Chapter 13

Network Flow III – Applications

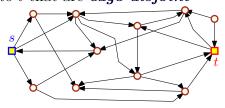
CS 573: Algorithms, Fall 2014 October 9, 2014

13.1 Edge disjoint paths

13.1.1 Edge-disjoint paths in a directed graphs

13.1.1.1 Edge disjoint paths

questionG: graph (dir/undir). s, t: vertices. k: parameter. **Task**: Compute k paths from s to t that are **edge disjoint**



- (A) Convert G into network flow H.
- (B) Capacities 1.
- (C) Compute max flow in H.
- (D) Value of flow = # of edge disjoint paths.

13.1.1.2 Edge Disjoint paths lemma

Lemma 13.1.1. $\exists k \ edge \ disjoint \ s$ -t $paths \ in \ \mathsf{G}$

 \implies max flow value H is at least k.

Proof: Given k such edge disjoint paths, push one unit of flow along each such path. The resulting flow is legal in k and it has value k.

Definition 13.1.2 (0/1-flow). A flow f is a 0/1-flow if every edge has either no flow on it, or one unit of flow.

13.1.1.3 0/1 flow

Lemma 13.1.3. f: 0/1 flow in H with flow value μ . Then there are μ edge disjoint paths between s and t in H.

proof

- (A) Induction on # edges $\in H$ with 1 unit of flow on them. If $\mu = 0...$
- (B) Otherwise... Travel from s on edges with flow 1. Extract path. Repeat.
- (C) If reached t. Take path π . Reduce flow along π . H'/f': new network/flow $|f'| = \mu 1$, H' has less edges,
- (D) By induction: has $\mu 1$ edge disjoint paths in H' between s and t. With π this forms μ such paths.

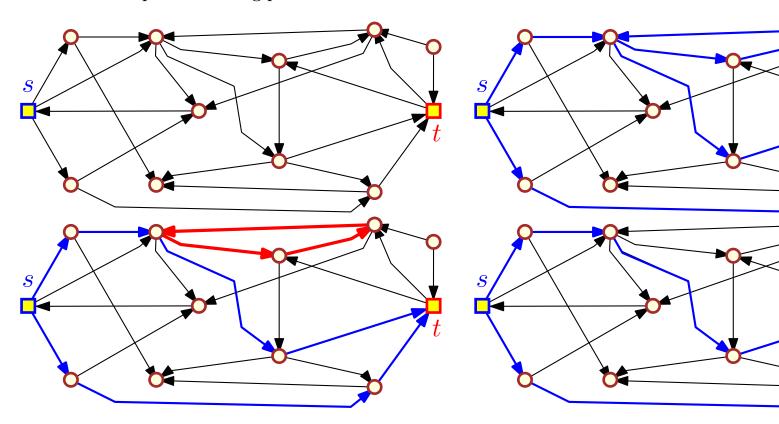
13.1.1.4 0/1 flow proof continued

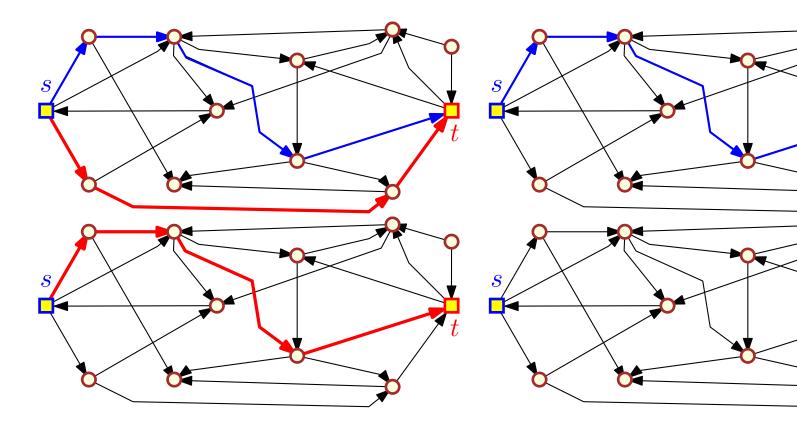
Lemma 13.1.4. f: 0/1 flow in H with flow value μ . Then there are μ edge disjoint paths between s and t in H.

Proof continued

- (A) If visit a vertex v for the second time (while extracting π).
- (B) Traversal contains a cycle C.
- (C) C edges in H have flow 1 on them.
- (D) Set flow along edges of C to 0.
- (E) Induction on the remaining graph.
- (F) Value of f did not change by removing C.
- (G) By induction $\exists \mu$ edge disjoint paths $s \leadsto t$ in H.

