 ight)), \end{aligned}$

- **①** Pick as many disjoint rings as possible: R_1, \ldots, R_{κ} .
- ② If every word in the hypercube would be covered...
- ${ ext{ odewords }} \implies \kappa \geq$

$$\kappa \geq rac{2^n}{|R|} \geq rac{2^n}{2 \cdot 2^{n \mathbb{H}((1+\delta)p)}} pprox 2^{n(1-\mathbb{H}((1+\delta)p))}.$$

- ① Consider all possible strings of length k such that $2^k \leq \kappa$.
- ullet Map ith string in $\{0,1\}^k$ to the center C_i of the ith ring R_i .
- ullet If send $C_i \Longrightarrow$ receiver gets a string in R_i .
- ① Decoding is easy find the ring R_i containing the received string, take its center string C_i , and output the original string it was mapped to.
- $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$

- **①** Pick as many disjoint rings as possible: R_1, \ldots, R_{κ} .
- If every word in the hypercube would be covered...
- $oxed{solution} : ... ext{ use } 2^n ext{ codewords } \Longrightarrow \kappa \geq \ \kappa \geq rac{2^n}{|R|} \geq rac{2^n}{2 \cdot 2^{n \mathbb{H}((1+\delta)p)}} pprox 2^{n(1-\mathbb{H}((1+\delta)p))}.$
- $ext{ }$ Consider all possible strings of length k such that $2^k \leq \kappa$.
- ullet Map ith string in $\left\{0,1
 ight\}^k$ to the center C_i of the ith ring R_i
- ullet If send $C_i \Longrightarrow$ receiver gets a string in R_i .
- \odot Decoding is easy find the ring R_i containing the received string, take its center string C_i , and output the original string it was mapped to.
- $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$

- **①** Pick as many disjoint rings as possible: R_1, \ldots, R_{κ} .
- If every word in the hypercube would be covered...
- ullet ... use $\mathbf{2}^n$ codewords $\implies \kappa \geq$

$$\kappa \geq rac{2^n}{|R|} \geq rac{2^n}{2 \cdot 2^{n\mathbb{H}((1+\delta)p)}} pprox 2^{n(1-\mathbb{H}((1+\delta)p))}.$$

- Consider all possible strings of length k such that $2^k \le \kappa$.
- ullet Map ith string in $\{0,1\}^k$ to the center C_i of the ith ring R_i .
- O Decoding is easy find the ring R_i containing the received string, take its center string C_i , and output the original string it was mapped to.
- $egin{aligned} egin{aligned} egin{aligned} & ext{How many bits?} \ & k = \lfloor \log \kappa
 floor & = n ig(1 \mathbb{H}\left((1 + \delta)p
 ight)ig) pprox n(1 \mathbb{H}\left(p
 ight)), \end{aligned}$

- **①** Pick as many disjoint rings as possible: R_1, \ldots, R_{κ} .
- If every word in the hypercube would be covered...
- ullet ... use $\mathbf{2}^n$ codewords $\implies \kappa \geq$

$$\kappa \geq rac{2^n}{|R|} \geq rac{2^n}{2 \cdot 2^{n\mathbb{H}((1+\delta)p)}} pprox 2^{n(1-\mathbb{H}((1+\delta)p))}.$$

- **©** Consider all possible strings of length k such that $2^k \le \kappa$.
- ullet Map ith string in $\{0,1\}^k$ to the center C_i of the ith ring R_i .
- ullet If send $C_i \Longrightarrow$ receiver gets a string in R_i .
- ① Decoding is easy find the ring R_i containing the received string, take its center string C_i , and output the original string it was mapped to.
- $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$

- **①** Pick as many disjoint rings as possible: R_1, \ldots, R_{κ} .
- If every word in the hypercube would be covered...
- ullet ... use $\mathbf{2}^n$ codewords $\implies \kappa \geq$

$$\kappa \geq rac{2^n}{|R|} \geq rac{2^n}{2 \cdot 2^{n\mathbb{H}((1+\delta)p)}} pprox 2^{n(1-\mathbb{H}((1+\delta)p))}.$$

