CS 573: Algorithms, Fall 2014

Linear Programming II

Lecture 17 October 23, 2014

```
Simplex( \hat{L} a LP )
         Transform \hat{\boldsymbol{L}} into slack form.
         Let L be the resulting slack form.
         L' \leftarrow \mathsf{Feasible}(L)
         x \leftarrow \mathsf{LPStartSolution}(L')
         x' \leftarrow \mathsf{SimplexInner}(L', x)
         z \leftarrow objective function value of x'
         if z > 0 then
                return "No solution"
         x'' \leftarrow \overline{\mathsf{SimplexInner}}(L, x')
         return x''
```

- SimplexInner: solves a LP if the trivial solution of assigning zero to all the nonbasic variables is feasible.
- $igcap L' = \mathsf{Feasible}(L)$ returns a new LP with feasible solution.
- One by adding new variable x_0 to each equality.
- lacksquare Set target function in L' to $\min x_0$.
- original LP L feasible \iff LP L' has feasible solution with $x_0=0$.
- Apply **SimplexInner** to L' and solution computed (for L') by **LPStartSolution**(L').
- lacksquare If $x_0=0$ then have a feasible solution to L .
- lacksquare Use solution in f SimplexInner on m L
 - need to describe **SimplexInner**: solve LP in slack form given a feasible solution (all nonbasic vars assigned value 0).

- SimplexInner: solves a LP if the trivial solution of assigning zero to all the nonbasic variables is feasible.
- $L' = \mathsf{Feasible}(L)$ returns a new LP with feasible solution.
- One by adding new variable x_0 to each equality.
- lacksquare Set target function in L' to $\min x_0$.
- original LP L feasible \iff LP L' has feasible solution with $x_0 = 0$.
- Apply **SimplexInner** to L' and solution computed (for L') by **LPStartSolution**(L').
- lacksquare If $x_0=0$ then have a feasible solution to L.
- lacktriangle Use solution in ${f SimplexInner}$ on ${m L}$
 - need to describe **SimplexInner**: solve LP in slack form given a feasible solution (all nonbasic vars assigned value 0).

- SimplexInner: solves a LP if the trivial solution of assigning zero to all the nonbasic variables is feasible.
- $L' = \mathsf{Feasible}(L)$ returns a new LP with feasible solution.
- lacksquare Done by adding new variable x_0 to each equality.
- $ext{ } ext{ } ext$
- original LP $m{L}$ feasible \iff LP $m{L}'$ has feasible solution with $m{x_0} = m{0}$.
- Apply **SimplexInner** to L' and solution computed (for L') by **LPStartSolution**(L').
- lacksquare If $x_0=0$ then have a feasible solution to L .
- $lue{}$ Use solution in $lue{}$ SimplexInner on $oldsymbol{L}$
 - need to describe **SimplexInner**: solve LP in slack form given a feasible solution (all nonbasic vars assigned value 0).

- SimplexInner: solves a LP if the trivial solution of assigning zero to all the nonbasic variables is feasible.
- $L' = \mathsf{Feasible}(L)$ returns a new LP with feasible solution.
- lacksquare Done by adding new variable x_0 to each equality.
- lacksquare Set target function in L' to $\min x_0$.
- original LP $m{L}$ feasible \iff LP $m{L}'$ has feasible solution with $x_0=0$.
- Apply **SimplexInner** to L' and solution computed (for L') by **LPStartSolution**(L').
- lacksquare If $x_0=0$ then have a feasible solution to L .
- lacksquare Use solution in ${f SimplexInner}$ on ${m L}$
 - need to describe **SimplexInner**: solve LP in slack form given a feasible solution (all nonbasic vars assigned value 0).

- SimplexInner: solves a LP if the trivial solution of assigning zero to all the nonbasic variables is feasible.
- $L' = \mathsf{Feasible}(L)$ returns a new LP with feasible solution.
- lacksquare Done by adding new variable x_0 to each equality.
- lacksquare Set target function in L' to $\min x_0.$
- original LP $m{L}$ feasible \iff LP $m{L}'$ has feasible solution with $m{x_0} = m{0}$.
- Apply SimplexInner to L' and solution computed (for L') by LPStartSolution(L').
 - If $x_0=0$ then have a feasible solution to $\it L$.
- lacksquare Use solution in ${f SimplexInner}$ on ${m L}$.
- need to describe **SimplexInner**: solve LP in slack form given a feasible solution (all nonbasic vars assigned value 0).

- SimplexInner: solves a LP if the trivial solution of assigning zero to all the nonbasic variables is feasible.
- $L' = \mathsf{Feasible}(L)$ returns a new LP with feasible solution.
- lacksquare Done by adding new variable x_0 to each equality.
- lacksquare Set target function in L' to $\min x_0$.
- original LP $m{L}$ feasible \iff LP $m{L}'$ has feasible solution with $m{x_0} = m{0}$.
- Apply SimplexInner to L' and solution computed (for L') by LPStartSolution(L').
- lacksquare If $x_0=0$ then have a feasible solution to $oldsymbol{L}$.
- lacksquare Use solution in **SimplexInner** on $oldsymbol{L}$.
 - need to describe **SimplexInner**: solve LP in slack form given a feasible solution (all nonbasic vars assigned value 0).

- SimplexInner: solves a LP if the trivial solution of assigning zero to all the nonbasic variables is feasible.
- $L' = \mathsf{Feasible}(L)$ returns a new LP with feasible solution.
- lacksquare Done by adding new variable x_0 to each equality.
- lacksquare Set target function in L' to $\min x_0$.
- original LP $m{L}$ feasible \iff LP $m{L}'$ has feasible solution with $m{x_0} = m{0}$.
- Apply SimplexInner to L' and solution computed (for L') by LPStartSolution(L').
- lacksquare If $x_0=0$ then have a feasible solution to L.
- $lue{}$ Use solution in $lue{}$ SimplexInner on $m{L}$.
- need to describe **SimplexInner**: solve LP in slack form given a feasible solution (all nonbasic vars assigned value 0).

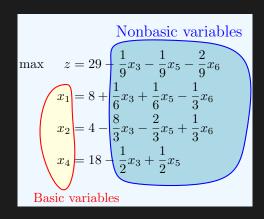
Notations

B - Set of indices of basic variables N - Set of indices of nonbasic variables n = |N| - number of original variables b, c - two vectors of constants m = |B| - number of basic variables (i.e., number of inequalities) $A = \{a_{ii}\}$ - The matrix of coefficients $N \cup B = \{1, \ldots, n+m\}$ v - objective function constant. LP in slack form is specified by a tuple (N, B, A, b, c, v).

The corresponding LP

$$egin{array}{ll} \max & z=v+\sum\limits_{j\in N}c_jx_j, \ & ext{s.t.} & x_i=b_i-\sum\limits_{j\in N}a_{ij}x_j ext{ for } i\in B, \ & x_i\geq 0, & orall i=1,\ldots,n+m. \end{array}$$

Reminder - basic/nonbasic



- LP is in slack form.
- Trivial solution x= au (i.e., all nonbasic variables zero), is feasible.
- igcirc objective value for this solution is $oldsymbol{v}.$
- igcap Reminder: Objective function is $z=v+\sum_{j\in N}c_jx_j.$
- x_e : nonbasic variable with positive coefficient in objective function.
- \bigcirc Formally: e is one of the indices of $ig\{ j \ \Big| \ c_j > 0, j \in N ig\}$
 - x_e is the *entering variable* (enters set of basic variables).
- lacksquare If increase value x_e (from current value of 0 in au)...
 - ... one of basic variables is going to vanish (i.e., become zero).

- LP is in slack form.
- Trivial solution x= au (i.e., all nonbasic variables zero), is feasible.
- igcirc objective value for this solution is v.
- Reminder: Objective function is $z=v+\sum_{j\in N}c_jx_j$
- x_e : nonbasic variable with positive coefficient in objective function.
- $igorplus igoplus egin{aligned} ext{Formally: } e ext{ is one of the indices of } \left\{ j \ \middle| \ c_j > 0, j \in N
 ight. \end{aligned}$
 - x_e is the $m{entering}$ $m{variable}$ (enters set of basic variables).
- \bigcirc If increase value x_e (from current value of 0 in au)...
 - ... one of basic variables is going to vanish (i.e., become zero).

- $lue{}$ LP is in slack form.
- Trivial solution x= au (i.e., all nonbasic variables zero), is feasible.
- lacksquare objective value for this solution is $oldsymbol{v}.$
- Reminder: Objective function is $z=v+\sum_{j\in N}c_jx_j$.
 - x_e : nonbasic variable with positive coefficient in objective function.
- Formally: e is one of the indices of $\left\{ m{j} \mid c_j > 0, m{j} \in N
 ight\}$ x_e is the **entering variable** (enters set of basic variables).
- If increase value x_e (from current value of 0 in au)... one of basic variables is going to vanish (i.e., become zero).

- LP is in slack form.
- Trivial solution x= au (i.e., all nonbasic variables zero), is feasible.
- lacksquare objective value for this solution is $oldsymbol{v}.$
- lacksquare Reminder: Objective function is $z=v+\sum_{j\in N}c_jx_j.$
- x_e : nonbasic variable with positive coefficient in objective function.
- Formally: e is one of the indices of $\left\{ m{j} \mid c_j > 0, m{j} \in m{N}
 ight\}$. x_e is the **entering variable** (enters set of basic variables).
- If increase value x_e (from current value of 0 in au)... one of basic variables is going to vanish (i.e., become zero).