13.1.1.5 Example: Extracting paths





13.1.1.6 Extracting paths

- (A) G is simple
- (B) \implies $\leq n = |V(H)|$ edges leaving s.
- (C) max flow in H is $\leq n$.
- (D) Ford-Fulkerson takes O(mn) time.
- (E) Extraction of paths takes linear time (by proof).

Theorem 13.1.5. G: directed graph, n vertices, m edges, s, t vertices. Compute $max \# edge \ disjoint \ paths \ from \ s \ to \ t \ in \ O(mn) \ time.$

13.1.2 # edge disjoint paths

13.1.2.1 Max-flow min-cut theorem strikes again!

Lemma 13.1.6. G, s, t as above.

 $Max \# edge \ disjoint \ s-t \ paths$ = $\begin{bmatrix} min \# edges \ whose \ removal \ separates \ s \ from \ t. \end{bmatrix}$

Proof: (A) U: set of edge-disjoint paths from s to t.

- (B) F: set of edges removing them separates s from t
- (C) every path in U contains edge of F. $\Longrightarrow |U| \leq |F|$.
- (D) F: form a cut in G between s and t.
- (E) F minimal = s t min cut.
- (F) max-flow mincut theorem $|F| = \max$ flow in G
- (G) $\implies \exists |F| \text{ disjoint paths in } \mathsf{G}. \implies |F| \leq |U|.$

13.1.3 Edge-disjoint paths in undirected graphs

13.1.3.1 Edge-disjoint paths in undirected graphs

Problem 13.1.7. G: undirected graph G, s and t, find max # edge-disjoint paths between s and t.

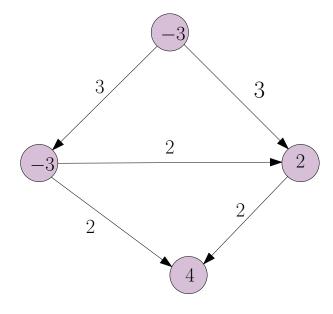
- (A) Duplicate every edge in $G \implies$ directed graph H, apply algorithm for directed case.
- (B) Problem: flow f might use simultaneously edge in both directions: $(u \to v)$ and $(v \to u)$.
- (C) Solution: Remove 2-cycle! Repeat.
- (D) Then use algorithm for directed case...

Lemma 13.1.8. \exists k edge-disjoint s-t paths in undirected $\mathsf{G} \iff max$ flow in (directed) graph is at least k.

Paths in G computed in O(mn) time (Ford-Fulkerson).

13.2 Circulations with demands

13.2.0.2 Circulations with demands



G = (V, E).

 $\forall v \in V \text{ there is a } demand \ d_v$:

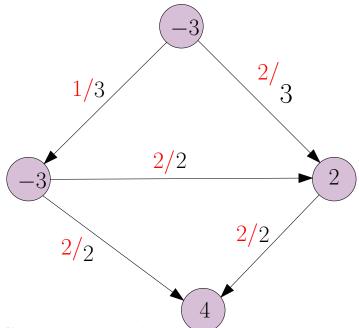
- (A) $d_v > 0$: sink requiring d_v flow into this node.
- (B) $d_v < 0$: source with $-d_v$ units of flow leaving it.
- (C) $d_v = 0$: regular node.

S set of source vertices

T: set of sink vertices.

13.2.1 A circulation with demands: example

A valid circulation for the given instance 13.2.1.1



Definition: Circulation with demands

Definition 13.2.1. *circulation* with demands $\{d_v\}$ is a function $f : \mathsf{E}(\mathsf{G}) \to \mathbb{R}^+$:

- Capacity condition: $\forall e \in E : f(e) \leq c(e)$.
- Conservation condition: $\forall v \in V$: $f^{in}(v) f^{out}(v) = d_v$.

Where:

- (A) $f^{in}(v)$ flow into v.
- (B) $f^{out}(v)$: flow out of v.

Problem 13.2.2. Is there a circulation that comply with the demand requirements?

13.2.1.3 Feasible circulation lemma

Lemma 13.2.3. If there is a feasible circulation with demands $\{d_v\}$, then $\sum_v d_v = 0$.

