Chapter 21

Union-Find

CS 573: Algorithms, Fall 2014

November 6, 2014

21.1 Union Find

21.2 Union-Find

21.2.1 Requirements from the data-structure

21.2.1.1 Requirements from the data-structure

- (A) Maintain a collection of sets.
- (B) $\mathbf{makeSet}(x)$ creates a set that contains the single element x.
- (C) $\mathbf{find}(\mathbf{x})$ returns the set that contains x.
- (D) **union**(A, B) returns set = union of A and B. That is $A \cup B$ merges the two sets A and B and return the merged set.

21.2.2 Amortized analysis

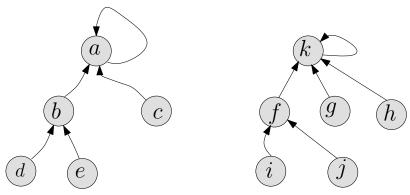
21.2.2.1 Amortized Analysis

- (A) Use data-structure as a black-box inside algorithm.... Union-Find in Kruskal algorithm for computing MST.
- (B) Bounded worst case time per operation.
- (C) Care: overall running time spend in data-structure.
- (D) **amortized running-time** of operation = average time to perform an operation on data-structure.
- (E) Amortized time per operation $=\frac{\text{overall running time}}{\text{number of operations}}$.

21.2.3 The data-structure

21.2.4 Reversed Trees

21.2.4.1 Representing sets in the Union-Find DS



The Union-Find representation of the sets $A = \{a, b, c, d, e\}$ and $B = \{f, g, h, i, j, k\}$. The set A is uniquely identified by a pointer to the root of A, which is the node containing a.

21.2.5 Reversed Trees

21.2.5.1 !esrever ni retteb si gnihtyreve esuaceB

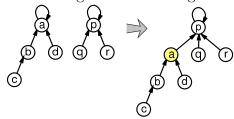
- (A) Reversed Trees:
 - (A) Initially: Every element is its own node.
 - (B) Node $v: \overline{p}(v)$ pointer to its parent.
 - (C) Set uniquely identified by root node/element.
- (B) makeSet: Create a singleton pointing to itself:
- (C) $\mathbf{find}(x)$:
 - (A) Start from node containing x, traverse up tree, till arriving to root.
 - (B) $\frac{\mathbf{find}}{x \to b \to a}$
 - (C) a: returned as set.

21.2.6 Union operation in reversed trees

21.2.6.1 Just hang them on each other.

union(a, p): Merge two sets.

- (A) Hanging the root of one tree, on the root of the other.
- (B) A destructive operation, and the two original sets no longer exist.



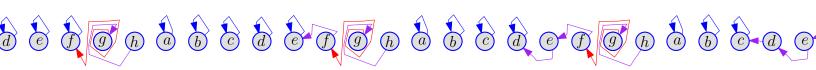
21.2.6.2 Pseudo-code of naive version...

$$\begin{aligned} & \mathbf{find}(\mathbf{x}) \\ & \mathbf{if} \ x = \overline{\mathbf{p}}(x) \ \mathbf{then} \\ & \mathbf{return} \ x \\ & \mathbf{return} \\ & \mathbf{find}(\overline{\mathbf{p}}(x)) \end{aligned}$$

$$\begin{array}{c} \mathbf{union}(\ x,y\) \\ A \leftarrow \mathbf{find}(x) \\ B \leftarrow \mathbf{find}(y) \\ \overline{\mathbf{p}}(B) \leftarrow A \end{array}$$

21.2.7 Example...

21.2.7.1 The long chain



After: makeSet(a), makeSet(b), makeSet(c), makeSet(d), makeSet(e), makeSet(f), makeSet(f), makeSet(f)

 $\mathbf{union}(g,h)$

 $\mathbf{union}(f,g)$

 $\mathbf{union}(e, f)$

 $\mathbf{union}(d, e)$

 $\mathbf{union}(c,d)$

 $\mathbf{union}(b, c)$

 $\mathbf{union}(a,b)$

21.2.7.2 Find is slow, hack it!

- (A) find might require $\Omega(n)$ time.
- (B) **Q**: How improve performance?
- (C) Two "hacks":
 - (i) Union by rank:

