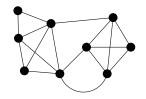
Randomized Algorithms III – Min Cut

Lecture 15 October 16, 2014

Part I

Min cut



 $\mathbf{G} = (V, E)$: undirected graph, n vertices, m edges.

Interested in *cuts* in **G**.

Definition

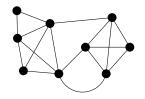
cut in **G**: a partition of $V \colon S$ and $V \setminus S$.

Edges of the cut:

$$(S,\,V\setminus S)=ig\{uv\ ig|\ u\in S,v\in V\setminus S, ext{ and } uv\in Eig\}\,,$$

 $|(S,\,V\setminus S)|$ is size of the cut

minimum cut / mincut: cut in graph with min size.



 ${f G}=(V,E)$: undirected graph, n vertices, m edges. Interested in ${\it cuts}$ in ${f G}$.

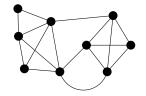
Definition

cut in **G**: a partition of V: S and $V \setminus S$. Edges of the cut:

$$(S,\,V\setminus S)=ig\{uv\ ig|\ u\in S,v\in V\setminus S, ext{ and } uv\in Eig\}\,,$$

 $|(S,\,V\setminus S)|$ is size of the cut

minimum cut / mincut: cut in graph with min size.



 ${f G}=(V,{m E})$: undirected graph, ${m n}$ vertices, ${m m}$ edges. Interested in ${m cuts}$ in ${f G}$.

Definition

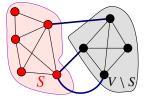
cut in **G**: a partition of V: S and $V \setminus S$.

Edges of the cut:

$$(S,\,V\setminus S)=\left\{uv\;\middle|\;u\in S,v\in\,V\setminus S,\; ext{and}\;uv\in E
ight\},$$

 $|(S,\,V\setminus S)|$ is size of the cut

minimum cut / mincut: cut in graph with min size.



 ${f G}=(V,{m E})$: undirected graph, ${m n}$ vertices, ${m m}$ edges. Interested in ${m cuts}$ in ${f G}$.

Definition

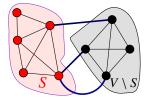
cut in **G**: a partition of V: S and $V \setminus S$.

Edges of the cut:

$$(S,\,V\setminus S)=\left\{uv\;\middle|\;u\in S,v\in\,V\setminus S,\; ext{and}\;uv\in E
ight\},$$

 $|(S,\,V\setminus S)|$ is size of the cut

minimum cut / mincut: cut in graph with min size.



 ${f G}=(V,{m E})$: undirected graph, ${m n}$ vertices, ${m m}$ edges. Interested in ${m cuts}$ in ${f G}$.

Definition

cut in **G**: a partition of V: S and $V \setminus S$.

Edges of the cut:

$$(S,\,V\setminus S)=\left\{uv\;\middle|\;u\in S,v\in\,V\setminus S,\; ext{and}\;uv\in E
ight\},$$

 $|(S,\,V\setminus S)|$ is size of the cut

minimum cut / mincut: cut in graph with min size.

Some definitions

lacksquare conditional probability of X given Y is

$$\Prig[X=x\,|\,Y=yig]=rac{\Prig[(X=x)\cap(Y=y)ig]}{\Prig[Y=yig]}.$$

$$\Prigl[(X=x)\cap (Y=y)igr]=\Prigl[X=x\ \Big|\ Y=yigr]\cdot\Prigl[Y=y]$$

② X, Y events are **independent**, if $\Pr[X = x \cap Y = y] = \Pr[X = x] \cdot \Pr[Y = y]$. $\Longrightarrow \Pr[X = x \mid Y = y] = \Pr[X = x]$.

Some definitions

lacksquare conditional probability of X given Y is

$$egin{aligned} \Prig[X=x\,|\,Y=yig] &= rac{\Prig[(X=x)\cap(Y=y)ig]}{\Prig[Y=yig]}.\ \Prig[(X=x)\cap(Y=y)ig] &= \Prig[X=x\;\Big|\;Y=yig]\cdot\Prig[Y=y]. \end{aligned}$$

② X, Y events are **independent**, if $\Pr[X = x \cap Y = y] = \Pr[X = x] \cdot \Pr[Y = y]$. $\Longrightarrow \Pr[X = x \mid Y = y] = \Pr[X = x]$.

Some definitions

lacksquare conditional probability of X given Y is

$$\Pr[X = x \mid Y = y] = \frac{\Pr[(X = x) \cap (Y = y)]}{\Pr[Y = y]}.$$

$$\Pr[(Y = x) \cap (Y = y)] = \Pr[Y = x \mid Y = y] \cdot \Pr[Y = y]$$

$$\Prigl[(X=x)\cap (Y=y)igr]=\Prigl[X=x\ igg|\ Y=yigr]\cdot\Prigl[Y=y]$$

② X, Y events are **independent**, if $\Prig[X = x \cap Y = yig] = \Prig[X = xig] \cdot \Prig[Y = yig].$ $\Longrightarrow \Prig[X = x \mid Y = yig] = \Prig[X = xig].$

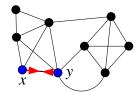
Some more probability

Lemma

 $\mathcal{E}_1, \ldots, \mathcal{E}_n$: n events (not necessarily independent). Then,

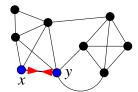
$$\Pr\left[\bigcap_{i=1}^{n} \mathcal{E}_{i}\right] = \Pr\left[\mathcal{E}_{1}\right] * \Pr\left[\mathcal{E}_{2} \left|\mathcal{E}_{1}\right\right] * \Pr\left[\mathcal{E}_{3} \left|\mathcal{E}_{1} \cap \mathcal{E}_{2}\right\right] * \dots \right.$$

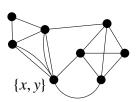
$$* \Pr\left[\mathcal{E}_{n} \left|\mathcal{E}_{1} \cap \dots \cap \mathcal{E}_{n-1}\right].$$



G:

- **1** edge contraction: e = xy in **G**.
- $ext{@}$... merge x,y into a single vertex
- ...remove self loops.
- ... parallel edges multi-graph.
- o ... weights/ multiplicities on the edges.

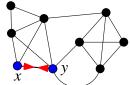


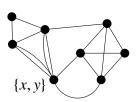


G:

- G/xy :
- **1** edge contraction: e = xy in **G**.
- $oldsymbol{2}$... merge $oldsymbol{x},oldsymbol{y}$ into a single vertex.
- ...remove self loops.
- ... parallel edges multi-graph.
- 5 ... weights/ multiplicities on the edges.