Proof: (A) Circulation $\Longrightarrow \forall v \ d_v = f^{in}(v) - f^{out}(v)$. (B) $\sum_{v \in V} d_v = \sum_v f^{in}(v) - \sum_v f^{out}(v)$

- (C) Flow on every edge is summed twice, one with positive sign, one with negative sign.
- (D) $\Longrightarrow \sum_{v} d_v = \sum_{v} f^{in}(v) \sum_{v} f^{out}(v) = 0,$

13.2.1.4 Computing circulations

 \exists feasible circulation only if

$$D = \sum_{v, d_v > 0} d_v = \sum_{v, d_v < 0} -d_v.$$

5

13.2.2 The algorithm for computing a circulation

Algorithm for computing circulation

- (A) G = (V, E): input network with demands on vertices.
- (B) Check $D = \sum_{v,d_v>0} d_v = \sum_{v,d_v<0} -d_v$.
- (C) Create super source s. Connect to all v with $d_v < 0$. Set capacity $(s \to v)$ to $-d_v$.
- (D) Create super sink t. Connect to all vertices u with $d_u > 0$. Set capacity $(u \to t)$ to d_u .
- (E) H: new network flow. Compute max-flow f in H from s to t.
- (F) If $|f| = D \implies \exists$ valid circulation. Easy to recover.

13.2.2.1 Result: Circulations with demands

Theorem 13.2.4. \exists feasible circulation with demands $\{d_v\}$ in $G \iff max$ -flow in H has value D.

Integrality: If all capacities and demands in G are integers, and there is a feasible circulation, then there is a feasible circulation that is integer valued.

13.3 Circulations with demands and lower bounds

13.3.0.2 Circulations with demands and lower bounds

- (A) circulation and demands + for each edge a lower bound on flow.
- (B) $\forall e \in E(\mathsf{G}): \ \ell(e) \le c(e).$
- (C) Compute f such that $\forall e \quad \ell(e) \leq f(e) \leq c(e)$.
- (D) Be stupid! Consider flow: $\forall e \mid f_0(e) = \ell(e)$.
- (E) f_0 violates conservation of flow!

$$L_v = f_0^{in}(v) - f_0^{out}(v) = \sum_{e \text{ into } v} \ell(e) - \sum_{e \text{ out of } v} \ell(e).$$

- (F) If $L_v = d_v$, then no problem.
- (G) Fix-up demand: $\forall v \ d'_v = d_v L_v$. Fix-up capacity: $c'(e) = c(e) - \ell(e)$.
- (H) G': new network w. new demands/capacities (no lower bounds!)
- (I) Compute circulation f' on G'. \implies The flow $f = f_0 + f'$, is a legal circulation,

13.3.0.3 Circulations with demands and lower bounds

Lemma 13.3.1. \exists feasible circulation in $\mathsf{G} \iff \exists$ feasible circulation in G' .

Integrality: If all numbers are integers $\implies \exists$ integral feasible circulation.

Proof: Let f' be a circulation in G'. Let $f(e) = f_0(e) + f'(e)$. Clearly, f satisfies the capacity condition in G, and the lower bounds.

$$f^{in}(v) - f^{out}(v) = \sum_{e \text{ into } v} (\ell(e) + f'(e)) - \sum_{e \text{ out of } v} (\ell(e) + f'(e)) = L_v + (d_v - L_v) = d_v.$$
 f : valid circulation in G . Then $f'(e) = f(e) - \ell(e)$ is a valid circulation for G' .

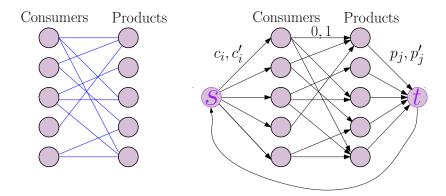
13.4 Applications

13.4.1 Survey design

13.4.1.1 Survey design

- (A) Ask "Consumer i: what did you think of product j?"
- (B) ith consumer willing to answer between c_i to c_i' questions.
- (C) For each product j: at least p_j opinions, no more than p'_j opinions.
- (D) Full knowledge which consumers can be asked on which products.
- (E) Problem: How to assign questions to consumers?

13.4.1.2 Survey design...



13.4.1.3 Result...

Lemma 13.4.1. Given n consumers and u products with their constraints $c_1, c'_1, c_2, c'_2, \ldots, c_n, c'_n, p_1, p'_1, \ldots, p_u, p'_u$ and a list of length m of which products where used by which consumers. An algorithm can compute a valid survey under these constraints, if such a survey exists, in time $O((n+u)m^2)$.