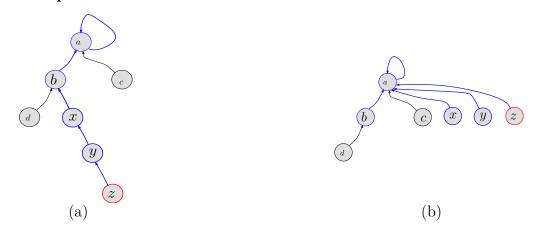
Maintain in root of tree, a bound on its depth (rank).

Rule: Hang the smaller tree on the larger tree in union.

(ii) Path compression:

During find, make all pointers on path point to root.

21.2.7.3 Path compression in action...



(a) The tree before performing $\mathbf{find}(z)$, and (b) The reversed tree after performing $\mathbf{find}(z)$ that uses path compression.

21.2.7.4 Pseudo-code of improved version...

$$\mathbf{find}(\mathbf{x}) \\
\mathbf{if} \ x \neq \overline{\mathbf{p}}(x) \ \mathbf{then} \\
\overline{\mathbf{p}}(x) \leftarrow \mathbf{find}(\overline{\mathbf{p}}(x)) \\
\mathbf{return} \ \overline{\mathbf{p}}(x)$$

$$\begin{array}{c} \mathbf{union}(x,\,y\,\,) \\ A \leftarrow \mathbf{find}(x) \\ B \leftarrow \mathbf{find}(y) \\ \mathbf{if} \ \mathrm{rank}(A) > \mathrm{rank}(B) \ \mathbf{then} \\ \overline{p}(B) \leftarrow A \\ \mathbf{else} \\ \overline{p}(A) \leftarrow B \\ \mathbf{if} \ \mathrm{rank}(A) = \mathrm{rank}(B) \ \mathbf{then} \\ \mathrm{rank}(B) \leftarrow \mathrm{rank}(B) + 1 \end{array}$$

21.3 Analyzing the Union-Find Data-Structure

21.3.0.5 Definition

Definition 21.3.1. v: Node UnionFind data-structure \mathcal{D} v is $leader \iff v$ root of a (reversed) tree in \mathcal{D} .

"When you're not a leader, you're little people."

21.3.0.6 Lemma

Lemma 21.3.2. Once node v stop being a leader, can never become leader again.

Proof: (A) x stopped being leader because **union** operation hanged x on y.

- (B) From this point on...
- (C) x might change only its parent pointer (find).
- (D) x parent pointer will never become equal to x again.
- (E) x never a leader again.

21.3.0.7 Another Lemma

Lemma 21.3.3. Once a node stop being a leader then its rank is fixed.

Proof: (A) rank of element changes only by **union** operation.

- (B) **union** operation changes rank only for... the "new" leader of the new set.
- (C) if an element is no longer a leader, than its rank is fixed.

21.3.0.8 Ranks are strictly monotonically increasing

Lemma 21.3.4. Ranks are monotonically increasing in the reversed trees... ...along a path from node to root of the tree.

21.3.0.9 Proof...

- (A) Claim: $\forall u \to v \text{ in DS: } rank(u) < rank(v).$
- (B) Proof by induction. Base: all singletons. Holds.
- (C) Assume claim holds at time t, before an operation.
- (D) If operation is $\mathbf{union}(A, B)$, and assume that we hanged $\mathrm{root}(A)$ on $\mathrm{root}(B)$. Must be that $\mathrm{rank}(\mathrm{root}(B))$ is now larger than $\mathrm{rank}(\mathrm{root}(A))$ (verify!). Claim true after operation!
- (E) If operation find: traverse path π , then all the nodes of π are made to point to the last node v of π .

By induction, rank(v) > rank of all other nodes of π .

All the nodes that get compressed, the rank of their new parent, is larger than their own rank.

