CS 573: Algorithms, Fall 2014

Entropy, Randomness, and Information

Lecture 23 November 13, 2014 Part I

Entropy

1/42

0/40

Quote

"If only once - only once - no matter where, no matter before what audience - I could better the record of the great Rastelli and juggle with thirteen balls, instead of my usual twelve, I would feel that I had truly accomplished something for my country. But I am not getting any younger, and although I am still at the peak of my powers there are moments - why deny it? - when I begin to doubt - and there is a time limit on all of us."

-Romain Gary, The talent scout.

Entropy: Definition

Definition

The $\emph{entropy}$ in bits of a discrete random variable $\emph{\textbf{X}}$ is

$$\mathbb{H}(X) = -\sum_{x} \Pr[X = x] \lg \Pr[X = x].$$

Equivalently, $\mathbb{H}(X) = \mathbf{E}[\lg \frac{1}{\Pr[X]}]$.

3/42

Entropy intuition...

Intuition...

 $\mathbb{H}(X)$ is the number of **fair** coin flips that one gets when getting the value of X.

Interpretation from last lecture...

Consider a (huge) string $S = s_1 s_2 \dots s_n$ formed by picking characters independently according to X. Then

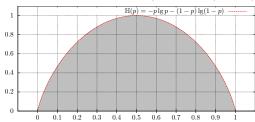
$$|S| \mathbb{H}(X) = n\mathbb{H}(X)$$

is the minimum number of bits one needs to store the string \boldsymbol{S} .

5/42

Binary entropy:

$$\mathbb{H}(\mathsf{p}) = -\mathsf{p} \lg \mathsf{p} - (1-\mathsf{p}) \lg (1-\mathsf{p})$$



- 1. $\mathbb{H}(p)$ is a concave symmetric around 1/2 on the interval [0,1].
- 2. maximum at 1/2.
- 3. $\mathbb{H}(3/4) \approx 0.8113$ and $\mathbb{H}(7/8) \approx 0.5436$.
- 4. ⇒ coin that has 3/4 probably to be heads have higher amount of "randomness" in it than a coin that has probability 7/8 for heads.

Binary entropy

$$\mathbb{H}(X) = -\sum_{x} \Pr[X = x] \lg \Pr[X = x]$$

Definition

The **binary entropy** function $\mathbb{H}(p)$ for a random binary variable that is **1** with probability p, is

$$\mathbb{H}(p) = -p \lg p - (1-p) \lg (1-p)$$
. We define $\mathbb{H}(0) = \mathbb{H}(1) = 0$.

Q: How many truly random bits are there when given the result of flipping a single coin with probability **p** for heads?

6/42

And now for some unnecessary math

1.
$$\mathbb{H}(p) = -p \lg p - (1-p) \lg (1-p)$$

2.
$$\mathbb{H}'(p) = -\lg p + \lg(1-p) = \lg \frac{1-p}{p}$$

3.
$$\mathbb{H}''(p) = \frac{p}{1-p} \cdot \left(-\frac{1}{p^2}\right) = -\frac{1}{p(1-p)}$$
.

- 4. $\Longrightarrow \mathbb{H}''(p) \leq 0$, for all $p \in (0,1)$, and the $\mathbb{H}(\cdot)$ is concave.
- 5. $\mathbb{H}'(1/2) = 0 \implies \mathbb{H}(1/2) = 1$ max of binary entropy.
- 6. \Longrightarrow balanced coin has the largest amount of randomness in it.

Task at hand: Squeezing good random bits...

...out of bad random bits...

- 1. b_1, \ldots, b_n : result of n coin flips...
- 2. From a faulty coin!
- 3. **p**: probability for head.
- 4. We need fair bit coins!
- 5. Convert $b_1, \ldots, b_n \implies b'_1, \ldots, b'_m$
- 6. **New bits must be truly random**: Probability for head is 1/2.
- 7. Q: How many truly random bits can we extract?

9/42

Intuitively...

Squeezing good random bits out of bad random bits...

Question...

Given the result of n coin flips: b_1, \ldots, b_n from a faulty coin, with head with probability p, how many truly random bits can we extract?