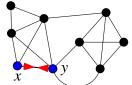
6

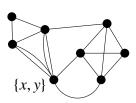




 $G: \qquad G/xy:$

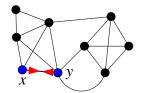
- **1** edge contraction: e = xy in **G**.
- $oldsymbol{2}$... merge $oldsymbol{x}, oldsymbol{y}$ into a single vertex.
- ...remove self loops.
- … parallel edges multi-graph.
- 5 ... weights/ multiplicities on the edges.

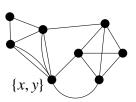




 G : G/xy :

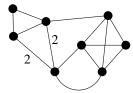
- **1** edge contraction: e = xy in **G**.
- $oldsymbol{2}$... merge $oldsymbol{x},oldsymbol{y}$ into a single vertex.
- ...remove self loops.
- ... parallel edges *multi-graph*.
- 5 ... weights/ multiplicities on the edges.



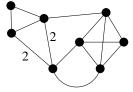


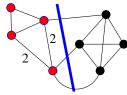
G:

- G/xy :
- **1** edge contraction: e = xy in **G**.
- $oldsymbol{2}$... merge $oldsymbol{x},oldsymbol{y}$ into a single vertex.
- ...remove self loops.
- ... parallel edges *multi-graph*.
- ... weights/ multiplicities on the edges.



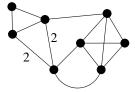
- Graph represented using adjacency lists.
- Merging the adjacency lists of the two vertices being contracted
- ① Using hashing to do fix-ups. (i.e., fix adjacency list of vertices connected to $m{x}, m{y}$.)
- Include edge weight in computing cut weight.

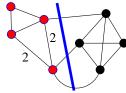




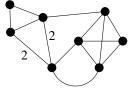
Edge contraction implemented in O(n) time:

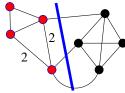
- Graph represented using adjacency lists.
- Merging the adjacency lists of the two vertices being contracted.
- ① Using hashing to do fix-ups. (i.e., fix adjacency list of vertices connected to $m{x}, m{y}$.)
- Include edge weight in computing cut weight.



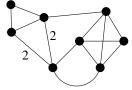


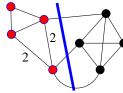
- Graph represented using adjacency lists.
- @ Merging the adjacency lists of the two vertices being contracted
- ① Using hashing to do fix-ups. (i.e., fix adjacency list of vertices connected to x,y.)
- Include edge weight in computing cut weight.



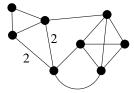


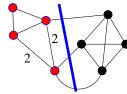
- Graph represented using adjacency lists.
- Merging the adjacency lists of the two vertices being contracted.
- 0 Using hashing to do fix-ups. (i.e., fix adjacency list of vertices connected to $x,\,y$.)
- Include edge weight in computing cut weight.





- Graph represented using adjacency lists.
- Merging the adjacency lists of the two vertices being contracted.
- ullet Using hashing to do fix-ups. (i.e., fix adjacency list of vertices connected to x,y.)
- Include edge weight in computing cut weight.





- Graph represented using adjacency lists.
- Merging the adjacency lists of the two vertices being contracted.
- ullet Using hashing to do fix-ups. (i.e., fix adjacency list of vertices connected to x,y.)
- Include edge weight in computing cut weight.

Observation

- **1** A cut in G/xy is a valid cut in G.
- 2 There \exists cuts in \mathbf{G} are not in \mathbf{G}/xy .
- lacksquare The cut $S=\{x\}$ is not in lacksquare G/xy
- \bigcirc \Longrightarrow size mincut in $\mathbf{G}/xy \geq$ mincut in \mathbf{G} .
- Idea: Repeatedly perform edge contractions (benefits: shrink graph)...
- Every vertex in contracted graph is a connected component in the original graph.)

Observation

- **1** A cut in G/xy is a valid cut in G.
- 2 There \exists cuts in \mathbf{G} are not in \mathbf{G}/xy .
- ullet The cut $S=\{x\}$ is not in ${f G}/xy$.
- $ext{ } ext{ } ext$
- Idea: Repeatedly perform edge contractions (benefits: shrink graph)...
- Every vertex in contracted graph is a connected component in the original graph.)

Observation

- **1** A cut in G/xy is a valid cut in G.
- ② There \exists cuts in \mathbf{G} are not in \mathbf{G}/xy .
- **3** The cut $S = \{x\}$ is not in \mathbf{G}/xy .
- $exttt{0} \implies ext{size mincut in } extbf{G}/xy \geq ext{mincut in } extbf{G}.$
- Idea: Repeatedly perform edge contractions (benefits: shrink graph)...
- Every vertex in contracted graph is a connected component in the original graph.)

Observation

- **1** A cut in G/xy is a valid cut in G.
- 2 There \exists cuts in \mathbf{G} are not in \mathbf{G}/xy .
- **3** The cut $S = \{x\}$ is not in \mathbf{G}/xy .
- lacktriangledown size mincut in $lacktriangledown G/xy \geq$ mincut in lacktriangledown.
- Idea: Repeatedly perform edge contractions (benefits: shrink graph)...
- Every vertex in contracted graph is a connected component in the original graph.)

Observation

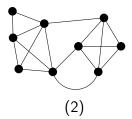
- **1** A cut in G/xy is a valid cut in G.
- 2 There \exists cuts in **G** are not in \mathbf{G}/xy .
- **3** The cut $S = \{x\}$ is not in G/xy.
- \implies size mincut in G/xy > mincut in G.
- Idea: Repeatedly perform edge contractions (benefits: shrink) graph)...
- Every vertex in contracted graph is a connected component in

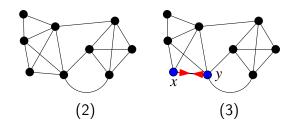
Sariel (UIUC) CS573 8 Fall 2014

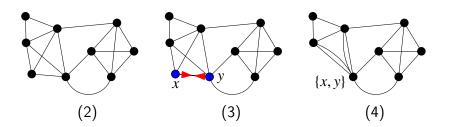
Observation

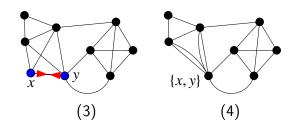
- **1** A cut in G/xy is a valid cut in G.
- 2 There \exists cuts in \mathbf{G} are not in \mathbf{G}/xy .
- **3** The cut $S = \{x\}$ is not in G/xy.
- \implies size mincut in G/xy > mincut in G.
- Idea: Repeatedly perform edge contractions (benefits: shrink) graph)...
- Every vertex in contracted graph is a connected component in the original graph.)