21.3.0.10 Trees grow exponentially in size with rank

Lemma 21.3.5. When node gets rank $k \implies at \ least \ge 2^k \ elements \ in \ its \ subtree.$

Proof: (A) Proof is by induction.

- (B) For k = 0: obvious since a singleton has a rank zero, and a single element in the set.
- (C) node u gets rank k only if the merged two roots u, v has rank k-1.
- (D) By induction, u and v have $\geq 2^{k-1}$ nodes before merge.
- (E) merged tree has $\geq 2^{k-1} + 2^{k-1} = 2^k$ nodes.

21.3.0.11 Having higher rank is rare

Lemma 21.3.6. # nodes that get assigned rank k throughout execution of Union-Find DS is at most $n/2^k$.

Proof: (A) By induction. For k = 0 it is obvious.

- (B) when v become of rank k. Charge to roots merged: u and v.
- (C) Before union: u and v of rank k-1
- (D) After merge: rank(v) = k and rank(u) = k 1.
- (E) u no longer leader. Its rank is now fixed.
- (F) u, v leave rank $k-1 \implies v$ enters rank k.
- (G) By induction: at most $n/2^{k-1}$ nodes of rank k-1 created. $\implies \# \text{ nodes rank } k : \leq \left(n/2^{k-1}\right)/2 = n/2^k$.

21.3.0.12Find takes logarithmic time

Lemma 21.3.7. The time to perform a single find operation when we perform union by rank and path compression is $O(\log n)$ time.

Proof: (A) rank of leader v of reversed tree T, bounds depth of T.

- (B) By previous lemma: $\max \operatorname{rank} < \lg n$.
- (C) Depth of tree is $O(\log n)$.
- (D) Time to perform **find** bounded by depth of tree.

21.3.0.13 \log^* in detail

- (A) $\log^*(n)$: number of times to take \log of number to get number smaller than two.
- (B) $\log^* 2 = 1$
- (C) $\log^* 2^2 = 2$.
- (D) $\log^* 2^{2^2} = 1 + \log^* (2^2) = 2 + \log^* 2 = 3$.
- (E) $\log^* 2^{2^2} = \log^* (65536) = 4$. (F) $\log^* 2^{2^{2^2}} = \log^* 2^{65536} = 5$.
- (G) log* is a monotone increasing function.
- (H) $\beta = 2^{2^{2^2}} = 2^{65536}$: huge number For practical purposes, \log^* returns value < 5.

21.3.0.14 Can do much better!

Theorem 21.3.8. For a sequence of m operations over n elements, the overall running time of the **UnionFind** data-structure is $O((n+m)\log^* n)$.

- (A) Intuitively: UnionFind data-structure takes constant time per operation... (unless n is larger than β which is unlikely).
- (B) Not quite correct if n sufficiently large...

21.3.0.15 The tower function...

Definition 21.3.9. Tower(b) = $2^{\text{Tower}(b-1)}$ and Tower(0) = 1.

Tower(i): a tower of $2^{2^{2^{-2}}}$ of height i. Observe that $\log^*(\text{Tower}(i)) = i$.

Definition 21.3.10. For $i \geq 0$, let Block(i) = [Tower(i-1) + 1, Tower(i)]; that is Block(i) = $[z, 2^{z-1}]$ for z = Tower(i-1) + 1. Also Block(0) = [0, 1]. As such,

 $Block(0) = \left[0, 1\right], \ Block(1) = \left[2, 2\right], \ Block(2) = \left[3, 4\right], \ Block(3) = \left[5, 16\right], \ Block(4) = \left[17, 65536\right], \ Block(4) = \left[4, 4\right], \ Block(4) = \left[4$ Block(5) = $\left[65537, 2^{65536}\right] \dots$

21.3.0.16 Running time of find...

- (A) RT of find(x) proportional to length of the path from x to the root of its tree.
- (B) ...start from x and we visit the sequence: $x_1 = x, x_2 = \overline{p}(x_1), x_3 = \overline{p}(x_2), \dots, x_i = \overline{p}(x_{i-1}), \dots, x_m = \overline{p}(x_{m-1}) = \text{root of tree.}$
- (C) $\operatorname{rank}(x_1) < \operatorname{rank}(x_2) < \operatorname{rank}(x_3) < \ldots < \operatorname{rank}(x_m)$.
- (D) RT of **find**(x) is O(m).