- LP is in slack form.
- Trivial solution x= au (i.e., all nonbasic variables zero), is feasible.
- lacksquare objective value for this solution is $oldsymbol{v}.$
- lacksquare Reminder: Objective function is $z=v+\sum_{j\in N}c_jx_j.$
- x_e : nonbasic variable with positive coefficient in objective function.
- lacksquare Formally: e is one of the indices of $ig\{ j \ ig| \ c_j > 0, j \in N ig\}.$
- $lacksquare x_e$ is the *entering variable* (enters set of basic variables).
- If increase value x_e (from current value of 0 in au)... one of basic variables is going to vanish (i.e., become zero).

Description SimplexInner algorithm:

- LP is in slack form.
- Trivial solution x= au (i.e., all nonbasic variables zero), is feasible.
- ullet objective value for this solution is $oldsymbol{v}.$
- lacksquare Reminder: Objective function is $z=v+\sum_{j\in N}c_jx_j.$
- x_e : nonbasic variable with positive coefficient in objective function.
- lacksquare Formally: \overline{e} is one of the indices of $ig\{ j \ ig| \ c_j > 0, j \in m{N} ig\}$.
- $lacksquare x_e$ is the *entering variable* (enters set of basic variables).
- lacksquare If increase value x_e (from current value of 0 in au)...
- ... one of basic variables is going to vanish (i.e., become zero).

- $igcup x_e$: entering variable
 - $igcap x_l$: *leaving* variable vanishing basic variable.
- \odot increase value of x_e till x_l becomes zero.
- How do we now which variable is x_l ?
- $^{\circ}$ set all nonbasic to 0 zero, except x_e
- $0 \;\; x_i = b_i a_{ie} x_e$, for all $i \in B$.
- Require: $orall i \in B$ $x_i = b_i a_{ie} x_e \geq 0$.
 - $) \implies x_e \leq (b_i/a_{ie})$
- $0 \;\; l = rg \min_i b_i / a_{ie}$
 - $ilde{f p}$ If more than one achieves $\min_i b_i/a_{ie}$, just pick one

- $lacksquare oldsymbol{x_e}$: entering variable
- x_l : **leaving** variable vanishing basic variable.
- \bigcirc increase value of x_e till x_l becomes zero.
- How do we now which variable is x_l ?
- $^{\circ}$ set all nonbasic to 0 zero, except x_{ϵ}
- $0 \hspace{0.1cm} x_i = b_i a_{ie} x_e$, for all $i \in B$.
- igcap Require: $orall i \in B$ $x_i = b_i a_{ie} x_e \geq 0$.
 - $\implies x_e \leq (b_i/a_{ie})$
- $0 \ \ l = rg \min_i b_i / a_{ie}$
 - $ilde{f eta}$ If more than one achieves $\min_i b_i/a_{ie}$, just pick one

- $lacksquare oldsymbol{x_e}$: entering variable
- lacksquare increase value of x_e till x_l becomes zero.
- Mow do we now which variable is x_l ?
- lacksquare set all nonbasic to 0 zero, except x_e
- $\bigcirc \ x_i = b_i a_{ie} x_e$, for all $i \in B$.
- igcap Require: $orall i \in B$ $x_i = b_i a_{ie} x_e \geq 0$.
 - $\implies x_e \leq (b_i/a_{ie})$
- $0 \ l = rg \min_i b_i / a_{ie}$
 - $ilde{f eta}$ If more than one achieves $\min_i b_i/a_{ie}$, just pick one

- lacksquare $oldsymbol{x_e}$: entering variable
- lacksquare increase value of x_e till x_l becomes zero.
- lacksquare How do we now which variable is x_l ?
- \odot set all nonbasic to 0 zero, except x_i
- $0 \;\; x_i = b_i a_{ie} x_e$, for all $i \in B$.
- Require: $orall i \in B$ $x_i = b_i a_{ie} x_e \geq 0$.
 - $\implies x_e \leq (b_i/a_{ie})$
- $\bigcirc \ l = rg \min_i b_i / a_{ie}$
 - $ilde{f p}$ If more than one achieves $\min_i b_i/a_{ie}$, just pick one

- $igcup x_e$: entering variable
- lacksquare increase value of x_e till x_l becomes zero.
- lacksquare How do we now which variable is x_l ?
- lacksquare set all nonbasic to $oldsymbol{0}$ zero, except $oldsymbol{x}_e$
- $0 \;\; x_i = b_i a_{ie} x_e$, for all $i \in B$.
- Require: $orall i \in B$ $x_i = b_i a_{ie} x_e \geq 0$.
 - $\implies x_e \leq (b_i/a_{ie})$
- $\bigcirc \ l = rg \min_i b_i / a_{ie}$
 - $\mathbb P$ If more than one achieves $\min_i b_i/a_{ie}$, just pick one

- $lacksquare oldsymbol{x_e}$: entering variable
- lacksquare increase value of x_e till x_l becomes zero.
- lacksquare How do we now which variable is x_l ?
- ullet set all nonbasic to 0 zero, except x_e
- $ext{ } ext{ } ext{ } ext{ } x_i = b_i a_{ie} x_e$, for all $i \in B$.
- Nequire: $orall i \in B$ $x_i = b_i a_{ie} x_e \geq 0$.
 - $\implies x_e \leq (b_i/a_{ie})$
- $0 \mid l = rg \min_i b_i / a_{i\epsilon}$
 - $\mathbb P$ If more than one achieves $\min_i b_i/a_{ie}$, just pick one

- $igcup x_e$: entering variable
- lacksquare increase value of x_e till x_l becomes zero.
- lacksquare How do we now which variable is x_l ?
- lacksquare set all nonbasic to 0 zero, except x_e
- $extbf{0} \quad x_i = b_i a_{ie} x_e$, for all $i \in B$.
- $lacksquare{0}$ Require: $orall i \in B$ $x_i = b_i a_{ie} x_e \geq 0$.
 - $\implies x_e \leq (b_i/a_{ie})$
 - $l = rg \min_i b_i / a_{ie}$
 - $ilde{f p}$ If more than one achieves $\min_i b_i/a_{ie}$, just pick one

- $igcup x_e$: entering variable
- x_l : **leaving** variable vanishing basic variable.
- lacksquare increase value of x_e till x_l becomes zero.
- lacksquare How do we now which variable is x_l ?
- $ext{@}$ set all nonbasic to $ext{0}$ zero, except x_e
- $lacksquare x_i = b_i a_{ie} x_e$, for all $i \in B$.
- Nequire: $orall i \in B$ $\overline{x_i = b_i a_{ie}x_e \geq 0}$.
- $0 \implies x_e \leq (b_i/a_{ie})$
 - $l = rg \min_i b_i / a_{i\epsilon}$
 - $ilde{f D}$ If more than one achieves $\min_i b_i/a_{ie}$, just pick one

- $igcup x_e$: entering variable
- x_l : **leaving** variable vanishing basic variable.
- lacksquare increase value of x_e till x_l becomes zero.
- How do we now which variable is x_l ?
- $ext{@}$ set all nonbasic to $ext{0}$ zero, except $ext{$x_e$}$
- $lacksquare x_i = b_i a_{ie} x_e$, for all $i \in B$.
- $lacksquare{0}$ Require: $orall i \in B$ $x_i = b_i a_{ie} x_e \geq 0$.
- $0 \implies x_e \leq (b_i/a_{ie})$
- $ext{ } ext{ } ext$
 - If more than one achieves $\min_i b_i/a_{ie}$, just pick one

- $igcup x_e$: entering variable
- lacksquare x_l : *leaving* variable vanishing basic variable.
- lacksquare increase value of x_e till x_l becomes zero.
- lacksquare How do we now which variable is x_l ?
- $ext{@}$ set all nonbasic to $ext{0}$ zero, except $ext{$x_e$}$
- $lacksquare x_i = b_i a_{ie} x_e$, for all $i \in B$.
- $lacksquare{}$ Require: $orall i \in B$ $x_i = b_i a_{ie} x_e \geq 0$.
- $0 \implies x_e \leq (b_i/a_{ie})$
- $ext{ } ext{ } ext$
- lacksquare If more than one achieves $\min_i b_i/a_{ie}$, just pick one.

- lacksquare Determined x_e and x_l .
- lacksquare Rewrite equation for x_l in $ext{LP}$.
 - \circ (Every basic variable has an equation in the LP!)

$$\Longrightarrow \quad x_e = rac{b_l}{a_{le}} - \sum_{j \in N \cup \{l\}} rac{a_{lj}}{a_{le}} x_j, \quad ext{ where } a_{ll} = 1.$$

- $ilde{\ \ }$ Cleanup: remove all appearances (on right) in LP of x_e .
- Substituting x_e into the other equalities, using above.
- Alternatively, do Gaussian elimination remove any appearance of x_e on right side LP (including objective) Transfer x_l on the left side, to the right side.