If believe intuition about entropy, then this number should be $\approx n\mathbb{H}(p)$.

10/42

Back to Entropy

- 1. **entropy** of X is $\mathbb{H}(X) = -\sum_{x} \Pr[X = x] \lg \Pr[X = x]$.
- 2. Entropy of uniform variable..

Example

A random variable X that has probability 1/n to be i, for $i=1,\ldots,n$, has entropy $\mathbb{H}(X)=-\sum_{i=1}^n\frac{1}{n}\lg\frac{1}{n}=\lg n$.

- 3. Entropy is oblivious to the exact values random variable can have.
- 4. \implies random variables over -1, +1 with equal probability has the same entropy (i.e., 1) as a fair coin.

Lemma: Entropy additive for independent variables

Lemma

Let X and Y be two independent random variables, and let Z be the random variable (X, Y). Then $\mathbb{H}(Z) = \mathbb{H}(X) + \mathbb{H}(Y)$.

11/42

Proof

In the following, summation are over all possible values that the variables can have. By the independence of \boldsymbol{X} and \boldsymbol{Y} we have

$$\mathbb{H}(Z) = \sum_{x,y} \Pr[(X,Y) = (x,y)] \lg \frac{1}{\Pr[(X,Y) = (x,y)]}$$

$$= \sum_{x,y} \Pr[X = x] \Pr[Y = y] \lg \frac{1}{\Pr[X = x] \Pr[Y = y]}$$

$$= \sum_{x} \sum_{y} \Pr[X = x] \Pr[Y = y] \lg \frac{1}{\Pr[X = x]}$$

$$+ \sum_{y} \sum_{x} \Pr[X = x] \Pr[Y = y] \lg \frac{1}{\Pr[Y = y]}$$

15/42

Proof continued

$$\mathbb{H}(Z) = \sum_{x} \sum_{y} \Pr[X = x] \Pr[Y = y] \lg \frac{1}{\Pr[X = x]}$$

$$+ \sum_{y} \sum_{x} \Pr[X = x] \Pr[Y = y] \lg \frac{1}{\Pr[Y = y]}$$

$$= \sum_{x} \Pr[X = x] \lg \frac{1}{\Pr[X = x]}$$

$$+ \sum_{y} \Pr[Y = y] \lg \frac{1}{\Pr[Y = y]}$$

$$= \mathbb{H}(X) + \mathbb{H}(Y).$$

4/42

Bounding the binomial coefficient using entropy

Lemma

 $q \in [0,1]$

nq is integer in the range [0, n].

Then

$$\frac{2^{n\mathbb{H}(q)}}{n+1} \leq \binom{n}{nq} \leq 2^{n\mathbb{H}(q)}.$$

Proof

Holds if q=0 or q=1, so assume 0 < q < 1. We have

$$\binom{n}{nq}q^{nq}(1-q)^{n-nq} \leq (q+(1-q))^n = 1.$$

We also have:

$$q^{-nq}(1-q)^{-(1-q)n}=2^{n(-q\lg q-(1-q)\lg(1-q))}=2^{n\mathbb{H}(q)}$$
, we have

$$\binom{n}{nq} \leq q^{-nq}(1-q)^{-(1-q)n} = 2^{n\mathbb{H}(q)}.$$

15/

Proof continued

Other direction...

1.
$$\mu(k) = \binom{n}{k} q^k (1-q)^{n-k}$$

2.
$$\sum_{i=0}^{n} {n \choose i} q^{i} (1-q)^{n-i} = \sum_{i=0}^{n} \mu(i)$$
.

- 3. Claim: $\mu(nq) = \binom{n}{nq} q^{nq} (1-q)^{n-nq}$ largest term in $\sum_{k=0}^{n} \mu(k) = 1$.
- 4. $\Delta_k = \mu(k) \mu(k+1) = \binom{n}{k} q^k (1-q)^{n-k} \left(1 \frac{n-k}{k+1} \frac{q}{1-q}\right)$
- 5. sign of Δ_k = size of last term...
- 6. $\operatorname{sign}(\Delta_k) = \operatorname{sign}\left(1 \frac{(n-k)q}{(k+1)(1-q)}\right)$ = $\operatorname{sign}\left(\frac{(k+1)(1-q) - (n-k)q}{(k+1)(1-q)}\right)$.