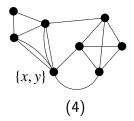
Sariel (UIUC) CS573 8 Fall 2014

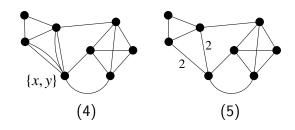


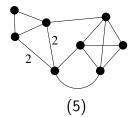


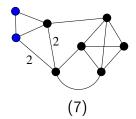


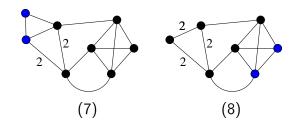


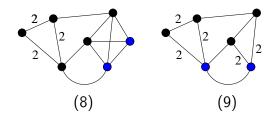


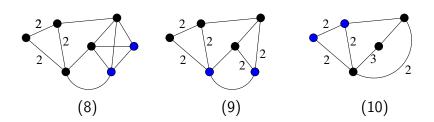


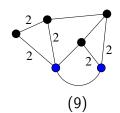


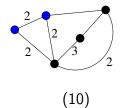




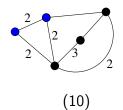


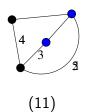


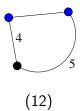


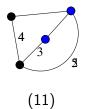


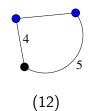
(11)

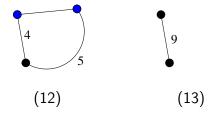




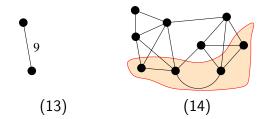




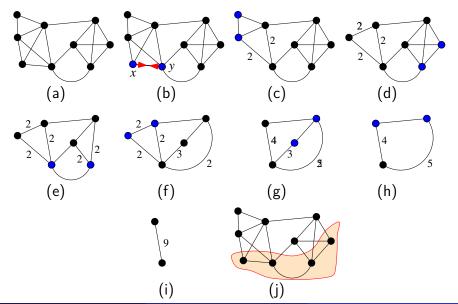


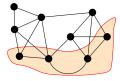


(13)

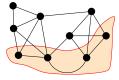


Contraction - all together now

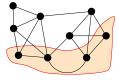




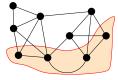
- Not min cut!
- Contracted wrong edge somewhere...
- If never contract an edge in the cut...
- ...get min cut in the end!
- We might still get min cut even if we contract edge min cut. Why???



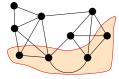
- Not min cut!
- Contracted wrong edge somewhere...
- If never contract an edge in the cut...
- ...get min cut in the end!
- We might still get min cut even if we contract edge min cut. Why???



- Not min cut!
- Contracted wrong edge somewhere...
- If never contract an edge in the cut...
- ...get min cut in the end!
- We might still get min cut even if we contract edge min cut. Why???



- Not min cut!
- Contracted wrong edge somewhere...
- If never contract an edge in the cut...
- ...get min cut in the end!
- We might still get min cut even if we contract edge min cut. Why???



- Not min cut!
- Contracted wrong edge somewhere...
- If never contract an edge in the cut...
- ...get min cut in the end!
- We might still get min cut even if we contract edge min cut. Why???

The algorithm...

```
\begin{aligned} & \mathbf{Algorithm} \quad \mathbf{MinCut}(\mathbf{G}) \\ & \mathbf{G}_0 \leftarrow G \\ & i = 0 \\ & \mathbf{while} \quad \mathbf{G}_i \text{ has more than two vertices } \mathbf{do} \\ & e_i \leftarrow \text{ random edge from } \mathbf{E}(\mathbf{G}_i) \\ & \mathbf{G}_{i+1} \leftarrow G_i/e_i \\ & i \leftarrow i+1 \\ & \text{Let } (S,V \setminus S) \text{ be the cut in the original graph} \\ & & \text{corresponding to the single edge in } \mathbf{G}_i \\ & \mathbf{return} \ (S,V \setminus S). \end{aligned}
```

Lemma

```
X=\{x_1,\ldots,x_n\}: elements, \omega(x_i): integer positive weight. Pick randomly, in O(n) time, an element \in X, with prob picking x_i being \omega(x_i) / W, where W=\sum_{i=1}^n \omega(x_i).
```

Proof.

```
Randomly choose r \in [0, W]. Precompute \beta_i = \sum_{k=1}^i \omega(x_k) = \beta_{i-1} + \omega(x_i). Find first index i, \beta_{i-1} < r \le \beta_i. Return x_i.
```

- Edges have weight...
- ② ...compute total weight of each vertex (adjacent edges).
- Pick randomly a vertex by weight.
- Pick random edge adjacent to this vertex.

Lemma

 $X=\{x_1,\ldots,x_n\}$: elements, $\omega(x_i)$: integer positive weight. Pick randomly, in O(n) time, an element $\in X$, with prob picking x_i being $\omega(x_i)$ / W, where $W=\sum_{i=1}^n \omega(x_i)$.

Proof.

Randomly choose $r \in [0, W]$.

Precompute $\beta_i = \sum_{k=1}^i \omega(x_k) = \beta_{i-1} + \omega(x_i)$. Find first index i, $\beta_{i-1} < r \le \beta_i$. Return x_i .

- Edges have weight...
- ② ...compute total weight of each vertex (adjacent edges).
- Pick randomly a vertex by weight.
- Pick random edge adjacent to this vertex.

Lemma

 $X=\{x_1,\ldots,x_n\}$: elements, $\omega(x_i)$: integer positive weight. Pick randomly, in O(n) time, an element $\in X$, with prob picking x_i being $\omega(x_i)$ / W, where $W=\sum_{i=1}^n \omega(x_i)$.

Proof.

Randomly choose $r \in [0, W]$.

Precompute $\beta_i = \sum_{k=1}^i \omega(x_k) = \beta_{i-1} + \omega(x_i)$.

- Edges have weight...
- ② ...compute total weight of each vertex (adjacent edges).
- Pick randomly a vertex by weight.
- Pick random edge adjacent to this vertex.

Lemma

 $X=\{x_1,\ldots,x_n\}$: elements, $\omega(x_i)$: integer positive weight. Pick randomly, in O(n) time, an element $\in X$, with prob picking x_i being $\omega(x_i)$ / W, where $W=\sum_{i=1}^n \omega(x_i)$.

Proof.

Randomly choose $r \in [0, W]$.

Precompute $\beta_i = \sum_{k=1}^i \omega(x_k) = \beta_{i-1} + \omega(x_i)$.

- Edges have weight...
- ② ...compute total weight of each vertex (adjacent edges).
- Opening in the property of the second of
- Open Pick random edge adjacent to this vertex.

Lemma

 $X=\{x_1,\ldots,x_n\}$: elements, $\omega(x_i)$: integer positive weight. Pick randomly, in O(n) time, an element $\in X$, with prob picking x_i being $\omega(x_i)$ / W, where $W=\sum_{i=1}^n \omega(x_i)$.

Proof.

Randomly choose $r \in [0, W]$.

Precompute $\beta_i = \sum_{k=1}^i \omega(x_k) = \beta_{i-1} + \omega(x_i)$.

