CS 573: Algorithms, Fall 2014

Approximation Algorithms using Linear Programming

Lecture 18 October 28, 2014 Part I

Weighted vertex cover

1/42

Weighted vertex cover

Weighted Vertex Cover problem

G = (V, E)

Each vertex $\mathbf{v} \in \mathbf{V}$: cost $\mathbf{c}_{\mathbf{v}}$.

Compute a vertex cover of minimum cost.

- 1. vertex cover: subset of vertices **V** so each edge is covered.
- 2. NP-Hard
- 3. ...unweighted **Vertex Cover** problem.
- 4. ... write as an integer program (IP):
- 5. $\forall \mathbf{v} \in \mathbf{V}$: $\mathbf{x}_{\mathbf{v}} = \mathbf{1} \iff \mathbf{v}$ in the vertex cover.
- 6. $\forall vu \in E$: covered. $\implies x_v \lor x_u \text{ true.} \implies x_v + x_u \ge 1$.
- 7. minimize total cost: $\min \sum_{v \in V} x_v c_v$.

Weighted vertex cover

State as IP \implies Relax \implies LP

$$\begin{array}{lll} & \min & \sum_{\mathsf{v} \in \mathsf{V}} \mathsf{c}_\mathsf{v} x_\mathsf{v}, \\ & \text{such that} & x_\mathsf{v} \in \{0,1\} & \forall \mathsf{v} \in \mathsf{V} & (1) \\ & x_\mathsf{v} + x_\mathsf{u} \geq 1 & \forall \mathsf{v} \mathsf{u} \in \mathsf{E}. \end{array}$$

- 1. ... **NP-Hard**.
- 2. relax the integer program.
- 3. allow x_v get values $\in [0, 1]$.
- 4. $x_v \in \{0,1\}$ replaced by $0 \le x_v \le 1$. The resulting LP is

$$\begin{array}{ll} \text{min} & \sum\limits_{\mathsf{v}\in\mathsf{V}}\mathsf{c}_{\mathsf{v}}x_{\mathsf{v}},\\ \text{s.t.} & \mathbf{0}\leq x_{\mathsf{v}} & \forall\mathsf{v}\in\mathsf{V},\\ & x_{\mathsf{v}}\leq 1 & \forall\mathsf{v}\in\mathsf{V},\\ & x_{\mathsf{v}}+x_{\mathsf{u}}\geq 1 & \forall\mathsf{vu}\in\mathsf{E}. \end{array}$$

2/40

Weighted vertex cover - rounding the LP

- 1. Optimal solution to this LP: $\widehat{\mathbf{x}_{\mathbf{v}}}$ value of var $\mathbf{X}_{\mathbf{v}}$, $\forall \mathbf{v} \in \mathbf{V}$.
- 2. optimal value of LP solution is $\hat{\alpha} = \sum_{\mathbf{v} \in \mathbf{V}} \mathbf{c}_{\mathbf{v}} \widehat{\mathbf{x}}_{\mathbf{v}}$.
- 3. optimal integer solution: $\mathbf{x}_{\mathbf{v}}^{\prime}$, $\forall \mathbf{v} \in \mathbf{V}$ and α^{\prime} .
- 4. Any valid solution to IP is valid solution for LP!
- 5. $\hat{\alpha} \leq \alpha'$.
 Integral solution not better than LP.
- 6. Got fractional solution (i.e., values of $\widehat{\mathbf{x}_{\mathbf{v}}}$).
- 7. Fractional solution is better than the optimal cost.
- 8. Q: How to turn fractional solution into a (valid!) integer solution?
- 9. Using *rounding*.

5/42

Cost of solution

Cost of **S**:

$$\mathsf{c}_{\mathsf{S}} = \sum_{\mathsf{v} \in \mathsf{S}} \mathsf{c}_{\mathsf{v}} = \sum_{\mathsf{v} \in \mathsf{S}} 1 \cdot \mathsf{c}_{\mathsf{v}} \leq \sum_{\mathsf{v} \in \mathsf{S}} 2\widehat{\mathsf{x}_{\mathsf{v}}} \cdot \mathsf{c}_{\mathsf{v}} \leq 2 \sum_{\mathsf{v} \in \mathsf{V}} \widehat{\mathsf{x}_{\mathsf{v}}} \mathsf{c}_{\mathsf{v}} = 2\widehat{\alpha} \leq 2\alpha',$$

since $\widehat{\mathbf{x}_{\mathbf{v}}} \geq 1/2$ as $\mathbf{v} \in \mathbf{S}$. α' is cost of the optimal solution \implies

Theorem

The Weighted Vertex Cover problem can be 2-approximated by solving a single LP. Assuming computing the LP takes polynomial time, the resulting approximation algorithm takes polynomial time.