- lacksquare Determined x_e and x_l .
- lacksquare Rewrite equation for x_l in LP.
 - lack (Every basic variable has an equation in the LP!)

$$\Longrightarrow \quad x_e = rac{b_l}{a_{le}} - \sum_{j \in N \cup \{l\}} rac{a_{lj}}{a_{le}} x_j, \quad ext{ where } a_{ll} = 1.$$

- $ilde{\ \ }$ Cleanup: remove all appearances (on right) in LP of x_e .
- Substituting x_e into the other equalities, using above.
- Alternatively, do Gaussian elimination remove any appearance of x_e on right side LP (including objective) Transfer x_l on the left side, to the right side.

- lacksquare Determined x_e and x_l .
- lacksquare Rewrite equation for x_l in LP.
 - lacktriangle (Every basic variable has an equation in the LP!)

$$x_l = b_l - \sum_{j \in N} a_{lj} x_j \ \implies x_e = rac{b_l}{a_{le}} - \sum_{j \in N \cup \{l\}} rac{a_{lj}}{a_{le}} x_j, \qquad ext{where } a_{ll} = 1.$$

- lacktriangle Cleanup: remove all appearances (on right) in $ext{LP}$ of x_e .
- Substituting x_e into the other equalities, using above.
- Alternatively, do Gaussian elimination remove any appearance of x_e on right side LP (including objective) Transfer x_l on the left side, to the right side.

- lacksquare Determined $oldsymbol{x}_e$ and $oldsymbol{x}_l.$
- lacksquare Rewrite equation for x_l in LP .
 - lacktriangle (Every basic variable has an equation in the LP!)
 - $lacksquare x_l = b_l \sum_{j \in N} a_{lj} x_j$

$$\implies \quad x_e = rac{b_l}{a_{le}} - \sum_{j \in N \cup \{l\}} rac{a_{lj}}{a_{le}} x_j, \qquad$$
 where $a_{ll} = 1.$

- lacktriangle Cleanup: remove all appearances (on right) in $ext{LP}$ of x_e .
- Substituting x_e into the other equalities, using above.
- Alternatively, do Gaussian elimination remove any appearance of x_e on right side LP (including objective) Transfer x_l on the left side, to the right side.

- lacksquare Determined $oldsymbol{x}_e$ and $oldsymbol{x}_l.$
- lacksquare Rewrite equation for x_l in LP.
 - lacktriangle (Every basic variable has an equation in the LP!)
 - $lacksquare x_l = b_l \sum_{j \in N} a_{lj} x_j$

$$\implies \quad x_e = rac{b_l}{a_{le}} - \sum_{j \in N \cup \{l\}} rac{a_{lj}}{a_{le}} x_j, \qquad ext{where } a_{ll} = 1.$$

- lacktriangle Cleanup: remove all appearances (on right) in $ext{LP}$ of x_e .
- Substituting x_e into the other equalities, using above.
- Alternatively, do Gaussian elimination remove any appearance of x_e on right side LP (including objective) Transfer x_l on the left side, to the right side.

- lacksquare Determined $oldsymbol{x_e}$ and $oldsymbol{x_l}.$
- lacksquare Rewrite equation for x_l in LP.
 - lacktriangle (Every basic variable has an equation in the LP!)
 - $lacksquare x_l = b_l \sum_{j \in N} \overline{a_{lj} x_j}$

$$\implies \quad x_e = rac{b_l}{a_{le}} - \sum_{j \in N \cup \{l\}} rac{a_{lj}}{a_{le}} x_j, \qquad ext{where } a_{ll} = 1.$$

- lacksquare Cleanup: remove all appearances (on right) in LP of x_e .
 -) Substituting x_e into the other equalities, using above.
 - Alternatively, do Gaussian elimination remove any appearance of x_e on right side LP (including objective). Transfer x_l on the left side, to the right side.

- ullet Determined $oldsymbol{x}_e$ and $oldsymbol{x}_l.$
- lacksquare Rewrite equation for x_l in LP.
 - lacktriangle (Every basic variable has an equation in the LP!)
 - $lacksquare x_l = b_l \overline{\sum_{j \in N} a_{lj} x_j}$

$$\implies \quad x_e = rac{b_l}{a_{le}} - \sum_{j \in N \cup \{l\}} rac{a_{lj}}{a_{le}} x_j, \qquad ext{where } a_{ll} = 1.$$

- lacksquare Cleanup: remove all appearances (on right) in LP of x_e .
- Substituting x_e into the other equalities, using above.
 - Alternatively, do Gaussian elimination remove any appearance of x_e on right side LP (including objective). Transfer x_l on the left side, to the right side.

- lacksquare Determined $oldsymbol{x_e}$ and $oldsymbol{x_l}.$
- lacksquare Rewrite equation for x_l in LP.
 - lacktriangle (Every basic variable has an equation in the LP!)
 - $x_l = b_l \sum_{j \in N} a_{lj} x_j \ \implies x_e = rac{b_l}{a_{le}} \sum_{j \in N \cup \{l\}} rac{a_{lj}}{a_{le}} x_j, \qquad ext{where } a_{ll} = 1.$
- $lue{}$ Cleanup: remove all appearances (on right) in LP of $oldsymbol{x_e}.$
- Substituting x_e into the other equalities, using above.
- Alternatively, do Gaussian elimination remove any appearance of x_e on right side LP (including objective). Transfer x_l on the left side, to the right side.

- ullet End of this process: have new equivalent LP .
- \bigcirc basic variables: $B' = (B \setminus \{l\}) \cup \{e\}$
- on non-basic variables: $N' = (N \setminus \{e\}) \cup \{l\}$.
- End of this *pivoting* stage:
 LP objective function value increased.
- Made progress.
- $\sim \mathrm{LP}$ is completely defined by which variables are basic, and which are non-basic.
- Pivoting never returns to a combination (of basic/non-basic variable) already visited.
 - ...because improve objective in each pivoting step.
 - Can do at most $\binom{n+m}{n} \le \left(\frac{n+m}{n} \cdot e\right)^n$.
 - examples where 2^n pivoting steps are needed.

- lacksquare End of this process: have new equivalent LP .
- lacksquare basic variables: $B' = (B \setminus \{l\}) \cup \{e\}$
- on non-basic variables: $N' = (N \setminus \{e\}) \cup \{l\}$.
- igcap End of this *pivoting* stage: LP objective function value increased.
- Made progress.
- $\sim \mathrm{LP}$ is completely defined by which variables are basic, and which are non-basic.
- Pivoting never returns to a combination (of basic/non-basic variable) already visited.
 - ...because improve objective in each pivoting step.
 - Can do at most $\binom{n+m}{n} \leq \left(\frac{n+m}{n} \cdot e\right)^n$.
 - examples where 2^n pivoting steps are needed.

- lacksquare End of this process: have new *equivalent* LP.
- lacksquare basic variables: $B' = (B \setminus \{l\}) \cup \{e\}$
- \bigcirc non-basic variables: $N' = (N \setminus \{e\}) \cup \{l\}$.
- End of this pivoting stage:
 LP objective function value increased.
- Made progress.
- $\sim {
 m LP}$ is completely defined by which variables are basic, and which are non-basic.
- Pivoting never returns to a combination (of basic/non-basic variable) already visited.
 - ...because improve objective in each pivoting step.
 - Can do at most $\binom{n+m}{n} \leq \left(\frac{n+m}{n} \cdot e\right)^n$.
- \bigcirc examples where 2^n pivoting steps are needed

- lacksquare End of this process: have new equivalent LP .
- lacksquare basic variables: $B' = (B \setminus \{l\}) \cup \{e\}$
- lacksquare non-basic variables: $N' = (N \setminus \{e\}) \cup \{l\}$.
- End of this *pivoting* stage:
 LP objective function value increased.
- Made progress.
- $\sim {
 m LP}$ is completely defined by which variables are basic, and which are non-basic.
- Pivoting never returns to a combination (of basic/non-basic variable) already visited.
 - ...because improve objective in each pivoting step.
- Can do at most $\binom{n+m}{n} \leq \left(rac{n+m}{n} \cdot e
 ight)^n$.
- \bigcirc examples where 2^n pivoting steps are needed

- lacksquare End of this process: have new equivalent LP .
- lacksquare basic variables: $B' = (B \setminus \{l\}) \cup \{e\}$
- ${ t 0}$ non-basic variables: $N' = (N \setminus \{e\}) \cup \{l\}$.
- End of this *pivoting* stage:
 LP objective function value increased.
- Made progress.
 - LP is completely defined by which variables are basic, and which are non-basic.
- Pivoting never returns to a combination (of basic/non-basic variable) already visited.
 - ...because improve objective in each pivoting step.
- Can do at most $\binom{n+m}{n} \leq \left(rac{n+m}{n} \cdot e
 ight)^n$.
-) examples where $\mathbf{2}^n$ pivoting steps are needed.

- lacksquare End of this process: have new *equivalent* LP .
- lacksquare basic variables: $B' = (B \setminus \{l\}) \cup \{e\}$
- lacksquare non-basic variables: $N' = (N \setminus \{e\}) \cup \{l\}$.
- End of this *pivoting* stage:
 LP objective function value increased.
- Made progress.
- LP is completely defined by which variables are basic, and which are non-basic.
- Pivoting never returns to a combination (of basic/non-basic variable) already visited.
- ...because improve objective in each pivoting step.
- Can do at most $inom{n+m}{n} \leq inom{n+m}{n} \cdot e^{n}.$
- \supset examples where 2^n pivoting steps are needed.