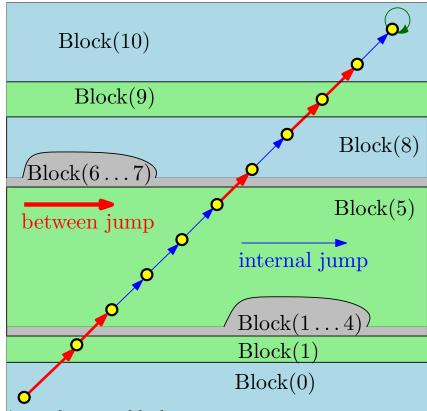
Definition 21.3.11. A node x is **in** the ith block if $rank(x) \in Block(i)$.

- (E) Looking for ways to pay for the **find** operation.
- (F) Since other two operations take constant time...

21.3.0.17 Blocks and jumping pointers

- (A) maximum rank of node v is $O(\log n)$.
- (B) # of blocks is $O(\log^* n)$, as $O(\log n) \in \operatorname{Block}(c \log^* n)$, (c. constant, say 2).
- (C) find (x): π path used.
- (D) partition π into each by rank.
- (E) Price of **find** length π .
- (F) node x: $\nu = \text{index}_{B}(x)$ index block containing rank(x).
- (G) $\operatorname{rank}(x) \in \operatorname{Block}(\operatorname{index}_{B}(x)).$
- (H) index_B(x): **block** of x

21.3.0.18 The path of find operation, and its pointers



21.3.0.19 The pointers between blocks...

(A) During a **find** operation...

- (B) π : path traversed.
- (C) Ranks of the nodes visited in π monotone increasing.
- (D) Once leave block *i*th, never go back!
- (E) charge visit to nodes in π next to element in a different block...
- (F) to total number of blocks $\leq O(\log^* n)$.

21.3.0.20 Jumping pointers

Definition 21.3.12. π : path traversed by find.

 $x \in \pi$, $\overline{p}(x)$ is in a different block, is a **jump between blocks**.

jump inside a block is an *internal jump* (i.e., x and $\overline{p}(x)$ are in same block).

21.3.0.21 Not too many jumps between blocks

Lemma 21.3.13. During a single find(x) operation, the number of jumps between blocks along the search path is $O(\log^* n)$.

Proof: (A) $\pi = x_1, \dots, x_m$: path followed by **find**.

- (B) $x_i = \overline{p}(x_{i-})$, for all i.
- (C) $0 \le \operatorname{index}_{B}(x_1) \le \operatorname{index}_{B}(x_2) \le \ldots \le \operatorname{index}_{B}(x_m)$.
- (D) $index_B(x_m) = O(log^* n)$.
- (E) Number of elements in π such that index_B $(x) \neq \text{index}_{B}(\overline{p}(x))...$
- (F) ... at most $O(\log^* n)$.

21.3.0.22 Benefits of an internal jump

- (A) x and $\overline{p}(x)$ are in same block.
- (B) $index_B(x) = index_B(\overline{p}(x)).$
- (C) find passes through x.
- (D) $r_{\text{bef}} = \text{rank}(\overline{p}(x))$ before **find** operation.
- (E) $r_{\text{aft}} = \text{rank}(\overline{p}(x))$ after **find** operation.
- (F) By path compression: $r_{\text{aft}} > r_{\text{bef}}$.
- (G) \implies parent pointer x jumped forward...
- (H) ...and new parent has higher rank.
- (I) Charge internal block jumps to this "progress".

21.3.1 Changing parents...

21.3.1.1 Your parent can be promoted only a few times before leaving block

Lemma 21.3.14. At most $|\operatorname{Block}(i)| \leq \operatorname{Tower}(i)$ find operations can pass through an element x, which is in the ith block (i.e., $\operatorname{index}_{\mathbf{B}}(x) = i$) before $\overline{\mathbf{p}}(x)$ is no longer in the ith block. That is $\operatorname{index}_{\mathbf{B}}(\overline{\mathbf{p}}(x)) > i$.