- Edges have weight...
- ...compute total weight of each vertex (adjacent edges).
- Opening in the property of the second of
- Pick random edge adjacent to this vertex.

Lemma

 $X=\{x_1,\ldots,x_n\}$: elements, $\omega(x_i)$: integer positive weight. Pick randomly, in O(n) time, an element $\in X$, with prob picking x_i being $\omega(x_i)$ / W, where $W=\sum_{i=1}^n \omega(x_i)$.

Proof.

Randomly choose $r \in [0, W]$.

Precompute $\beta_i = \sum_{k=1}^i \omega(x_k) = \beta_{i-1} + \omega(x_i)$.

- Edges have weight...
- 2 ...compute total weight of each vertex (adjacent edges).
- Opening in the property of the property of
- O Pick random edge adjacent to this vertex

Lemma

 $X=\{x_1,\ldots,x_n\}$: elements, $\omega(x_i)$: integer positive weight. Pick randomly, in O(n) time, an element $\in X$, with prob picking x_i being $\omega(x_i)$ / W, where $W=\sum_{i=1}^n \omega(x_i)$.

Proof.

Randomly choose $r \in [0, W]$.

Precompute $\beta_i = \sum_{k=1}^i \omega(x_k) = \beta_{i-1} + \omega(x_i)$.

- Edges have weight...
- 2 ...compute total weight of each vertex (adjacent edges).
- Pick randomly a vertex by weight.
- Pick random edge adjacent to this vertex.

Lemma

 $X=\{x_1,\ldots,x_n\}$: elements, $\omega(x_i)$: integer positive weight. Pick randomly, in O(n) time, an element $\in X$, with prob picking x_i being $\omega(x_i)$ / W, where $W=\sum_{i=1}^n \omega(x_i)$.

Proof.

Randomly choose $r \in [0, W]$.

Precompute $\beta_i = \sum_{k=1}^i \omega(x_k) = \beta_{i-1} + \omega(x_i)$.

- Edges have weight...
- ...compute total weight of each vertex (adjacent edges).
- Pick randomly a vertex by weight.
- Pick random edge adjacent to this vertex.

Lemma...

Lemma

G: mincut of size k and n vertices, then $|\mathsf{E}(\mathsf{G})| \geq \frac{kn}{2}$.

Proof.

Each vertex degree is at least k, otherwise the vertex itself would form a minimum cut of size smaller than k. As such, there are at least $\sum_{v \in V} \operatorname{degree}(v)/2 \ge nk/2$ edges in the graph.

Lemma...

Lemma

If we pick in random an edge e from a graph G, then with probability at most $\frac{2}{n}$ it belong to the minimum cut.

Proof.

There are at least nk/2 edges in the graph and exactly k edges in the minimum cut. Thus, the probability of picking an edge from the minimum cut is smaller then k/(nk/2) = 2/n.

Lemma

Lemma

MinCut outputs the mincut with prob. $\geq \frac{2}{n(n-1)}$.

Proof

- **①** \mathcal{E}_i : event that e_i is not in the minimum cut of \mathbf{G}_i .
- **2** MinCut outputs mincut if all the events $\mathcal{E}_0,\ldots,\mathcal{E}_{n-3}$ happen.

Lemma

Lemma

MinCut outputs the mincut with prob. $\geq \frac{2}{n(n-1)}$.

Proof

- **①** \mathcal{E}_i : event that e_i is not in the minimum cut of \mathbf{G}_i .
- **MinCut** outputs mincut if all the events $\mathcal{E}_0,\ldots,\mathcal{E}_{n-3}$ happen.

Proof continued...

As such, we have

$$\Delta \geq \prod_{i=0}^{n-3} \left(1 - \frac{2}{n-i}\right) = \prod_{i=0}^{n-3} \frac{n-i-2}{n-i}$$

$$= \frac{n-2}{n} * \frac{n-3}{n-1} * \frac{n-4}{n-2} \cdots \frac{2}{4} \cdot \frac{1}{3}$$

$$= \frac{2}{n \cdot (n-1)}.$$

$$\alpha = \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \left(1 - \frac{2}{n-2}\right) \cdots \left(1 - \frac{2}{4}\right) \left(1 - \frac{2}{3}\right)$$

$$= \frac{n-2}{n} \cdot \frac{(n-1)-2}{n-1} \cdot \frac{(n-2)-2}{n-2} \cdots \frac{4-2}{4} \cdot \frac{3-2}{3}$$

$$= - \cdot - \frac{2}{n} \cdot \frac{2}{n-1} \cdot \frac{1}{n-2} \cdot \frac{2}{n-2} \cdot \frac{2}{n-2} \cdot \frac{1}{n-2} \cdot \frac{2}{n-2} \cdot$$

$$\alpha = \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \left(1 - \frac{2}{n-2}\right) \cdots \left(1 - \frac{2}{4}\right) \left(1 - \frac{2}{3}\right)$$

$$= \frac{n-2}{n} \cdot \frac{(n-1)-2}{n-1} \cdot \frac{(n-2)-2}{n-2} \cdots \frac{4-2}{4} \cdot \frac{3-2}{3}$$

$$= \frac{2}{n} \cdot \frac{1}{n-2} \cdot \frac{1}{n$$

$$\alpha = \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \left(1 - \frac{2}{n-2}\right) \cdots \left(1 - \frac{2}{4}\right) \left(1 - \frac{2}{3}\right)$$

$$= \frac{n-2}{n} \cdot \frac{(n-1)-2}{n-1} \cdot \frac{(n-2)-2}{n-2} \cdots \frac{4-2}{4} \cdot \frac{3-2}{3}$$

$$= \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdot \frac{n-5}{n-3} \cdots \frac{3}{5} \cdot \frac{2}{4} \cdot \frac{1}{3}$$

$$\alpha = \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \left(1 - \frac{2}{n-2}\right) \cdots \left(1 - \frac{2}{4}\right) \left(1 - \frac{2}{3}\right)$$

$$= \frac{n-2}{n} \cdot \frac{(n-1)-2}{n-1} \cdot \frac{(n-2)-2}{n-2} \cdots \frac{4-2}{4} \cdot \frac{3-2}{3}$$

$$= \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdot \frac{n-5}{n-3} \cdots \frac{3}{5} \cdot \frac{2}{4} \cdot \frac{1}{3}$$

$$\alpha = \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \left(1 - \frac{2}{n-2}\right) \cdots \left(1 - \frac{2}{4}\right) \left(1 - \frac{2}{3}\right)$$

$$= \frac{n-2}{n} \cdot \frac{(n-1)-2}{n-1} \cdot \frac{(n-2)-2}{n-2} \cdots \frac{4-2}{4} \cdot \frac{3-2}{3}$$

$$= \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdot \frac{n-5}{n-3} \cdots \frac{3}{5} \cdot \frac{2}{4} \cdot \frac{1}{3}$$

$$\alpha = \left(1 - \frac{2}{n}\right)\left(1 - \frac{2}{n-1}\right)\left(1 - \frac{2}{n-2}\right)\cdots\left(1 - \frac{2}{4}\right)\left(1 - \frac{2}{3}\right)$$

$$= \frac{n-2}{n}\cdot\frac{(n-1)-2}{n-1}\cdot\frac{(n-2)-2}{n-2}\cdots\frac{4-2}{4}\cdot\frac{3-2}{3}$$

$$= \frac{n-2}{n}\cdot\frac{n-3}{n-1}\cdot\frac{n-3}{n-2}\cdot\frac{n-3}{n-3}\cdots\frac{3}{3}\cdot\frac{2}{3}\cdot\frac{2}{3}\cdot\frac{1}{3}$$