- lacksquare End of this process: have new equivalent LP .
- lacksquare basic variables: $B' = (B \setminus \{l\}) \cup \{e\}$
- lacksquare non-basic variables: $N' = (N \setminus \{e\}) \cup \{l\}$.
- End of this *pivoting* stage:
 LP objective function value increased.
- Made progress.
- LP is completely defined by which variables are basic, and which are non-basic.
- Pivoting never returns to a combination (of basic/non-basic variable) already visited.
 - ...because improve objective in each pivoting step.
- Can do at most $inom{n+m}{n} \leq inom{n+m}{n} \cdot e^{-n}$
- \supset examples where 2^n pivoting steps are needed

- ullet End of this process: have new equivalent LP .
- lacksquare basic variables: $B' = (B \setminus \{l\}) \cup \{e\}$
- lacksquare non-basic variables: $N' = (N \setminus \{e\}) \cup \{l\}$.
- End of this *pivoting* stage:
 LP objective function value increased.
- Made progress.
- LP is completely defined by which variables are basic, and which are non-basic.
- Pivoting never returns to a combination (of basic/non-basic variable) already visited.
- ...because improve objective in each pivoting step.
 - Can do at most $\binom{n+m}{n} \leq \left(\frac{n+m}{n} \cdot e\right)$
-) examples where $\mathbf{2}^n$ pivoting steps are needed

- ullet End of this process: have new equivalent LP .
- lacksquare basic variables: $B' = (B \setminus \{l\}) \cup \{e\}$
- lacksquare non-basic variables: $N' = (N \setminus \{e\}) \cup \{l\}$.
- End of this *pivoting* stage:
 LP objective function value increased.
- Made progress.
- LP is completely defined by which variables are basic, and which are non-basic.
- Pivoting never returns to a combination (of basic/non-basic variable) already visited.
- ...because improve objective in each pivoting step.
- \bigcirc Can do at most $\binom{n+m}{n} \leq \left(\frac{n+m}{n} \cdot e\right)^n$.
 -) examples where $\mathbf{2}^n$ pivoting steps are needed

- lacksquare End of this process: have new equivalent LP .
- lacksquare basic variables: $B' = (B \setminus \{l\}) \cup \{e\}$
- lacksquare non-basic variables: $N' = (N \setminus \{e\}) \cup \{l\}$.
- End of this *pivoting* stage:
 LP objective function value increased.
- Made progress.
- LP is completely defined by which variables are basic, and which are non-basic.
- Pivoting never returns to a combination (of basic/non-basic variable) already visited.
- ...because improve objective in each pivoting step.
- igcolong Can do at most $inom{n+m}{n} \leq igl(rac{n+m}{n} \cdot eigr)^n$.
- ullet examples where $oldsymbol{2}^n$ pivoting steps are needed.

Simplex algorithm summary...

- lacksquare Each pivoting step takes polynomial time in n and m.
- Running time of **Simplex** is exponential in the worst case.
 - In practice, Simplex is extremely fast.

Simplex algorithm summary...

- lacksquare Each pivoting step takes polynomial time in n and m.
- Running time of Simplex is exponential in the worst case.
- In practice, Simplex is extremely fast.

Simplex algorithm summary...

- lacksquare Each pivoting step takes polynomial time in $m{n}$ and $m{m}$.
- Running time of Simplex is exponential in the worst case.
- In practice, Simplex is extremely fast.

- Simplex might get stuck if one of the b_i s is zero.
- More than > m hyperplanes (i.e., equalities) passes through the same point.
- Result: might not be able to make any progress at all in a pivoting step.
- Solution I: add tiny random noise to each coefficient.

 Can be done symbolically.

 Intuitively, the degeneracy, being a local phenomena on the polytope disappears with high probability.

- Simplex might get stuck if one of the b_i s is zero.
- More than > m hyperplanes (i.e., equalities) passes through the same point.
- Result: might not be able to make any progress at all in a pivoting step.
- Solution I: add tiny random noise to each coefficient.
 Can be done symbolically.
 Intuitively, the degeneracy, being a local phenomena on the polytope disappears with high probability.

- Simplex might get stuck if one of the b_i s is zero.
- lacktriangle More than >m hyperplanes (i.e., equalities) passes through the same point.
- Result: might not be able to make any progress at all in a pivoting step.
- Solution I: add tiny random noise to each coefficient.
 Can be done symbolically.
 Intuitively, the degeneracy, being a local phenomena on the polytope disappears with high probability.

- Simplex might get stuck if one of the b_i s is zero.
- lacktriangle More than >m hyperplanes (i.e., equalities) passes through the same point.
- Result: might not be able to make any progress at all in a pivoting step.
- Solution I: add tiny random noise to each coefficient. Can be done symbolically. Intuitively, the degeneracy, being a local phenomena on the polytope disappears with high probability.

- Simplex might get stuck if one of the b_i s is zero.
- More than > m hyperplanes (i.e., equalities) passes through the same point.
- Result: might not be able to make any progress at all in a pivoting step.
- Solution I: add tiny random noise to each coefficient.
 Can be done symbolically.
 - Intuitively, the degeneracy, being a local phenomena on the polytope disappears with high probability.

- Simplex might get stuck if one of the b_i s is zero.
- lacktriangle More than >m hyperplanes (i.e., equalities) passes through the same point.
- Result: might not be able to make any progress at all in a pivoting step.
- Solution I: add tiny random noise to each coefficient.
 Can be done symbolically.
 Intuitively, the degeneracy, being a local phenomena on the polytope disappears with high probability.

Degeneracies – cycling

- Might get into cycling: a sequence of pivoting operations that do not improve the objective function, and the bases you get are cyclic (i.e., infinite loop).
- Solution II: *Bland's rule*.

 Always choose the lowest index variable for entering and leaving out of the possible candidates.

 (Not prove why this work but it does.)

Degeneracies – cycling

- Might get into cycling: a sequence of pivoting operations that do not improve the objective function, and the bases you get are cyclic (i.e., infinite loop).
- Solution II: Bland's rule.
 Always choose the lowest index variable for entering and leaving out of the possible candidates.
 (Not prove why this work but it does.)

Definition

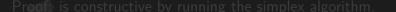
A solution to an LP is a *basic solution* if it the result of setting all the nonbasic variables to zero.

Simplex algorithm deals only with basic solutions.

Theorem

For an arbitrary linear program, the following statements are true:

- (A) If there is no optimal solution, the problem is either infeasible or unbounded.
- (B) If a feasible solution exists, then a basic feasible solution exists.
- (C) If an optimal solution exists, then a basic optimal solution exists.



Definition

A solution to an LP is a **basic solution** if it the result of setting all the nonbasic variables to zero.

Simplex algorithm deals only with basic solutions.

Theorem

For an arbitrary linear program, the following statements are true:

- (A) If there is no optimal solution, the problem is either infeasible or unbounded.
- (B) If a feasible solution exists, then a basic feasible solution exists.
- (C) If an optimal solution exists, then a basic optimal solution exists.

Definition

A solution to an LP is a **basic solution** if it the result of setting all the nonbasic variables to zero.

Simplex algorithm deals only with basic solutions.

$\mathsf{Theorem}$

For an arbitrary linear program, the following statements are true:

- (A) If there is no optimal solution, the problem is either infeasible or unbounded.
- (B) If a feasible solution exists, then a basic feasible solution exists.
- (C) If an optimal solution exists, then a basic optimal solution exists.

Definition

A solution to an LP is a *basic solution* if it the result of setting all the nonbasic variables to zero.

Simplex algorithm deals only with basic solutions.

Theorem

For an arbitrary linear program, the following statements are true:

- (A) If there is no optimal solution, the problem is either infeasible or unbounded.
- (B) If a feasible solution exists, then a basic feasible solution exists.
- (C) If an optimal solution exists, then a basic optimal solution exists.

Proof: is constructive by running the simplex algorithm.

- Simplex has exponential running time in the worst case.
- ellipsoid method is weakly polynomial.
 It is polynomial in the number of bits of the input.
- Khachian in 1979 came up with it. Useless in practice.
- In 1984, Karmakar came up with a different method, called the interior-point method.
- Also weakly polynomial. Quite useful in practice.
- Result in arm race between the interior-point method and the simplex method.
- BIG OPEN QUESTION: Is there strongly polynomial time algorithm for linear programming?

- Simplex has exponential running time in the worst case.
- ellipsoid method is weakly polynomial.
 It is polynomial in the number of bits of the input.
- Khachian in 1979 came up with it. Useless in practice.
- In 1984, Karmakar came up with a different method, called the interior-point method.
- Also weakly polynomial. Quite useful in practice.
- Result in arm race between the interior-point method and the simplex method.
- BIG OPEN QUESTION: Is there strongly polynomial time algorithm for linear programming?

- Simplex has exponential running time in the worst case.
- ellipsoid method is weakly polynomial.
 It is polynomial in the number of bits of the input.
- Khachian in 1979 came up with it. Useless in practice.
- In 1984, Karmakar came up with a different method, called the interior-point method.
- Also weakly polynomial. Quite useful in practice.
- Result in arm race between the interior-point method and the simplex method.
- BIG OPEN QUESTION: Is there strongly polynomial time algorithm for linear programming?