17/42

Proof continued

- 1. (k+1)(1-q) (n-k)q =k+1-kq-q-nq+kq = 1+k-q-nq.
- 2. $\Longrightarrow \Delta_k \ge 0$ when $k \ge nq + q 1$ $\Delta_k < 0$ otherwise.
- 3. $\mu(k) = \binom{n}{k} q^k (1-q)^{n-k}$
- 4. $\mu(k) < \mu(k+1)$, for k < nq, and $\mu(k) \ge \mu(k+1)$ for k > nq.
- 5. $\implies \mu(nq)$ is the largest term in $\sum_{k=0}^{n} \mu(k) = 1$.
- 6. $\mu(nq)$ larger than the average in sum.
- 7. $\Longrightarrow \binom{n}{k}q^k(1-q)^{n-k} \geq \frac{1}{n+1}$.
- 8. $\implies \binom{n}{nq} \ge \frac{1}{n+1} q^{-nq} (1-q)^{-(n-nq)} = \frac{1}{n+1} 2^{n\mathbb{H}(q)}.$

8/42

Generalization...

Corollary

We have:

(i)
$$q \in [0, 1/2] \Rightarrow \binom{n}{\lfloor nq \rfloor} \leq 2^{n\mathbb{H}(q)}$$
.

(ii)
$$q \in [1/2,1] \binom{n}{\lceil nq \rceil} \leq 2^{n\mathbb{H}(q)}$$
.

(iii)
$$q \in [1/2, 1] \Rightarrow \frac{2^{n \mathbb{H}(q)}}{n+1} \leq \binom{n}{\lfloor nq \rfloor}$$
.

(iv)
$$q \in [0, 1/2] \Rightarrow \frac{2^{n\mathbb{H}(q)}}{n+1} \leq \binom{n}{\lceil nq \rceil}$$
.

Proof is straightforward but tedious.

What we have...

- 1. Proved that $\binom{n}{nq} \approx 2^{n\mathbb{H}(q)}$.
- 2. Estimate is loose.
- 3. Sanity check...
 - (I) A sequence of n bits generated by coin with probability q for head.
 - (II) By Chernoff inequality... roughly *nq* heads in this sequence.
 - (III) Generated sequence Y belongs to $\binom{n}{nq} \approx 2^{n\mathbb{H}(q)}$ possible sequences .
 - (IV) ...of similar probability.
 - $(V) \implies \mathbb{H}(Y) = n\mathbb{H}(q) \approx \lg \binom{n}{nq}$

19/42

Just one bit...

question

Given a coin **C** with:

p: Probability for head.

q = 1 - p: Probability for tail.

Q: How to get one true random bit, by flipping C.

Describe an algorithm!

21/42

Extracting randomness...

- 1. X: uniform random integer variable out of $0, \ldots, 7$.
- 2. Ext(X): binary representation of x.
- 3. Def. subtle: all extracted seqs of same len have same probability.
- 4. Another example of extraction scheme:
 - 4.1 X: uniform random integer variable $0, \ldots, 11$.
 - 4.2 Ext(x): output the binary representation for x if 0 < x < 7.
 - 4.3 If **x** is between **8** and **11**?
 - 4.4 Idea... Output binary representation of x 8 as a two bit number.
- 5. A valid extractor...

$$Pr\left[\mathsf{Ext}(X) = 00 \mid |\mathsf{Ext}(X)| = 2\right] = \frac{1}{4}$$

Extracting randomness...

Entropy can be interpreted as the amount of unbiased random coin flips can be extracted from a random variable.

Definition

An extraction function **Ext** takes as input the value of a random variable X and outputs a sequence of bits y, such that $\Pr[\mathsf{Ext}(X) = y \mid |y| = k] = \frac{1}{2^k}$, whenever $\Pr[|y| = k] > 0$, where |y| denotes the length of y.

22/42

Technical lemma

The following is obvious, but we provide a proof anyway.