Some math restated...

$$\alpha = \left(1 - \frac{2}{n}\right)\left(1 - \frac{2}{n-1}\right)\left(1 - \frac{2}{n-2}\right)\cdots\left(1 - \frac{2}{4}\right)\left(1 - \frac{2}{3}\right)$$

$$= \frac{n-2}{n}\cdot\frac{(n-1)-2}{n-1}\cdot\frac{(n-2)-2}{n-2}\cdots\frac{4-2}{4}\cdot\frac{3-2}{3}$$

$$= \frac{n-2}{n}\cdot\frac{n-3}{n-1}\cdot\frac{n-3}{n-2}\cdot\frac{n-3}{n-3}\cdots\frac{3}{3}\cdot\frac{2}{3}\cdot\frac{2}{3}\cdot\frac{1}{3}$$

$$= \frac{n-2}{n}\cdot\frac{n-1}{n-1}\cdot\frac{2}{n-2}\cdot\frac{2}{n-3}\cdot\frac{1}{3}$$

$$= \frac{2}{n(n-1)}$$

Sariel (UIUC) CS573 18 Fall 2014 18 / 37

Running time analysis...

Observation

MinCut runs in $O(n^2)$ time.

Observation

The algorithm always outputs a cut, and the cut is not smaller than the minimum cut.

Definition

Amplification: running an experiment again and again till the things we want to happen, with good probability, do happen.

Getting a good probability

MinCutRep: algorithm runs **MinCut** n(n-1) times and return the minimum cut computed.

Lemma

probability MinCutRep fails to return the minimum cut is < 0.14.

Proof.

MinCut fails to output the mincut in each execution is at most

$$1-\tfrac{2}{n(n-1)}.$$

 $oxed{\mathsf{MinCutRep}}$ fails, only if all n(n-1) executions of $oxed{\mathsf{MinCut}}$ fail.

$$\left(1 - \frac{2}{n(n-1)}\right)^{n(n-1)} \le \exp\left(-\frac{2}{n(n-1)} \cdot n(n-1)\right) = \exp(-2) < 0.14 \text{ since } 1 - \infty < 0.74 \text{ for } 0 < \infty < 1$$

$$0.14, \, \mathrm{since} \,\, 1 - x \leq e^{-x} \,\, \mathrm{for} \,\, 0 \leq x \leq 1.$$

Result

Theorem

One can compute mincut in $O(n^4)$ time with constant probability to get a correct result. In $O(n^4 \log n)$ time the minimum cut is returned with high probability.

Why MinCutRep needs so many executions?

Probability of failure in first u iterations is

$$ext{Pr}ig[\mathcal{E}_0 \cap \ldots \cap \mathcal{E}_{
u-1}ig] \geq \prod_{i=0}^{
u-1}igg(1-rac{2}{n-i}igg) = \prod_{i=0}^{
u-1}rac{n-i-2}{n-i} \ = rac{n-2}{n} * rac{n-3}{n-1} * rac{n-4}{n-2} \cdots \ = rac{(n-
u)(n-
u-1)}{n \cdot (n-1)}.$$

$$\implies \nu = n/2$$
: Prob of success $\approx 1/4$.

$$\implies
u = n - \sqrt{n}$$
: Prob of success $\approx 1/n$.

Why MinCutRep needs so many executions? Probability of failure in first ν iterations is

$$ext{Pr}ig[\mathcal{E}_0 \cap \ldots \cap \mathcal{E}_{
u-1}ig] \geq \prod_{i=0}^{
u-1}igg(1-rac{2}{n-i}igg) = \prod_{i=0}^{
u-1}rac{n-i-2}{n-i} \ = rac{n-2}{n} * rac{n-3}{n-1} * rac{n-4}{n-2} \cdots \ = rac{(n-
u)(n-
u-1)}{n\cdot (n-1)}.$$

- $\implies
 u = n/2$: Prob of success pprox 1/4.
- $\implies
 u = n \sqrt{n}$: Prob of success pprox 1/n.

Why **MinCutRep** needs so many executions? Probability of failure in first ν iterations is

$$ext{Pr}ig[\mathcal{E}_0 \cap \ldots \cap \mathcal{E}_{
u-1}ig] \geq \prod_{i=0}^{
u-1}igg(1-rac{2}{n-i}igg) = \prod_{i=0}^{
u-1}rac{n-i-2}{n-i} \ = rac{n-2}{n} * rac{n-3}{n-1} * rac{n-4}{n-2} \ldots \ = rac{(n-
u)(n-
u-1)}{n\cdot (n-1)}.$$

$$\implies \nu = n/2$$
: Prob of success $\approx 1/4$.

 $\implies \nu = n - \sqrt{n}$: Prob of success $\approx 1/n$.

Why **MinCutRep** needs so many executions? Probability of failure in first ν iterations is

$$ext{Pr}ig[\mathcal{E}_0 \cap \ldots \cap \mathcal{E}_{
u-1}ig] \geq \prod_{i=0}^{
u-1}igg(1-rac{2}{n-i}igg) = \prod_{i=0}^{
u-1}rac{n-i-2}{n-i} \ = rac{n-2}{n} * rac{n-3}{n-1} * rac{n-4}{n-2} \ldots \ = rac{(n-
u)(n-
u-1)}{n\cdot (n-1)}.$$

$$\implies \nu = n/2$$
: Prob of success $\approx 1/4$.

$$\implies \nu = n - \sqrt{n}$$
: Prob of success $\approx 1/n$.

Insight

- As the graph get smaller probability for bad choice increases.
- ② Currently do the amplification from the outside of the algorithm
- Out amplification directly into the algorithm

Insight

- As the graph get smaller probability for bad choice increases.
- ② Currently do the amplification from the outside of the algorithm.
- Put amplification directly into the algorithm

Insight

- As the graph get smaller probability for bad choice increases.
- ② Currently do the amplification from the outside of the algorithm.
- Put amplification directly into the algorithm.