- **©** Consider all possible strings of length k such that $2^k \le \kappa$.
- **1** Map ith string in $\{0,1\}^k$ to the center C_i of the ith ring R_i .
- ullet If send $C_i \Longrightarrow$ receiver gets a string in R_i .
- ① Decoding is easy find the ring R_i containing the received string, take its center string C_i , and output the original string it was mapped to.
- $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$

- **①** Pick as many disjoint rings as possible: R_1, \ldots, R_{κ} .
- If every word in the hypercube would be covered...
- ullet ... use $\mathbf{2}^n$ codewords $\implies \kappa \geq$

$$\kappa \geq rac{2^n}{|R|} \geq rac{2^n}{2 \cdot 2^{n\mathbb{H}((1+\delta)p)}} pprox 2^{n(1-\mathbb{H}((1+\delta)p))}.$$

- **©** Consider all possible strings of length k such that $2^k \le \kappa$.
- **1** Map ith string in $\{0,1\}^k$ to the center C_i of the ith ring R_i .
- $lackbox{0}$ If send $C_i \implies$ receiver gets a string in R_i .
- ① Decoding is easy find the ring R_i containing the received string, take its center string C_i , and output the original string it was mapped to.
- $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$

- **①** Pick as many disjoint rings as possible: R_1, \ldots, R_{κ} .
- If every word in the hypercube would be covered...
- ullet ... use 2^n codewords $\implies \kappa \geq$

$$\kappa \geq rac{2^n}{|R|} \geq rac{2^n}{2 \cdot 2^{n\mathbb{H}((1+\delta)p)}} pprox 2^{n(1-\mathbb{H}((1+\delta)p))}.$$

- **©** Consider all possible strings of length k such that $2^k \le \kappa$.
- **1** Map ith string in $\{0,1\}^k$ to the center C_i of the ith ring R_i .
- lacktriangledown If send $C_i \implies$ receiver gets a string in R_i .
- lacktriangledown Decoding is easy find the ring R_i containing the received string, take its center string C_i , and output the original string it was mapped to.
- $egin{aligned} egin{aligned} egin{aligned} & ext{How many bits?} \ & k = \lfloor \log \kappa
 floor & = n ig(1 \mathbb{H}\left((1 + \delta)p
 ight)ig) pprox n(1 \mathbb{H}\left(p
 ight)), \end{aligned}$

- **①** Pick as many disjoint rings as possible: R_1, \ldots, R_{κ} .
- If every word in the hypercube would be covered...
- lacksquare ... use $\mathbf{2}^n$ codewords $\implies \kappa \geq$

$$\kappa \geq rac{2^n}{|R|} \geq rac{2^n}{2 \cdot 2^{n\mathbb{H}((1+\delta)p)}} pprox 2^{n(1-\mathbb{H}((1+\delta)p))}.$$

- **©** Consider all possible strings of length k such that $2^k \le \kappa$.
- $lacksquare{0}$ Map ith string in $\{0,1\}^k$ to the center C_i of the ith ring R_i .
- lacktriangledown If send $C_i \implies$ receiver gets a string in R_i .
- lacktriangledown Decoding is easy find the ring R_i containing the received string, take its center string C_i , and output the original string it was mapped to.
- $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$

- Can not find such a large set of disjoint rings.
- Reason is that when you pack rings (or balls) you are going to have wasted spaces around.
- Overcome this: allow rings to overlap somewhat.
- Makes things considerably more involved.
- Details in class notes.

- Can not find such a large set of disjoint rings.
- Reason is that when you pack rings (or balls) you are going to have wasted spaces around.
- Overcome this: allow rings to overlap somewhat.
- Makes things considerably more involved.
- Details in class notes.

- Can not find such a large set of disjoint rings.
- Reason is that when you pack rings (or balls) you are going to have wasted spaces around.
- Overcome this: allow rings to overlap somewhat.
- Makes things considerably more involved.
- Details in class notes.

- Can not find such a large set of disjoint rings.
- Reason is that when you pack rings (or balls) you are going to have wasted spaces around.
- Overcome this: allow rings to overlap somewhat.
- Makes things considerably more involved.
- Details in class notes.

- Can not find such a large set of disjoint rings.
- Reason is that when you pack rings (or balls) you are going to have wasted spaces around.
- Overcome this: allow rings to overlap somewhat.
- Makes things considerably more involved.
- Details in class notes.