Lemma

Let x/y be a faction, such that x/y < 1. Then, for any i, we have x/y < (x+i)/(y+i).

Proof.

We need to prove that x(y+i)-(x+i)y<0. The left size is equal to i(x-y), but since y>x (as x/y<1), this quantity is negative, as required.

A uniform variable extractor...

Theorem

- 1. **X**: random variable chosen uniformly at random from $\{0, \ldots, m-1\}$.
- 2. Then there is an extraction function for X:
 - 2.1 outputs on average at least

$$\lfloor \lg m \rfloor - 1 = \lfloor \mathbb{H}(X) \rfloor - 1$$

independent and unbiased bits.

25/42

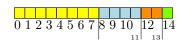
Proof continued

- 1. Valid extractor...
- 2. Theorem holds if m is a power of two. Only one block.
- 3. *m* not a power of 2...
- 4. X falls in block of size 2^k : then output k complete random bits..
 - ... entropy is **k**.
- 5. Let $2^k < m < 2^{k+1}$ biggest block.
- 6. $u = \lfloor \lg(m-2^k) \rfloor < k$. There must be a block of size u in the decomposition of m.
- 7. two blocks in decomposition of m: sizes 2^k and 2^u .
- 8. Largest two blocks...
- 9. $2^k + 2 * 2^u > m \implies 2^{u+1} + 2^k m > 0$.
- 10. \mathbf{Y} : random variable = number of bits output by extractor.

Proof

1. m: A sum of unique powers of 2, namely $m = \sum_i a_i 2^i$, where $a_i \in \{0, 1\}$.

2. Example:



- 3. decomposed $\{0, \ldots, m-1\}$ into disjoint union of blocks sizes are powers of 2.
- 4. If x is in block 2^k , output its relative location in the block in binary representation.
- 5. Example: $\mathbf{x} = \mathbf{10}$:
 then falls into block $\mathbf{2}^2$... \mathbf{x} relative location is 2. Output $\mathbf{2}$ written using two bits, Output: "10".

Proof continued

1. By lemma, since $\frac{m-2^k}{m} < 1$:

$$\frac{m-2^k}{m} \leq \frac{m-2^k+\left(2^{u+1}+2^k-m\right)}{m+\left(2^{u+1}+2^k-m\right)} = \frac{2^{u+1}}{2^{u+1}+2^k}.$$

2. By induction (assumed holds for all numbers smaller than **m**):

$$E[Y] \ge \frac{2^k}{m}k + \frac{m-2^k}{m} \left(\underbrace{\lfloor \lg(m-2^k) \rfloor}_{u} - 1 \right)$$

$$= \frac{2^k}{m}k + \frac{m-2^k}{m} \underbrace{(k-k+u-1)}_{=0} + u - 1$$

$$= k + \frac{m-2^k}{m} (u-k-1)$$

Proof continued..

1. We have:

$$E[Y] \ge k + \frac{m-2^k}{m} (u-k-1)$$

$$\ge k + \frac{2^{u+1}}{2^{u+1}+2^k} (u-k-1)$$

$$= k - \frac{2^{u+1}}{2^{u+1}+2^k} (1+k-u),$$

since $u - k - 1 \le 0$ as k > u.

- 2. If u = k 1, then $\mathbf{E}[Y] \ge k \frac{1}{2} \cdot 2 = k 1$, as required.
- 3. If u = k 2 then $E[Y] \ge k \frac{1}{3} \cdot 3 = k 1$.

Proof continued.....

1.
$$E[Y] \ge k - \frac{2^{u+1}}{2^{u+1}+2^k} (1+k-u)$$
.
And $u-k-1 \le 0$ as $k > u$.

2. If u < k - 2 then

$$E[Y] \ge k - \frac{2^{u+1}}{2^k} (1 + k - u)$$

$$= k - \frac{k - u + 1}{2^{k-u-1}}$$

$$= k - \frac{2 + (k - u - 1)}{2^{k-u-1}}$$

$$\ge k - 1,$$

since
$$(2 + i)/2^{i} \le 1$$
 for $i \ge 2$.

30/42