Contract...

Contract(G, t) shrinks G till it has only t vertices. FastCut computes the minimum cut using Contract.

```
\begin{array}{c} \textbf{Contract}(\ \textbf{G},t\ ) \\ \textbf{while} \ \ |(G)| > t \ \textbf{do} \\ \text{Pick a random edge} \\ e \ \text{in } \textbf{G}. \\ \textbf{G} \leftarrow G/e \\ \textbf{return } \textbf{G} \end{array}
```

```
\mathsf{FastCut}(\mathsf{G} = (V, E))
      G -- multi-graph
begin
      n \leftarrow |V(G)|
      if n < 6 then
            Compute minimum cut
            of G and return cut.
      t \leftarrow \left\lceil 1 + n/\sqrt{2} \right
vert
      H_1 \leftarrow \mathsf{Contract}(G, t)
      H_2 \leftarrow \mathsf{Contract}(G, t)
      /* Contract is randomized!!!
      X_1 \leftarrow \mathsf{FastCut}(H_1),
      X_2 \leftarrow \mathsf{FastCut}(H_2)
      return mincut of X_1 and X_2.
end
```

Lemma

The running time of $\mathsf{FastCut}(G)$ is $O(n^2 \log n)$, where n = |V(G)|.

Proof.

Well, we perform two calls to $\mathsf{Contract}(G,t)$ which takes $O(n^2)$ time. And then we perform two recursive calls on the resulting graphs. We have:

$$T(n) = \mathit{O}(n^2) + 2Tig(rac{n}{\sqrt{2}}ig)$$

The solution to this recurrence is $O(n^2 \log n)$ as one can easily (and should) verify.

Lemma

The running time of $\mathsf{FastCut}(G)$ is $O(n^2 \log n)$, where n = |V(G)|.

Proof.

Well, we perform two calls to $\mathsf{Contract}(G,t)$ which takes $O(n^2)$ time. And then we perform two recursive calls on the resulting graphs. We have:

$$T(n) = \mathit{O}(n^2) + 2Tig(rac{n}{\sqrt{2}}ig)$$

The solution to this recurrence is $O(n^2 \log n)$ as one can easily (and should) verify.

Success at each step

Lemma

Probability that mincut in contracted graph is original mincut is at least 1/2.

Proof.

Plug in $u=n-t=n-\left\lceil 1+n/\sqrt{2}
ight
ceil$ into success probability:

$$\Prigg[\mathcal{E}_0\cap\ldots\cap\mathcal{E}_{n-t}igg]\geq$$

Success at each step

Lemma

Probability that mincut in contracted graph is original mincut is at least 1/2.

Proof.

Plug in $u=n-t=n-\left|1+n/\sqrt{2}\right|$ into success probability:

$$ext{Pr}igg[\mathcal{E}_0\cap\ldots\cap\mathcal{E}_{n-t}igg]\geqrac{t(t-1)}{n\cdot(n-1)}$$

Success at each step

Lemma

Probability that mincut in contracted graph is original mincut is at least 1/2.

Proof.

Plug in $u=n-t=n-\left|1+n/\sqrt{2}\right|$ into success probability:

$$egin{split} \Prigg[\mathcal{E}_0 \cap \ldots \cap \mathcal{E}_{n-t}igg] &\geq rac{t(t-1)}{n\cdot (n-1)} \ &= rac{igg[1+n/\sqrt{2}ig]ig(ig[1+n/\sqrt{2}ig]-1ig)}{n(n-1)} \geq rac{1}{2}. \end{split}$$

Probability of success...

Lemma

FastCut finds the minimum cut with probability larger than $\Omega(1/\log n)$.

See class notes for a formal proof. We provide a more elegant direct argument shortly.

Amplification

Lemma

Running FastCut repeatedly $c \cdot \log^2 n$ times, guarantee that the algorithm outputs mincut with probability $\geq 1 - 1/n^2$. c is a constant large enough.

Proof.

- **1** FastCut succeeds with prob $\geq c'/\log n$, c' is a constant.
- ② ...fails with prob. $\leq 1 c'/\log n$.
- ① ...fails in m reps with prob. $\leq (1-c'/\log n)^m$. But then $(1-c'/\log n)^m \leq \left(e^{-c'/\log n}\right)^m \leq e^{-mc'/\log n} \leq \frac{1}{n^2},$ for $m=(2\log n)/c'.$

Amplification

Lemma

Running FastCut repeatedly $c \cdot \log^2 n$ times, guarantee that the algorithm outputs mincut with probability $\geq 1 - 1/n^2$. c is a constant large enough.

Proof.

- **1** FastCut succeeds with prob $\geq c'/\log n$, c' is a constant.
- ② ...fails with prob. $\leq 1 c'/\log n$.
- ① ...fails in m reps with prob. $\leq (1-c'/\log n)^m$. But then $(1-c'/\log n)^m \leq \left(e^{-c'/\log n}\right)^m \leq e^{-mc'/\log n} \leq \frac{1}{n^2},$ for $m=(2\log n)/c'.$

Amplification

Lemma

Running FastCut repeatedly $c \cdot \log^2 n$ times, guarantee that the algorithm outputs mincut with probability $\geq 1 - 1/n^2$. c is a constant large enough.

Proof.

- **1** FastCut succeeds with prob $\geq c'/\log n$, c' is a constant.
- ② ...fails with prob. $\leq 1 c'/\log n$.
- $\text{ ...fails in } m \text{ reps with prob.} \leq \left(1-c'/\log n\right)^m \text{. But then } \left(1-c'/\log n\right)^m \leq \left(e^{-c'/\log n}\right)^m \leq e^{-mc'/\log n} \leq \frac{1}{n^2},$ for $m=\left(2\log n\right)/c'.$

Theorem

⁻heorem

One can compute the minimum cut in a graph G with n vertices in $O(n^2 \log^3 n)$ time. The algorithm succeeds with probability $> 1 - 1/n^2$.

Proof.

We do amplification on **FastCut** by running it $O(\log^2 n)$ times.

The running time bound follows from lemma...

Part II

On coloring trees and min-cut

- **1** T_h be a complete binary tree of height h.
- Randomly color its edges by black and white.
- \odot \mathcal{E}_h : there exists a black path from root T_h to one of its leafs.
- $ho_0=1$ and $ho_1=3/4$ (see below).

- **1** T_h be a complete binary tree of height h.
- Randomly color its edges by black and white.
- $\ \ \,$ $\ \,$ $\ \ \,$ $\ \ \,$ $\ \,$ $\ \ \,$ $\ \,$ $\ \ \,$ $\ \ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$
- $\bullet \ \rho_h = \Pr[\mathcal{E}_h]$
- $ho_0=1$ and $ho_1=3/4$ (see below).