- Simplex has exponential running time in the worst case.
- ellipsoid method is weakly polynomial.
 It is polynomial in the number of bits of the input.
- Khachian in 1979 came up with it. Useless in practice.
- In 1984, Karmakar came up with a different method, called the interior-point method.
- Also weakly polynomial. Quite useful in practice.
- Result in arm race between the interior-point method and the simplex method.
- BIG OPEN QUESTION: Is there strongly polynomial time algorithm for linear programming?

- Simplex has exponential running time in the worst case.
- ellipsoid method is weakly polynomial.
 It is polynomial in the number of bits of the input.
- Khachian in 1979 came up with it. Useless in practice.
- In 1984, Karmakar came up with a different method, called the interior-point method.
- Also weakly polynomial. Quite useful in practice.
- Result in arm race between the interior-point method and the simplex method.
- BIG OPEN QUESTION: Is there *strongly* polynomial time algorithm for linear programming?

- Simplex has exponential running time in the worst case.
- ellipsoid method is weakly polynomial.
 It is polynomial in the number of bits of the input.
- Khachian in 1979 came up with it. Useless in practice.
- In 1984, Karmakar came up with a different method, called the interior-point method.
- Also weakly polynomial. Quite useful in practice.
- Result in arm race between the interior-point method and the simplex method.
- BIG OPEN QUESTION: Is there *strongly* polynomial time algorithm for linear programming?

- Simplex has exponential running time in the worst case.
- ellipsoid method is weakly polynomial.
 It is polynomial in the number of bits of the input.
- Khachian in 1979 came up with it. Useless in practice.
- In 1984, Karmakar came up with a different method, called the interior-point method.
- Also weakly polynomial. Quite useful in practice.
- Result in arm race between the interior-point method and the simplex method.
- BIG OPEN QUESTION: Is there strongly polynomial time algorithm for linear programming?

- Simplex has exponential running time in the worst case.
- ellipsoid method is weakly polynomial.
 It is polynomial in the number of bits of the input.
- Khachian in 1979 came up with it. Useless in practice.
- In 1984, Karmakar came up with a different method, called the interior-point method.
- Also weakly polynomial. Quite useful in practice.
- Result in arm race between the interior-point method and the simplex method.
- BIG OPEN QUESTION: Is there strongly polynomial time algorithm for linear programming?

Duality...

- lacksquare Every linear program L has a $\emph{dual linear program } L'$.
- Solving the dual problem is essentially equivalent to solving the *primal linear program* original LP.
- Lets look an example..

Duality by Example

$$egin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

- lacksquare η : maximal possible value of target function.
- lacksquare Any feasible solution \Rightarrow a lower bound on η .
- In above: $x_1=1, x_2=x_3=0$ is feasible, and implies z=4 and thus $\eta \geq 4$.
- 0 $x_1=x_2=0,\,x_3=3$ is feasible $\implies \eta \geq z=9$.
- How close this solution is to opt? (i.e., η)
 - If very close to optimal might be good enough. Maybe stop?

Duality by Example

$$egin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

- $lue{\eta}$: maximal possible value of target function.
- Any feasible solution \Rightarrow a lower bound on η .
- In above: $x_1=1, x_2=x_3=0$ is feasible, and implies z=4 and thus $\eta \geq 4$.
- $0 \;\; x_1=x_2=0, \, x_3=3$ is feasible $\implies \eta \geq z=9$.
- How close this solution is to opt? (i.e., η)
 - If very close to optimal might be good enough. Maybe stop?

$$egin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

- $lue{\eta}$: maximal possible value of target function.
- lacksquare Any feasible solution \Rightarrow a lower bound on η .
- lacksquare In above: $x_1=1, x_2=x_3=0$ is feasible, and implies z=4 and thus $\eta\geq 4$.
 - 0 $x_1=x_2=0,\,x_3=3$ is feasible $\implies \eta \geq z=9$
- \bigcirc How close this solution is to opt? (i.e., η)
 - If very close to optimal might be good enough. Maybe stop?

$$egin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

- $lue{\eta}$: maximal possible value of target function.
- lacksquare Any feasible solution \Rightarrow a lower bound on η .
- lacksquare In above: $x_1=1, x_2=x_3=0$ is feasible, and implies z=4 and thus $\eta\geq 4$.
- $lacksquare x_1 = x_2 = 0, \, x_3 = 3$ is feasible $\implies \eta \geq z = 9$.
- How close this solution is to opt? (i.e., η)
 - If very close to optimal might be good enough. Maybe stop?

$$egin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

- lacksquare η : maximal possible value of target function.
- lacksquare Any feasible solution \Rightarrow a lower bound on η .
- lacksquare In above: $x_1=1, x_2=x_3=0$ is feasible, and implies z=4 and thus $\eta\geq 4$.
- lacksquare How close this solution is to opt? (i.e., η)
 - If very close to optimal might be good enough. Maybe stop?

$$egin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

- lacksquare η : maximal possible value of target function.
- lacksquare Any feasible solution \Rightarrow a lower bound on η .
- lacksquare In above: $x_1=1, x_2=x_3=0$ is feasible, and implies z=4 and thus $\eta\geq 4$.
- $\bigcirc x_1 = x_2 = 0, \, x_3 = 3$ is feasible $\implies \eta \geq z = 9.$
- $lue{}$ How close this solution is to opt? (i.e., $\eta)$
- If very close to optimal might be good enough. Maybe stop?

$$egin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

• Add the first inequality (multiplied by 2) to the second inequality (multiplied by 3):

$$2(x_1 + 4x_2) \le 2(1) + 3(3x_1 - x_2 + x_3) \le 3(3).$$

The resulting inequality is

$$11x_1 + 5x_2 + 3x_3 \le 11. \tag{1}$$

$$egin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

Add the first inequality (multiplied by 2) to the second inequality (multiplied by 3):

$$2(x_1 + 4x_2) \le 2(1) + 3(3x_1 - x_2 + x_3) \le 3(3).$$

The resulting inequality is

$$11x_1 + 5x_2 + 3x_3 \le 11. (1)$$

$$egin{array}{lll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

- $lue{}$ inequality must hold for any feasible solution of $oldsymbol{L}.$
- Objective: $z=4x_1+x_2+3x_3$ and x_1,x_2 and x_3 are all non-negative.
- Inequality above has larger coefficients than objective (for corresponding variables)
 - For any feasible solution:

$$z = 4x_1 + x_2 + 3x_3 \le 11x_1 + 5x_2 + 3x_3 \le 11,$$

$$egin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

- ullet inequality must hold for any feasible solution of $oldsymbol{L}.$
- Objective: $z=4x_1+x_2+3x_3$ and x_1,x_2 and x_3 are all non-negative.
- Inequality above has larger coefficients than objective (for corresponding variables)
 - For any feasible solution:

$$z = 4x_1 + x_2 + 3x_3 \le 11x_1 + 5x_2 + 3x_3 \le 11,$$

$$egin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

- ullet inequality must hold for any feasible solution of $oldsymbol{L}.$
- Objective: $z=4x_1+x_2+3x_3$ and x_1,x_2 and x_3 are all non-negative.
- Inequality above has larger coefficients than objective (for corresponding variables)
 - For any feasible solution:

$$z = 4x_1 + x_2 + 3x_3 \le 11x_1 + 5x_2 + 3x_3 \le 11,$$

$$egin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

- ullet inequality must hold for any feasible solution of $oldsymbol{L}.$
- Objective: $z=4x_1+x_2+3x_3$ and x_1,x_2 and x_3 are all non-negative.
- Inequality above has larger coefficients than objective (for corresponding variables)
 - For any feasible solution: $z=4x_1+x_2+3x_3\leq 11x_1+5x_2+3x_3\leq 11$

$$egin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

- ullet inequality must hold for any feasible solution of $oldsymbol{L}.$
- Objective: $z=4x_1+x_2+3x_3$ and x_1,x_2 and x_3 are all non-negative.
- Inequality above has larger coefficients than objective (for corresponding variables)
- For any feasible solution: $z=4x_1+x_2+3x_3\leq 11x_1+5x_2+3x_3\leq 11,$

$$egin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

For any feasible solution:

$$z = 4x_1 + x_2 + 3x_3 \le 11x_1 + 5x_2 + 3x_3 \le 11,$$

- $igcup \mathsf{Opt}$ solution is $\mathrm{LP} \; oldsymbol{L}$ is somewhere between 9 and 11 .
- Multiply first inequality by y_1 , second inequality by y_2 and add them up:

$$egin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

For any feasible solution:

$$z = 4x_1 + x_2 + 3x_3 \le 11x_1 + 5x_2 + 3x_3 \le 11,$$

- $lue{}$ Opt solution is $\operatorname{LP} oldsymbol{L}$ is somewhere between $oldsymbol{9}$ and $oldsymbol{11}.$
- Multiply first inequality by y_1 , second inequality by y_2 and add them up:

$$egin{array}{lll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

- For any feasible solution:
 - $z = 4x_1 + x_2 + 3x_3 \le 11x_1 + 5x_2 + 3x_3 \le 11,$
- $lue{}$ Opt solution is $\operatorname{LP} oldsymbol{L}$ is somewhere between 9 and 11.
- Multiply first inequality by y_1 , second inequality by y_2 and add them up:

$$egin{array}{lll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

$$(y_1+3y_2)x_1+(4y_1-y_2)x_2+y_2x_3\leq y_1+3y_2.$$

Compare to target function – require expression bigger than target function in each variable.