Proof: (A) parent of x incr rank every-time internal jump goes through x.

- (B) At most |Block(i)| different values in the *i*th block.
- (C) Block(i) = [Tower(i-1) + 1, Tower(i)]
- (D) Claim follows, as: $|Block(i)| \leq Tower(i)$.

21.3.1.2 Few elements are in the bigger blocks

Lemma 21.3.15. At most n/Tower(i) nodes are assigned ranks in the ith block throughout the algorithm execution.

Proof: By lemma, the number of elements with rank in the ith block

$$\leq \sum_{k \in \operatorname{Block}(i)} \frac{n}{2^k} = \sum_{k = \operatorname{Tower}(i-1)+1}^{\operatorname{Tower}(i)} \frac{n}{2^k}$$

$$= n \cdot \sum_{k = \operatorname{Tower}(i-1)+1}^{\operatorname{Tower}(i)} \frac{1}{2^k} \leq \frac{n}{2^{\operatorname{Tower}(i-1)}} = \frac{n}{\operatorname{Tower}(i)}. = \frac{n}{\operatorname{Tower}(i)}.$$

21.3.1.3 Total number of internal jumps is O(n)

Lemma 21.3.16. The number of internal jumps performed, inside the ith block, during the lifetime of the union-find data-structure is O(n).

Proof: (A) x in ith block, have at most |Block(i)| internal jumps...

- (B) ... all jumps through x are between blocks, by lemma...
- (C) $\leq n/\text{Tower}(i)$ elements assigned ranks in the ith block, throughout algorithm execution.
- (D) total number of internal jumps is $|Block(i)| \cdot \frac{n}{Tower(i)} \le Tower(i) \cdot \frac{n}{Tower(i)} = n$.

21.3.1.4 Total number of internal jumps

Lemma 21.3.17. The number of internal jumps performed by the Union-Find data-structure overall is $O(n \log^* n)$.

Proof: (A) Every internal jump associated with block it is in.

- (B) Every block contributes O(n) internal jumps throughout time. (By previous lemma.)
- (C) There are $O(\log^* n)$ blocks.
- (D) There are at most $O(n \log^* n)$ internal jumps.

21.3.1.5 Result...

Lemma 21.3.18. The overall time spent on m find operations, throughout the lifetime of a union-find data-structure defined over n elements, is $O((m+n)\log^* n)$.

Theorem 21.3.19. If we perform a sequence of m operations over n elements, the overall running time of the Union-Find data-structure is $O((n+m)\log^* n)$.

21.3.1.6 More on strange functions...

Idea: Define a sequence of functions $f_i(x) = f_{i-1}^{(x)}(0)$

Function	Inverse function
$f_1(x) = x + 2$	$g_1(y) = y - 2$
$f_2(x) = 2x$	$g_2(y) = y/2$
$f_3(x) = 2^x$	$g_3(y) = \lg y$
$f_4(x) = \text{Tower}(x)$	$g_4(x) = \log^* x$
$f_5(x) = \dots$	

$$\overline{f_2(x) = f_1(f_2(x-1)) = 2x \ f_3(x) = f_2}(f_3(x-1)) = 2^x f_4(x) = f_3(f_4(x-1)) = \text{Tower} x$$

 $f_i(x) = f_{i-1}^{(x)}(1)$

 $g_i(x) = \#$ of times one has to apply $g_{i-1}(\cdot)$ to x before we get number smaller than 2.

 $A(n) = f_n(n)$: **Ackerman function**.

Inverse Ackerman function:

$$\alpha(n) = A^{-1}(n) = \min i \text{ s.t. } g_i(n) \le i.$$

21.3.1.7 Union-Find: Tarjan result

Theorem 21.3.20 (?). If we perform a sequence of m operations over n elements, the overall running time of the Union-Find data-structure is $O((n+m)\alpha(n))$.

(The above is not quite correct, but close enough.)