- **1** T_h be a complete binary tree of height h.
- Randomly color its edges by black and white.
- **3** \mathcal{E}_h : there exists a black path from root T_h to one of its leafs.
- $\bullet \ \rho_h = \Pr[\mathcal{E}_h]$
- $ho_0=1$ and $ho_1=3/4$ (see below).

- **1** T_h be a complete binary tree of height h.
- Randomly color its edges by black and white.
- **3** \mathcal{E}_h : there exists a black path from root T_h to one of its leafs.
- $ho_0=1$ and $ho_1=3/4$ (see below).

- **1** T_h be a complete binary tree of height h.
- Randomly color its edges by black and white.
- **3** \mathcal{E}_h : there exists a black path from root T_h to one of its leafs.
- $oldsymbol{0}
 ho_0=1$ and $ho_1=3/4$ (see below).

- **1** u root of T_h : children u_l and u_r .
- ② ho_{h-1} : Probability for black path $u_l \leadsto$ children
- Opening Prob of black path from u through u_1 is $\Pr\left[uu_l \text{ is black}\right] \cdot
 ho_{h-1} =
 ho_{h-1}/2$
- ① Prob. no black path through u_l is $1ho_{h-1}/2$.
- \odot Prob no black path is: $(1ho_{h-1}/2)^2$
- We have

$$ho_h = 1 - \Big(1 - rac{
ho_{h-1}}{2}\Big)^2 = rac{
ho_{h-1}}{2}\Big(2 - rac{
ho_{h-1}}{2}\Big) =
ho_{h-1} - rac{
ho_{h-1}^2}{4}.$$

- **1** u root of T_h : children u_l and u_r .
- $m{Q} \
 ho_{h-1}$: Probability for black path $u_l \leadsto$ children
- lacksquare Prob of black path from u through u_1 is:

$$ext{Pr} \Big[u u_l ext{ is black} \Big] \cdot
ho_{h-1} =
ho_{h-1}/2$$

- ① Prob. no black path through u_l is $1ho_{h-1}/2$.
- \odot Prob no black path is: $(1ho_{h-1}/2)^2$
- We have

$$ho_h = 1 - \left(1 - rac{
ho_{h-1}}{2}
ight)^2 = rac{
ho_{h-1}}{2} \left(2 - rac{
ho_{h-1}}{2}
ight) =
ho_{h-1} - rac{
ho_{h-1}^2}{4}.$$

- **1** u root of T_h : children u_l and u_r .
- ② ho_{h-1} : Probability for black path $u_l \leadsto$ children
- lacksquare Prob of black path from u through u_1 is:

$$ext{Pr} \Big[u u_l ext{ is black} \Big] \cdot
ho_{h-1} =
ho_{h-1}/2$$

- $ext{ } ext{ } ext$
- \odot Prob no black path is: $(1ho_{h-1}/2)^2$
- We have

$$ho_h = 1 - \left(1 - rac{
ho_{h-1}}{2}
ight)^2 = rac{
ho_{h-1}}{2} \left(2 - rac{
ho_{h-1}}{2}
ight) =
ho_{h-1} - rac{
ho_{h-1}^2}{4}.$$

- **1** u root of T_h : children u_l and u_r .
- ② ho_{h-1} : Probability for black path $u_l \leadsto$ children
- lacksquare Prob of black path from u through u_1 is:

$$ext{Pr} \Big[u u_l ext{ is black} \Big] \cdot
ho_{h-1} =
ho_{h-1}/2$$

- lacksquare Prob. no black path through u_l is $1ho_{h-1}/2$.
- \odot Prob no black path is: $(1ho_{h-1}/2)^2$
- We have

$$ho_h = 1 - \Big(1 - rac{
ho_{h-1}}{2}\Big)^2 = rac{
ho_{h-1}}{2}\Big(2 - rac{
ho_{h-1}}{2}\Big) =
ho_{h-1} - rac{
ho_{h-1}^2}{4}$$

- **1** u root of T_h : children u_l and u_r .
- ② ho_{h-1} : Probability for black path $u_l \leadsto$ children
- lacksquare Prob of black path from u through u_1 is:

$$ext{Pr} \Big[u u_l ext{ is black} \Big] \cdot
ho_{h-1} =
ho_{h-1}/2$$

- lacksquare Prob. no black path through u_l is $1ho_{h-1}/2$.
- **5** Prob no black path is: $(1 \rho_{h-1}/2)^2$
- We have

$$ho_h = 1 - \Big(1 - rac{
ho_{h-1}}{2}\Big)^2 = rac{
ho_{h-1}}{2}\Big(2 - rac{
ho_{h-1}}{2}\Big) =
ho_{h-1} - rac{
ho_{h-1}^2}{4}.$$

Lemma

We have that $\rho_h \geq 1/(h+1)$.

Proof.

- **1** By induction. For h = 1: $\rho_1 = 3/4 \ge 1/(1+1)$.
- ② $ho_h =
 ho_{h-1} rac{
 ho_{h-1}^2}{4} = f(
 ho_{h-1})$, for $f(x) = x x^2/4$.
- **3** f'(x) = 1 x/2. $\implies f'(x) > 0$ for $x \in [0, 1]$.
- By induction:

$$ho_h=f\left(
ho_{h-1}
ight)\geq f\left(rac{1}{(h-1)+1}
ight)=rac{1}{h}-rac{1}{4h^2}.$$

33 / 37

Lemma

We have that $\rho_h \geq 1/(h+1)$.

Proof.

- $\textbf{ 0} \ \, \text{By induction. For } h=1 \text{: } \rho_1=3/4 \geq 1/(1+1).$
- $m{Q} \
 ho_h =
 ho_{h-1} rac{
 ho_{h-1}^2}{4} = f(
 ho_{h-1}), \ ext{for} \ f(x) = x x^2/4.$
- ① f'(x) = 1 x/2. $\implies f'(x) > 0$ for $x \in [0, 1]$.
- lacksquare f(x) is increasing in the range [0,1]
- By induction:

$$ho_h=f\left(
ho_{h-1}
ight)\geq f\left(rac{1}{(h-1)+1}
ight)=rac{1}{h}-rac{1}{4h^2}.$$

Sariel (UIUC) CS573 33 Fall 2014 33 / 37

Lemma

We have that $\rho_h \geq 1/(h+1)$.

Proof.

- $\textbf{ 0} \ \, \text{By induction. For } h=1 \text{: } \rho_1=3/4 \geq 1/(1+1).$
- $ho_h =
 ho_{h-1} rac{
 ho_{h-1}^2}{4} = f(
 ho_{h-1}), ext{ for } f(x) = x x^2/4.$
- **3** f'(x) = 1 x/2. $\implies f'(x) > 0$ for $x \in [0, 1]$.
- lack f(x) is increasing in the range [0,1]
- By induction

$$ho_h=f\left(
ho_{h-1}
ight)\geq f\left(rac{1}{(h-1)+1}
ight)=rac{1}{h}-rac{1}{4h^2}.$$

Sariel (UIUC) CS573 33 Fall 2014 33 / 37

Lemma...