$$\implies z = 4x_1 + x_2 + 3x_3 \leq \ (y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \leq y_1 + 3y_2$$

$$egin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

$$(y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \le y_1 + 3y_2.$$

Compare to target function – require expression bigger than target function in each variable.

$$\implies z = 4x_1 + x_2 + 3x_3 \le (y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \le y_1 + 3y_2$$

$$egin{array}{lll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

$$(y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \le y_1 + 3y_2.$$

$$4 \leq y_1 + 3y_2
1 \leq 4y_1 - y_2
3 \leq y_2,$$

Compare to target function — require expression bigger than target function in each variable.

$$\implies z = 4x_1 + x_2 + 3x_3 \leq \ (y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \leq y_1 + 3y_2$$

$$egin{array}{lll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

$$(y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \le y_1 + 3y_2.$$

$$4 \leq y_1 + 3y_2
1 \leq 4y_1 - y_2
3 \leq y_2,$$

Compare to target function — require expression bigger than target function in each variable.

$$egin{aligned} &\Longrightarrow \ z = 4x_1 + x_2 + 3x_3 \leq \ (y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \leq y_1 + 3y_2. \end{aligned}$$

$$egin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

$$(y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \le y_1 + 3y_2.$$

$$egin{array}{lll} 4 & \leq & y_1 + 3y_2 \ 1 & \leq & 4y_1 - y_2 \ 3 & \leq & y_2, \end{array}$$

Compare to target function — require expression bigger than target function in each variable.

$$\implies z = 4x_1 + x_2 + 3x_3 \leq \ (y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \leq y_1 + 3y_2.$$

Primal LP:

i illilai	ш.
max	$z = 4x_1 + x_2 + 3x_3$
s.t.	$x_1+4x_2 \leq 1$
	$3x_1-x_2+x_3\leq 3$
	$x_1,x_2,x_3\geq 0$

Dual LP: $\hat{\boldsymbol{L}}$

uai LF.	L
min	y_1+3y_2
s.t.	$y_1+3y_2\geq 4$
	$4y_1-y_2\geq 1$
	$y_2 \geq 3$
	$y_1,y_2\geq 0.$

- O Best upper bound on η (max value of z) then solve the LP \widehat{L} .
- $igoplus \widehat{m{L}}$: Dual program to $m{L}$.
 - opt. solution of $\widehat{\boldsymbol{L}}$ is an upper bound on optimal solution for \boldsymbol{L} .

Primal LP:

i illilai	ш.
max	$z = 4x_1 + x_2 + 3x_3$
s.t.	$x_1+4x_2\ \le 1$
	$3x_1-x_2+x_3\leq 3$
	$x_1,x_2,x_3\geq 0$

Dual LP: $\hat{\boldsymbol{L}}$

$$egin{array}{lll} & \min & y_1 + 3y_2 \ & ext{s.t.} & y_1 + 3y_2 \geq 4 \ & 4y_1 - y_2 \geq 1 \ & y_2 \geq 3 \ & y_1, y_2 \geq 0. \end{array}$$

- lacksquare Best upper bound on η (max value of z) then solve the LP $\hat{m{L}}$.
- L: Dual program to L.

 Opt. solution of \hat{L} is an upper bound on optimal solution \hat{L} .

Primal LP:

	L1.
max	$z = 4x_1 + x_2 + 3x_3$
s.t.	$x_1+4x_2 \leq 1$
	$3x_1-x_2+x_3\leq 3$
	$x_1,x_2,x_3\geq 0$

Dual LP: $\hat{\boldsymbol{L}}$

$$egin{array}{lll} egin{array}{lll} \min & y_1 + 3y_2 & & & & \\ ext{s.t.} & y_1 + 3y_2 \geq 4 & & & & \\ & 4y_1 - y_2 \geq 1 & & & & \\ & y_2 \geq 3 & & & & \\ & y_1, y_2 \geq 0. & & & & \end{array}$$

- Best upper bound on η (max value of z) then solve the LP $\widehat{\boldsymbol{L}}$.
- $oldsymbol{\widehat{L}}$: Dual program to $oldsymbol{L}$.

opt. solution of $\widehat{\boldsymbol{L}}$ is an upper bound on optimal solution for \boldsymbol{L} .

Primal LP:

	<u> </u>
max	$z = 4x_1 + x_2 + 3x_3$
s.t.	$x_1+4x_2\ \le 1$
	$3x_1-x_2+x_3\leq 3$
	$\mathit{x}_1,\mathit{x}_2,\mathit{x}_3 \geq 0$

Dual LP: $\hat{\boldsymbol{L}}$

```
egin{array}{lll} \min & y_1 + 3y_2 \ 	ext{s.t.} & y_1 + 3y_2 \geq 4 \ & 4y_1 - y_2 \geq 1 \ & y_2 \geq 3 \ & y_1, y_2 \geq 0. \end{array}
```

- Best upper bound on η (max value of z) then solve the LP $\widehat{\boldsymbol{L}}$.
- $oldsymbol{\widehat{L}}$: Dual program to $oldsymbol{L}$.
- lacktriangledown opt. solution of \widehat{L} is an upper bound on optimal solution for L.

Primal program/Dual program

$$\min \sum_{i=1}^m \ b_i y_i$$
s.t. $\sum_{i=1}^m a_{ij} y_i \geq c_j,$ for $j=1,\ldots,n,$ $y_i \geq 0,$ for $i=1,\ldots,m.$

Primal program/Dual program

Primal Dual variables variables	$x_1 \ge 0$	$x_2 \ge 0$	$x_3 \ge 0$		$x_n \ge 0$	Primal relation	Min v
$y_1 \ge 0$	a ₁₁	a ₁₂	a ₁₃		a_{1n}	≦	b_1
$y_2 \ge 0$	a_{21}	a_{22}	a_{23}		a_{2n}	≦	b ₂
:	1		:		:	-:	1
$y_m \ge 0$	a_{m1}	a_{m2}	a_{m3}		a_{mn}	≦	b_m
Dual Relation	IIV	IIV	IIV		IIV		
Max z	c_1	c_2	c_3	•••	C _n		

$$egin{array}{ll} \max & c^T x \ & ext{s. t.} & Ax \leq b. \ & x \geq 0. \end{array}$$

$$egin{array}{ll} \min & y^T b \ & ext{s. t.} & y^T A \geq c^T oldsymbol{.} \ & y \geq 0 oldsymbol{.} \end{array}$$

Primal program/Dual program

What happens when you take the dual of the dual?

$$egin{array}{ll} \max & \sum_{j=1}^n \, c_j x_j \ & ext{s.t.} & \sum_{j=1}^n a_{ij} x_j \leq b_i, \ & ext{for } i=1,\ldots,m, \ x_j \geq 0, \ & ext{for } j=1,\ldots,n. \end{array}$$

$$\min \sum_{i=1}^m b_i y_i$$
 s.t. $\sum_{i=1}^m a_{ij} y_i \geq c_j,$ for $j=1,\ldots,n,$ $y_i \geq 0,$ for $i=1,\ldots,m.$

Primal program / Dual program in standard form

$$egin{array}{ll} \max & \sum_{j=1}^n \ c_j x_j \ & ext{s.t.} & \sum_{j=1}^n a_{ij} x_j \leq b_i, \ & ext{for } i=1,\ldots,m, \ x_j \geq 0, \ & ext{for } j=1,\ldots,n. \end{array}$$

```
\overline{\max} \ \overline{\sum (-b_i) y_i}
  s.t. \sum (-a_{ij}) y_i \leq -\overline{c_j},
                   for j=1,\ldots,n,
          y_i > 0,
                 for i = 1, \ldots, m.
```

Dual program in standard form

Dual of a dual program

$$egin{aligned} \max && \sum_{i=1}^m (-b_i) y_i \ & ext{s.t.} & \sum_{i=1}^m (-a_{ij}) y_i \leq -c_j, \ & ext{for } j=1,\ldots,n, \ y_i \geq 0, \ & ext{for } i=1,\ldots,m. \end{aligned}$$

$$egin{aligned} \min & \sum_{j=1}^n -c_j x_j \ & ext{s.t. } \sum_{j=1}^n (-a_{ij}) x_j \geq -b_i, \ & ext{for } i=1,\ldots,m, \ x_j \geq 0, \ & ext{for } j=1,\ldots,n. \end{aligned}$$

Dual of dual program

Dual of a dual program written in standard form

$$egin{aligned} \min & \sum_{j=1}^n -c_j x_j \ & ext{s.t.} & \sum_{j=1}^n (-a_{ij}) x_j \geq -b_i, \ & ext{for } i=1,\ldots,m, \ & x_j \geq 0, \ & ext{for } j=1,\ldots,n. \end{aligned}$$

$$\max \sum_{j=1}^n c_j x_j$$

s.t. $\sum_{j=1}^n a_{ij} x_j \leq b_i,$
for $i=1,\ldots,m,$
 $x_j \geq 0,$
for $j=1,\ldots,n.$

 \succ Dual of the dual LP is the primal $\operatorname{LP}!$

Dual of dual program

Dual of a dual program written in standard form

$$egin{aligned} \min & \sum_{j=1}^n -c_j x_j \ & ext{s.t.} & \sum_{j=1}^n (-a_{ij}) x_j \geq -b_i, \ & ext{for } i=1,\ldots,m, \ & x_j \geq 0, \ & ext{for } j=1,\ldots,n. \end{aligned}$$

$$\max \sum_{j=1}^n \ c_j x_j$$

s.t. $\sum_{j=1}^n a_{ij} x_j \leq b_i,$
for $i=1,\ldots,m,$
 $x_j \geq 0,$
for $j=1,\ldots,n.$

 \Longrightarrow Dual of the dual LP is the primal $\operatorname{LP}!$

Result

Proved the following:

Lemma

Let L be an LP, and let L' be its dual. Let L'' be the dual to L'. Then L and L'' are the same LP.