How to round?

- 1. consider vertex \mathbf{v} and fractional value $\widehat{\mathbf{x}_{\mathbf{v}}}$.
- 2. If $\widehat{x_v} = 1$ then include in solution!
- 3. If $\widehat{x_v} = 0$ then do **not** include in solution.
- 4. if $\widehat{x_v} = 0.9 \implies LP$ considers v as being 0.9 useful.
- 5. The LP puts its money where its belief is...
- 6. ... $\hat{\alpha}$ value is a function of this "belief" generated by the LP.
- 7. Big idea: Trust LP values as guidance to usefulness of vertices.
- 8. Pick all vertices \geq threshold of usefulness according to LP.
- 9. $S = \{v \mid \widehat{x_v} \geq 1/2\}$.
- 10. Claim: **\$** a valid vertex cover, and cost is low.
- 11. Indeed, edge cover as: $\forall vu \in E$ have $\widehat{x_v} + \widehat{x_u} \ge 1$.
- 12. $\widehat{x_v}, \widehat{x_u} \in (0,1)$ $\implies \widehat{x_v} \ge 1/2 \text{ or } \widehat{x_u} \ge 1/2.$

6/4

 \implies $\mathbf{v} \in \mathbf{S}$ or $\mathbf{u} \in \mathbf{S}$ (or both).

 \implies **S** covers all the edges of **G**.

The lessons we can take away

Or not - boring, boring, boring.

- 1. Weighted vertex cover is simple, but resulting approximation algorithm is non-trivial.
- 2. Not aware of any other **2**-approximation algorithm does not use LP. (For the weighted case!)
- 3. Solving a *relaxation* of an optimization problem into a LP provides us with insight.
- 4. But... have to be creative in the rounding.

Part II

Revisiting Set Cover

Set Cover - IP & IP

$$\begin{array}{ll} \min & \alpha = \sum\limits_{U \in \mathcal{F}} x_U, \\ \text{s.t.} & x_U \in \{0,1\} & \forall U \in \mathcal{F}, \\ & \sum\limits_{U \in \mathcal{F}, s \in \mathcal{U}} x_U \geq 1 & \forall s \in \mathcal{S}. \end{array}$$

Next, we relax this IP into the following LP.

$$\begin{aligned} \min & \quad \alpha = \sum_{U \in \mathcal{F}} \mathsf{x}_U, \\ & \quad 0 \leq \mathsf{x}_U \leq 1 & \quad \forall U \in \mathcal{F}, \\ & \quad \sum_{U \in \mathcal{T}, s \in U} \mathsf{x}_U \geq 1 & \quad \forall s \in \mathcal{S}. \end{aligned}$$

Revisiting **Set Cover**

- 1. Purpose: See new technique for an approximation algorithm.
- 2. Not better than greedy algorithm already seen $O(\log n)$ approximation.

Set Cover

Instance: (S, \mathcal{F})

S - a set of **n** elements

 \mathcal{F} - a family of subsets of S, s.t. $\bigcup_{X \in \mathcal{F}} X = S$.

Question: The set $\mathcal{X} \subseteq \mathbf{F}$ such that \mathcal{X} contains as few sets as possible, and \mathcal{X} covers \boldsymbol{S} .

Set Cover - IP & LP

- 1. LP solution: $\forall \boldsymbol{U} \in \mathcal{F}$, $\widehat{\boldsymbol{x}_{\boldsymbol{U}}}$, and $\widehat{\alpha}$.
- 2. Opt IP solution: $\forall \mathbf{U} \in \mathcal{F}, \mathbf{x}'_{\mathbf{U}}$, and α' .
- 3. Use LP solution to guide in rounding process.
- 4. If $\widehat{x_{ij}}$ is close to 1 then pick U to cover.
- 5. If $\widehat{x_{ij}}$ close to **0** do not.
- 6. Idea: Pick $U \in \mathfrak{F}$: randomly choose U with *probability* Ωıι.
- 7. Resulting family of sets 9.
- 8. Z_s : indicator variable. 1 if $s \in G$.
- 9. Cost of g is $\sum_{\boldsymbol{s}\in\mathfrak{F}}\boldsymbol{Z_{\boldsymbol{s}}},$ and the expected cost is $\mathbf{E} \Big[\text{cost of } \mathcal{G} \Big] = \mathbf{E} [\sum_{S \in \mathcal{F}} \mathbf{Z}_S] = \sum_{S \in \mathcal{F}} \mathbf{E} \Big[\mathbf{Z}_S \Big] =$ $\sum_{\mathbf{S}\in\mathcal{F}} \mathsf{Pr}\Big[\mathbf{S}\in\mathfrak{G}\Big] = \sum_{\mathbf{S}\in\mathcal{F}} \widehat{\mathbf{x}_{\mathbf{S}}} = \widehat{\alpha} \leq \alpha'.$
- 10. In expectation, \mathfrak{G} is not too expensive.
- 11. Bigus problumos: 9 might fail to cover some element $s \in S$.