Lemma

We have that $\rho_h \geq 1/(h+1)$.

Proof.

- **1** By induction. For h = 1: $\rho_1 = 3/4 \ge 1/(1+1)$.
- $m{Q} \
 ho_h =
 ho_{h-1} rac{
 ho_{h-1}^2}{4} = f(
 ho_{h-1}), \ ext{for} \ f(x) = x x^2/4.$
- **3** f'(x) = 1 x/2. $\implies f'(x) > 0$ for $x \in [0, 1]$.
- $lack {0} f(x)$ is increasing in the range [0,1]
- Sy induction

$$ho_h=f\left(
ho_{h-1}
ight)\geq f\left(rac{1}{(h-1)+1}
ight)=rac{1}{h}-rac{1}{4h^2}.$$

Sariel (UIUC) CS573 33 Fall 2014 33 / 37

Lemma...

Lemma

We have that $\rho_h \geq 1/(h+1)$.

Proof.

- $oldsymbol{0}
 ho_h =
 ho_{h-1} rac{
 ho_{h-1}^2}{4} = f(
 ho_{h-1}), ext{ for } f(x) = x x^2/4.$
- ② f(x) is increasing in the range [0,1]
- By induction:

$$ho_h = f\left(
ho_{h-1}
ight) \geq f\left(rac{1}{(h-1)+1}
ight) = rac{1}{h} - rac{1}{4h^2}.$$

 $\begin{array}{ccc} \bullet & \frac{1}{h} - \frac{1}{4h^2} \geq \frac{1}{h+1} & \Leftrightarrow & 4h(h+1) - (h+1) \geq 4h^2 & \Leftrightarrow \\ & 4h^2 + 4h - h - 1 \geq 4h^2 & \Leftrightarrow & 3h \geq 1, \end{array}$

Sariel (UIUC) CS573 33 Fall 2014 33 / 37

Lemma...

Lemma

We have that $\rho_h \geq 1/(h+1)$.

Proof.

- $oldsymbol{0}
 ho_h =
 ho_{h-1} rac{
 ho_{h-1}^2}{4} = f(
 ho_{h-1}), ext{ for } f(x) = x x^2/4.$
- ② f(x) is increasing in the range [0,1]
- By induction:

$$ho_h=f\left(
ho_{h-1}
ight)\geq f\left(rac{1}{(h-1)+1}
ight)=rac{1}{h}-rac{1}{4h^2}.$$

$$\begin{array}{ccc} \bullet & \frac{1}{h} - \frac{1}{4h^2} \geq \frac{1}{h+1} & \Leftrightarrow & 4h(h+1) - (h+1) \geq 4h^2 & \Leftrightarrow \\ & 4h^2 + 4h - h - 1 \geq 4h^2 & \Leftrightarrow & 3h \geq 1, \end{array}$$

Sariel (UIUC) CS573 33 Fall 2014 33 / 37

Back to FastCut...

- Recursion tree for FastCut corresponds to such a coloring.
- Every call performs two recursive calls.
- **3** Contraction in recursion succeeds with prob 1/2. Draw recursion edge in black if successful.
- ullet Since depth of tree $H \leq 2 + \log_{\sqrt{2}} n$.
- by above... probability of success is $\geq 1/(h+1) \geq 1/(3 + \log_{\sqrt{2}} n)$.

- Start with a single node.
- 2 Each node has two children.
- Each child survives with probability half (independently).
- If a child survives then it is going to have two children, and so on.
- A single node give a rise to a random tree.
- Q: Probability that the original node has descendants h generations in the future.
- Prove this probability is at least 1/(h+1).

- Victorians worried: aristocratic surnames were disappearing.
- Pamily names passed on only through the male children.
- Family with no male children had its family name disappear
- ullet # male children of a person is an independent random variable $X \in \{0,1,2,\ldots\}$.
- ullet Starting with a single person, its family (as far as male children are concerned) is a random tree with the degree of a node being distributed according to X.
- ullet .. A family disappears if $\mathbf{E}[X] \leq 1$, and it has a constant probability of surviving if $\mathbf{E}[X] > 1$.

Sariel (UIUC) CS573 36 Fall 2014 36 / 37

- Victorians worried: aristocratic surnames were disappearing.
- Family names passed on only through the male children.
- Family with no male children had its family name disappear
- ullet # male children of a person is an independent random variable $X \in \{0,1,2,\ldots\}$.
- ullet Starting with a single person, its family (as far as male children are concerned) is a random tree with the degree of a node being distributed according to X.
- ullet .. A family disappears if $\mathbf{E}[X] \leq 1$, and it has a constant probability of surviving if $\mathbf{E}[X] > 1$.

Sariel (UIUC) CS573 36 Fall 2014 36 / 37

- Victorians worried: aristocratic surnames were disappearing.
- Family names passed on only through the male children.
- Family with no male children had its family name disappear.
- # male children of a person is an independent random variable $X \in \{0, 1, 2, \ldots\}.$
- Starting with a single person, its family (as far as male children are concerned) is a random tree with the degree of a node being distributed according to X.
- \bullet .. A family disappears if $\mathbf{E}[X] \leq 1$, and it has a constant probability of surviving if E[X] > 1.

Sariel (UIUC) CS573 36 Fall 2014 36 / 37

- ... Infant mortality is dramatically down. No longer a problem.
- Countries with family names that were introduced long time ago...
- ...have very few surnames. Koreans have 250 surnames, and three surnames form 45% of the population).
- Countries introduced surnames recently have more surnames.
 Dutch have surnames only for the last 200 years, and there are 68,000 different family names).

- ... Infant mortality is dramatically down. No longer a problem.
- Countries with family names that were introduced long time ago...
- ...have very few surnames. Koreans have 250 surnames, and three surnames form 45% of the population).
- Ocuntries introduced surnames recently have more surnames. Dutch have surnames only for the last 200 years, and there are 68,000 different family names).

- ... Infant mortality is dramatically down. No longer a problem.
- Countries with family names that were introduced long time ago...
- ...have very few surnames. Koreans have 250 surnames, and three surnames form 45% of the population).
- Ocuntries introduced surnames recently have more surnames. Dutch have surnames only for the last 200 years, and there are 68,000 different family names).

Sariel (UIUC) CS573 38 Fall 2014 38 / 37

Sariel (UIUC) CS573 39 Fall 2014 39 / 37

Sariel (UIUC) CS573 40 Fall 2014 40 / 37

Sariel (UIUC) CS573 41 Fall 2014 41 / 37