Weak duality theorem

Theorem

If (x_1,x_2,\ldots,x_n) is feasible for the primal LP and (y_1,y_2,\ldots,y_m) is feasible for the dual LP , then

$$\sum_j c_j x_j \leq \sum_i b_i y_i$$
 .

Namely, all the feasible solutions of the dual bound all the feasible solutions of the primal.

Weak duality theorem – proof

Proof.

By substitution from the dual form, and since the two solutions are feasible, we know that

$$\sum_j c_j x_j \leq \sum_j igg(\sum_{i=1}^m y_i a_{ij}igg) \, x_j \leq \sum_i igg(\sum_j a_{ij} x_jigg) \, y_i \leq \sum_i b_i y_i \, .$$

- 0 y being dual feasible implies $c^T \leq y^T A$
- lacksquare x being primal feasible implies $Ax \leq b$
 - $c \Rightarrow c^T x \leq (y^T A) x \leq y^T (A x) \leq y^T b$

Weak duality theorem – proof

Proof.

By substitution from the dual form, and since the two solutions are feasible, we know that

$$\sum_j c_j x_j \leq \sum_j \Bigl(\sum_{i=1}^m y_i a_{ij}\Bigr) \, x_j \leq \sum_i \Biggl(\sum_j a_{ij} x_j\Bigr) \, y_i \leq \sum_i b_i y_i \, .$$

- lacksquare y being dual feasible implies $c^T \leq y^T A$
- lacksquare x being primal feasible implies $Ax \leq b$

31

Weak duality is weak...

If apply the weak duality theorem on the dual program,

$$\bigcirc \implies \sum_{i=1}^{m} (-b_i) y_i \le \sum_{j=1}^{n} -c_j x_j,$$

- which is the original inequality in the weak duality theorem.
- Weak duality theorem does not imply the strong duality theorem which will be discussed next.

Weak duality is weak...

If apply the weak duality theorem on the dual program,

$$igotimes \sum_{i=1}^m (-b_i) y_i \leq \sum_{j=1}^n -c_j x_j,$$

- which is the original inequality in the weak duality theorem.
- Weak duality theorem does not imply the strong duality theorem which will be discussed next.

Weak duality is weak...

- If apply the weak duality theorem on the dual program,
- $igotimes \sum_{i=1}^m (-b_i) y_i \leq \sum_{j=1}^n -c_j x_j,$
- which is the original inequality in the weak duality theorem.
- Weak duality theorem does not imply the strong duality theorem which will be discussed next.

Weak duality is weak...

- If apply the weak duality theorem on the dual program,
- $igotimes \sum_{i=1}^m (-b_i) y_i \leq \sum_{i=1}^n -c_j x_j,$
- which is the original inequality in the weak duality theorem.
- Weak duality theorem does not imply the strong duality theorem which will be discussed next.

The strong duality theorem

Theorem (Strong duality theorem.)

If the primal LP problem has an optimal solution $x^* = \begin{pmatrix} x_1^*, \dots, x_n^* \end{pmatrix}$ then the dual also has an optimal solution, $y^* = \begin{pmatrix} y_1^*, \dots, y_m^* \end{pmatrix}$, such that

$$\sum_j c_j x_j^* = \sum_i b_i y_i^*.$$

Proof is tedious and omitted.

- G = (V, E): graph. s: source, t: target
 - $orall \ orall (u
 ightarrow v) \in \mathsf{E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into ${f s}/{f out}$ of ${f t}.$
- d_x : var=dist. ${f s}$ to x, $orall x \in {f V}$.
- $egin{aligned} orall & orall \left(u
 ightarrow v
 ight) \in \mathsf{E} : \ & d_u + \omega(u,v) \geq d_v. \end{aligned}$
- Also $d_{\rm s}=0$.
 - Trivial solution: all variables 0.
 - Target: find assignment max

- G = (V, E): graph. s: source, t: target
- $\forall (u o v) \in \mathbf{E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into \mathbf{s}/out of \mathbf{t} .
- d_x : var=dist. ${f s}$ to x, $orall x\in {f V}.$
- $egin{aligned} orall & orall \left(u
 ightarrow v
 ight) \in \mathsf{E} : \ & d_{n} + \omega(u,v) \geq d_{n}. \end{aligned}$
- Also $d_{\rm s}=0$.
 - Trivial solution: all variables
 - 0.
 - Target: find assignment max

- G = (V, E): graph. s: source, t: target
- Q: Comp. shortest s-t path.
- No edges into \mathbf{s} /out of \mathbf{t} .
- d_x : var=dist. ${f s}$ to x, $orall x \in {f V}$.
- $egin{aligned} orall & orall \left(u
 ightarrow v
 ight) \in \mathsf{E}: \ & d_u + \omega(u,v) \geq d_v. \end{aligned}$
- Also $d_{\rm s}=0$.
 - Trivial solution: all variables 0.
 - Target: find assignment max

- G = (V, E): graph. s: source, t: target
- $\forall (u o v) \in \mathsf{E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
 - d_x : var=dist. ${f s}$ to x, $orall x \in {f V}$.
 - $egin{aligned} orall \ (u
 ightarrow v) \in \mathsf{E}: \ d_u + \omega(u,v) \geq d_v. \end{aligned}$
 - Also $d_{\rm s}=0$.
 - Trivial solution: all variables
 - Target: find assignment max

- G = (V, E): graph. s: source, t: target
- $\forall (u o v) \in \mathsf{E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $oldsymbol{d}_x$: var=dist. $oldsymbol{s}$ to x, $orall x \in oldsymbol{\mathsf{V}}.$
 - $egin{array}{l} orall \left(u
 ightarrow v
 ight) \in \mathsf{E} : \ d_u + \omega(u,v) \geq d_v . \end{array}$
 - Also $d_{\rm s}=0$.
 - Trivial solution: all variables
 - 0
 - Target: find assignment max

- G = (V, E): graph. s: source, t: target
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $lack d_x$: var=dist. ${f s}$ to x, $orall x \in {f V}$.
- $orall \ egin{array}{l} orall \ (u
 ightarrow v) \in \mathsf{E}: \ d_u + \omega(u,v) \geq d_v. \end{array}$
 - Also $d_{\rm s}=0$.
 - Trivial solution: all variables
 - Target: find assignment max

- G = (V, E): graph. s: source, t: target
- $\forall (u o v) \in \mathsf{E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $lack d_x$: var=dist. ${f s}$ to x, $orall x \in {f V}$.
- $orall \ egin{array}{l} orall \ (u
 ightarrow v) \in \mathsf{E}: \ d_u + \omega(u,v) \geq d_v. \end{array}$
- Also $d_s = 0$.

Trivial solution: all variables

Target: find assignment max

- G = (V, E): graph. s: source, t: target
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $lack d_x$: var=dist. ${f s}$ to x, $orall x \in {f V}$.
- $egin{aligned} lacksquare & orall \left(u
 ightarrow v
 ight) \in \mathsf{E}: \ & d_u + \omega(u,v) \geq d_v. \end{aligned}$
- Also $d_s = 0$.
- Trivial solution: all variables0.
 - Target: find assignment max

- G = (V, E): graph. s: source, t: target
- $igcup orall (u
 ightarrow v) \in \mathbf{E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $lack d_x$: var=dist. ${f s}$ to x, $orall x\in {f V}$.
- $egin{aligned} lacksquare & orall (u
 ightarrow v) \in \mathsf{E}: \ & d_u + \omega(u,v) \geq d_v. \end{aligned}$
- Also $d_s = 0$.
- Trivial solution: all variables0.
 - Target: find assignment max

- G = (V, E): graph. s: source, t: target
- $orall \ orall \ (u
 ightarrow v) \in {\mathsf E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $oldsymbol{d}_x$: var=dist. ${f s}$ to x, $orall x \in {f V}$.
- $egin{aligned} lacksquare & orall \left(u
 ightarrow v
 ight) \in \mathsf{E}: \ & d_u + \omega(u,v) \geq d_v. \end{aligned}$
- Also $d_s = 0$.
- Trivial solution: all variables0.
 - Target: find assignment max

$$egin{array}{ll} \max & d_{\mathsf{t}} \ & \mathsf{s.t.} & d_{\mathsf{s}} \leq 0 \ & d_u + \omega(u,v) \geq d_v \end{array}$$

 $d_x \ge 0 \quad \forall x \in \mathsf{V}.$

- \bigcirc **G** = (**V**, **E**): graph. **s**: source , t: target
- \bigcirc $\forall (u \rightarrow v) \in \mathbf{E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
 - d_x : var=dist. **s** to x, $\forall x \in V$.
- $orall \left(u
 ightarrow v
 ight) \in \overline{ extsf{F}}_{0} \ orall \left(u
 ightarrow v
 ight) \in \overline{ extsf{E}}:$ $d_u + \omega(u,v) > d_v$
 - Also $d_s = 0$.
 - Trivial solution: all variables 0.
 - Target: find assignment max