Set Cover – Rounding continued

- 1. **Solution**: Repeat rounding stage $m = 10 \lceil \lg n \rceil = O(\log n)$ times.
- 2. n = |S|.
- 3. G_i : random cover computed in ith iteration.
- 4. $\mathcal{H} = \bigcup_i \mathcal{G}_i$. Return \mathcal{H} as the required cover.

13/42

Cost of solution

- 1. Have: $\mathbf{E} \Big[\text{cost of } \mathfrak{G}_i \Big] \leq \alpha'$.
- 2. \Longrightarrow Each iteration expected cost of cover \leq cost of optimal solution (i.e., α^{I}).
- 3. Expected cost of the solution is

$$c_{\mathcal{H}} \leq \sum_{i} c_{B_i} \leq m\alpha' = O(\alpha' \log n).$$

The set ${\mathfrak H}$ covers ${\mathsf S}$

1. For an element $s \in S$, we have that

$$\sum_{\mathbf{U}\in\mathcal{F},s\in\mathbf{U}}\widehat{\mathbf{x}_{\mathbf{U}}}\geq\mathbf{1},\tag{2}$$

2. probability s not covered by g_i (*i*th iteration set).

$$\Pr[s \text{ not covered by } G_i]$$

$$= \Pr \Big[\text{ no } \pmb{U} \in \mathcal{F}, \text{ s.t. } \pmb{s} \in \pmb{U} \text{ picked into } \mathcal{G}_i \Big]$$

$$=\prod_{\boldsymbol{U}\in\mathcal{F},s\in\boldsymbol{U}}\Pr\Big[\boldsymbol{U}$$
 was not picked into $\mathfrak{G}_i\Big]$

$$= \prod_{U \in \mathcal{F}, s \in U} (1 - \widehat{x_U}) \leq \prod_{U \in \mathcal{F}, s \in U} \exp(-\widehat{x_U})$$

$$= \exp\left(-\sum_{U \in \mathcal{F}, s \in U} \widehat{x_U}\right) \leq \exp(-1) \leq \frac{1}{2}, \leq \frac{1}{2}$$

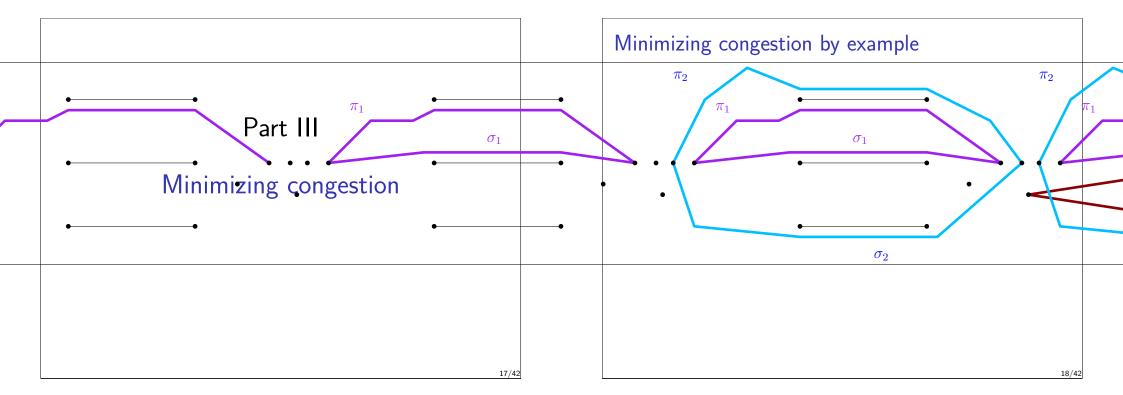
- 3. probability **s** is not covered in all **m** iterations $\leq \left(\frac{1}{2}\right)^m < \frac{1}{n^{10}},$
- 4. ...since $m = O(\log n)$.
- 5. probability one of ${\it n}$ elements of ${\it S}$ is not covered by ${\it H}$ is $_{14/42}$

$$\leq n(1/n^{10}) = 1/n^9$$
.