The dual

$$egin{aligned} \min & \sum\limits_{(u o v)\in \mathsf{E}} y_{uv}\omega(u,v) \ & ext{s.t.} & y_{\mathsf{s}} - \sum\limits_{(\mathsf{s} o u)\in \mathsf{E}} y_{\mathsf{s}u} \geq 0 \ & ext{max} & d_{\mathsf{t}} \ & ext{s.t.} & d_{\mathsf{s}} \leq 0 \ & d_v - d_u \leq \omega(u,v) \ & orall & (u o v) \in \mathsf{E}, \ & d_x \geq 0 & orall x \in \mathsf{V}. \end{aligned} egin{aligned} \sum\limits_{(u o x)\in \mathsf{E}} y_{ux} - \sum\limits_{(x o v)\in \mathsf{E}} y_{xv} \geq 0 \ & orall & ext{} \forall x \in \mathsf{V} \setminus \{\mathsf{s},\mathsf{t}\} \end{aligned} \ & (x \in \mathsf{V} \setminus \{\mathsf{s},\mathsf{t}\} = 0. \end{aligned}$$

- $extbf{@} y_{uv}$: dual variable for the edge (u
 ightarrow v).
- $lacksquare y_{
 m s}$: dual variable for $d_{
 m s} \leq 0$
- lacksquare Think about the y_{uv} as a flow on the edge y_{uv} .
- Assume that weights are positive.
- $\sim \mathrm{LP}$ is min cost flow of sending 1 unit flow from source s to t.
- Indeed... (**) can be assumed to be hold with equality in the optimal solution...
- conservation of flow.
- Equation (***) implies that one unit of flow arrives to the sink t.
 - (*) implies that at least y_s units of flow leaves the source

- $extbf{ iny } y_{uv}$: dual variable for the edge (u
 ightarrow v).
- $lacksquare y_{\mathsf{s}}$: dual variable for $d_{\mathsf{s}} \leq 0$
- lacksquare Think about the y_{uv} as a flow on the edge y_{uv} .
- Assume that weights are positive.
- LP is min cost flow of sending 1 unit flow from source $\bf s$ to $\bf t$.
- Indeed... (**) can be assumed to be hold with equality in the optimal solution...
- conservation of flow.
- Equation (***) implies that one unit of flow arrives to the sink t.
 - (*) implies that at least $y_{
 m s}$ units of flow leaves the source Remaining of m LP implies that $y_{
 m s} \geq 1$.

- $extbf{ iny } y_{uv}$: dual variable for the edge (u o v).
- $extstyle y_{\mathsf{s}}$: dual variable for $d_{\mathsf{s}} \leq 0$
- lacksquare Think about the y_{uv} as a flow on the edge y_{uv} .
- Assume that weights are positive.
- LP is min cost flow of sending 1 unit flow from source s
 to t.
- Indeed... (**) can be assumed to be hold with equality in the optimal solution...
- conservation of flow
- Equation (***) implies that one unit of flow arrives to the sink t.
 - (*) implies that at least $y_{
 m s}$ units of flow leaves the source Remaining of m LP implies that $y_{
 m s} \geq 1$.

- $lacksquare y_{uv}$: dual variable for the edge (u o v).
- $extstyle y_{\mathsf{s}}$: dual variable for $d_{\mathsf{s}} \leq 0$
- lacksquare Think about the y_{uv} as a flow on the edge $y_{uv}.$
- Assume that weights are positive.
- $lue{L}P$ is min cost flow of sending 1 unit flow from source $lue{s}$ to $lue{t}$.
- Indeed... (**) can be assumed to be hold with equality in the optimal solution...
- conservation of flow.
- Equation (***) implies that one unit of flow arrives to the sink t.
 - p(*) implies that at least $y_{\sf s}$ units of flow leaves the source Remaining of $ext{LP}$ implies that $y_{\sf s} \geq 1$.

- $extbf{@} y_{uv}$: dual variable for the edge (u
 ightarrow v).
- $ullet y_{
 m s}$: dual variable for $d_{
 m s} \leq 0$
- lacksquare Think about the y_{uv} as a flow on the edge $y_{uv}.$
- Assume that weights are positive.
- $lue{\mathbf{LP}}$ is min cost flow of sending $lue{\mathbf{1}}$ unit flow from source $lue{\mathbf{s}}$ to $lue{\mathbf{t}}$.
- Indeed... (**) can be assumed to be hold with equality in the optimal solution...
- conservation of flow.
- Equation (***) implies that one unit of flow arrives to the sink t.
 - (*) implies that at least $y_{\rm s}$ units of flow leaves the source Remaining of LP implies that $y_{\rm s} \geq 1$.

- $lacksquare y_{uv}$: dual variable for the edge (u o v).
- $lacksquare y_{\mathsf{s}}$: dual variable for $d_{\mathsf{s}} \leq 0$
- lacksquare Think about the y_{uv} as a flow on the edge $y_{uv}.$
- Assume that weights are positive.
- $lue{\mathbf{LP}}$ is min cost flow of sending $lue{\mathbf{1}}$ unit flow from source $lue{\mathbf{s}}$ to $lue{\mathbf{t}}$.
- Indeed... (**) can be assumed to be hold with equality in the optimal solution...
- conservation of flow.
- Equation (***) implies that one unit of flow arrives to the sink t.
- $lue{}$ (st) implies that at least $y_{
 m s}$ units of flow leaves the source.
 - Remaining of LP implies that $y_{
 m s} \geq 1$.

- $lacksquare y_{uv}$: dual variable for the edge (u o v).
- $extstyle y_{\mathsf{s}}$: dual variable for $d_{\mathsf{s}} \leq 0$
- lacksquare Think about the y_{uv} as a flow on the edge y_{uv} .
- Assume that weights are positive.
- $lue{L}P$ is min cost flow of sending 1 unit flow from source $lue{s}$ to $lue{t}$.
- Indeed... (**) can be assumed to be hold with equality in the optimal solution...
- conservation of flow.
- Equation (***) implies that one unit of flow arrives to the sink t.
- igspace (*) implies that at least $y_{\rm s}$ units of flow leaves the source.
- lacksquare Remaining of LP implies that $y_{\mathsf{s}} \geq 1$.

- In the previous example there is always an optimal solution with integral values.
- This is not an obvious statement.
- This is not true in general.
- If it were true we could solve NPC problems with LP.

- In the previous example there is always an optimal solution with integral values.
- This is not an obvious statement.
- This is not true in general.
- \odot If it were true we could solve $\sf NPC$ problems with LP .

- In the previous example there is always an optimal solution with integral values.
- This is not an obvious statement.
- This is not true in general.
- $lue{}$ If it were true we could solve f NPC problems with f LP

- In the previous example there is always an optimal solution with integral values.
- This is not an obvious statement.
- This is not true in general.
- If it were true we could solve NPC problems with LP.

Set cover...

Details in notes...

Set cover LP:

$$egin{array}{ll} \min & \sum_{F_j\in \mathcal{F}} x_j \ & ext{s.t.} & \sum_{F_j\in \mathcal{F},\ u_i\in F_j} x_j \geq 1 & orall u_i\in \mathbf{S}, \ & x_j \geq 0 & orall F_j\in \mathcal{F}. \end{array}$$

Set cover dual is a packing LP...

Details in notes...

$$egin{array}{ll} \max & \sum_{u_i \in \mathsf{S}} y_i \ & ext{s.t.} & \sum_{u_i \in F_j} y_i \leq 1 & orall F_j \in \mathfrak{F}, \ & y_i \geq 0 & orall u_i \in \mathsf{S}. \end{array}$$

Network flow

max

 $\sum x_{\mathsf{s} o v}$

 $(s \rightarrow v) \in E$

$$egin{aligned} x_{u o v} & \leq \mathtt{c}(u o v) & orall \left(u o v
ight) \in \mathtt{E} \ & \sum_{(u o v) \in \mathtt{E}} x_{u o v} - \sum_{(v o w) \in \mathtt{E}} x_{v o w} \leq 0 & orall v \in \mathtt{V} \setminus \{\mathtt{s}, \mathtt{t}\} \ & - \sum_{(u o v) \in \mathtt{E}} x_{u o v} + \sum_{(v o w) \in \mathtt{E}} x_{v o w} \leq 0 & orall v \in \mathtt{V} \setminus \{\mathtt{s}, \mathtt{t}\} \ & 0 \leq x_{u o v} & orall \left(u o v
ight) \in \mathtt{E} \end{aligned}$$

Dual of network flow...

$$egin{aligned} \min \sum_{(u o v) \in \mathsf{E}} \mathsf{c}(u o v) \ y_{u o v} \ & d_u - d_v \leq y_{u o v} & orall \ (u o v) \in \mathsf{E} \ & y_{u o v} \geq 0 & orall \ (u o v) \in \mathsf{E} \ & d_{\mathsf{s}} = 1, & d_{\mathsf{t}} = 0. \end{aligned}$$

Under right interpretation: shortest path (see notes).

Duality and min-cut max-flow

Details in class notes

Lemma

The Min-Cut Max-Flow Theorem follows from the strong duality Theorem for Linear Programming.

Solving LPs without ever getting into a loop - symbolic perturbations

Details in the class notes.