The result

Theorem

By solving an LP one can get an $O(\log n)$ -approximation to set cover by a randomized algorithm. The algorithm succeeds with high probability.



Minimizing congestion

- 1. **G**: graph. **n** vertices.
- 2. π_i , σ_i paths with the same endpoints \mathbf{v}_i , $\mathbf{u}_i \in \mathbf{V}(\mathbf{G})$, for $i = 1, \ldots, t$.
- 3. Rule I: Send one unit of flow from \mathbf{v}_i to \mathbf{u}_i .
- 4. Rule II: Choose whether to use π_i or σ_i .
- 5. Target: No edge in **G** is being used too much.

Definition

Given a set \boldsymbol{X} of paths in a graph \boldsymbol{G} , the *congestion* of \boldsymbol{X} is the maximum number of paths in \boldsymbol{X} that use the same edge.

Minimizing congestion

1. IP \Longrightarrow LP:

$$\begin{array}{ll} \min & \mathbf{w} \\ \text{s.t.} & x_i \geq 0 \\ & x_i \leq 1 \\ & \sum_{\mathbf{e} \in \pi_i} x_i + \sum_{\mathbf{e} \in \sigma_i} (1 - x_i) \leq \mathbf{w} \end{array} \quad \begin{array}{l} i = 1, \ldots, t, \\ i = 1, \ldots, t, \end{array}$$

- 2. $\hat{x_i}$: value of x_i in the optimal LP solution.
- 3. $\widehat{\mathbf{w}}$: value of \mathbf{w} in LP solution.
- 4. Optimal congestion must be bigger than $\widehat{\boldsymbol{w}}$.
- 5. X_i : random variable one with probability $\hat{x_i}$, and zero otherwise.
- 6. If $X_i = 1$ then use π to route from \mathbf{v}_i to \mathbf{u}_i .
- 7. Otherwise use σ_i .

20/42

Minimizing congestion

- 1. Congestion of **e** is $Y_e = \sum_{e \in \pi_i} X_i + \sum_{e \in \sigma_i} (1 X_i)$.
- 2. And in expectation

$$egin{aligned} lpha_{\mathrm{e}} &= \mathsf{E} \Big[\mathsf{Y}_{\mathrm{e}} \Big] = \mathsf{E} \Big[\sum_{\mathrm{e} \in \pi_i} \mathsf{X}_i + \sum_{\mathrm{e} \in \sigma_i} (1 - \mathsf{X}_i) \Big] \ &= \sum_{\mathrm{e} \in \pi_i} \mathsf{E} \Big[\mathsf{X}_i \Big] + \sum_{\mathrm{e} \in \sigma_i} \mathsf{E} \Big[(1 - \mathsf{X}_i) \Big] \ &= \sum_{\mathrm{e} \in \pi_i} \widehat{\mathsf{x}}_i + \sum_{\mathrm{e} \in \sigma_i} (1 - \widehat{\mathsf{x}}_i) \leq \widehat{\mathsf{w}}. \end{aligned}$$

3. $\widehat{\mathbf{w}}$: Fractional congestion (from LP solution).

Minimizing congestion - continued

- 1. $Y_e = \sum_{e \in \pi_i} X_i + \sum_{e \in \sigma_i} (1 X_i)$.
- 2. Y_e is just a sum of independent 0/1 random variables!
- 3. Chernoff inequality tells us sum can not be too far from expectation!

22/42

Minimizing congestion - continued

1. By Chernoff inequality:

$$\mathsf{Pr}\Big[\mathsf{Y}_{\mathsf{e}} \geq (1+\delta)\alpha_{\mathsf{e}} \Big] \leq \mathsf{exp}\Big(-\frac{\alpha_{\mathsf{e}}\delta^2}{4} \Big) \leq \mathsf{exp}\Big(-\frac{\widehat{\mathsf{w}}\delta^2}{4} \Big) \,.$$

2. Let $\delta = \sqrt{\frac{400}{\widehat{w}} \ln t}$. We have that

$$\mathsf{Pr}ig[extstyle{ Y_{\mathsf{e}} \geq (1+\delta)lpha_{\mathsf{e}} ig] \leq \mathsf{exp}igg(-rac{\delta^2 \widehat{ extbf{w}}}{4} igg) \leq rac{1}{t^{100}},$$

- 3. If $t \ge n^{1/50} \implies \forall$ edges in graph congestion $\le (1 + \delta)\widehat{w}$.
- 4. t: Number of pairs, n: Number of vertices in G.

Minimizing congestion - continued

1. Got: For $\delta = \sqrt{\frac{400}{\widehat{w}} \ln t}$. We have

$$\mathsf{Pr}ig[m{Y}_{\!\!\! ext{e}} \geq (1+\delta)lpha_{\!\!\! ext{e}} ig] \leq \mathsf{exp}igg(-rac{\delta^2\widehat{m{w}}}{4} igg) \leq rac{1}{t^{100}},$$

2. Play with the numbers. If t = n, and $\widehat{w} \ge \sqrt{n}$. Then, the solution has congestion larger than the optimal solution by a factor of

$$1+\delta=1+\sqrt{\frac{20}{\widehat{w}}\ln t}\leq 1+\frac{\sqrt{20\ln n}}{n^{1/4}},$$

which is of course extremely close to ${\bf 1}$, if ${\bf n}$ is sufficiently large.

Minimizing congestion: result

Theorem

- 1. **G**: Graph **n** vertices.
- 2. $(s_1, t_1), \ldots, (s_t, t_t)$: pairs o vertices
- 3. π_i, σ_i : two different paths connecting s_i to t_i
- 4. $\widehat{\mathbf{w}}$: Fractional congestion at least $\mathbf{n}^{1/2}$.
- 5. opt: Congestion of optimal solution.
- 6. \implies In polynomial time (LP solving time) choose paths
 - 6.1 congestion \forall edges: \leq $(1 + \delta)$ opt

$$6.2 \ \delta = \sqrt{\frac{20}{\widehat{w}}} \ln t.$$

25/42

When the congestion is low

- 1. Just proved that...
- 2. if the optimal congestion is O(1), then...
- 3. algorithm outputs a solution with congestion $O(\log t / \log \log t)$, and this holds with high probability.

When the congestion is low

- 1. Assume $\widehat{\boldsymbol{w}}$ is a constant.
- 2. Can get a better bound by using the Chernoff inequality in its more general form.
- 3. set $\delta = c \ln t / \ln \ln t$, where c is a constant. For $\mu = \alpha_{\rm e}$, we have that

$$\begin{split} \Pr\!\left[Y_{\mathrm{e}} \geq (1+\delta) \mu \right] \leq & \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}} \right)^{\mu} \\ &= \exp\!\left(\mu \! \left(\delta - (1+\delta) \ln(1+\delta) \right) \right) \\ &= \exp\!\left(- \mu c' \ln t \right) \leq \frac{1}{t^{O(1)}}, \end{split}$$

where $oldsymbol{c'}$ is a constant that depends on $oldsymbol{c}$ and grows if $oldsymbol{c}$ grows.

26/42

Part IV

Reminder about Chernoff inequality

27/42

28/4

Chernoff inequality

Problem

Let $X_1, \ldots X_n$ be n independent Bernoulli trials, where

$$extstyle{\mathsf{Pr}}ig[{m{\mathsf{X}}}_i = 1 ig] = {m{p}}_i, \qquad extstyle{\mathsf{Pr}}ig[{m{\mathsf{X}}}_i = 0 ig] = 1 - {m{p}}_i, \ {m{\mathsf{Y}}} = \sum_i {m{\mathsf{X}}}_i, \qquad ext{and} \qquad {m{\mu}} = {m{\mathsf{E}}}ig[{m{\mathsf{Y}}} ig].$$

We are interested in bounding the probability that $Y \geq (1 + \delta)\mu$.

29/42

Chernoff inequality

Theorem (Chernoff inequality)

For any $\delta > 0$,

$$\mathsf{Pr}ig[\mathsf{Y} > (1+\delta)\muig] < \left(rac{e^{\delta}}{(1+\delta)^{1+\delta}}
ight)^{\mu}.$$

Or in a more simplified form, for any $\delta \leq 2e-1$,

$$\mathsf{Pr}ig[Y > (1+\delta)\mu ig] < \mathsf{exp}ig(-\mu\delta^2/4ig) \,,$$

and

$$\mathsf{Pr}ig[\mathsf{Y} > (1+\delta)\mu ig] < 2^{-\mu(1+\delta)},$$

for $\delta \geq 2e-1$.

0/42

More Chernoff...

Theorem

Under the same assumptions as the theorem above, we have

$$\mathsf{Pr}ig[\mathsf{Y} < (1-\delta) \mu ig] \leq \mathsf{exp}igg(-\mu rac{\delta^2}{2} igg) \,.$$