CS 573: Algorithms, Fall 2014

Network Flow III – Applications

Lecture 13 October 9, 2014

Part I

Edge disjoint paths

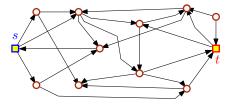
1/32

Edge disjoint paths

question

G: graph (dir/undir). s, t: vertices. k: parameter.

Task: Compute k paths from s to t that are edge disjoint



- 1. Convert **G** into network flow **H**.
- 2. Capacities 1.
- 3. Compute max flow in **H**.
- 4. Value of flow = # of edge disjoint paths.

Edge Disjoint paths lemma

Lemma

 $\exists k \text{ edge disjoint } s\text{-}t \text{ paths in } G$ $\implies max \text{ flow value } H \text{ is at least } k.$

Proof.

Given k such edge disjoint paths, push one unit of flow along each such path. The resulting flow is legal in h and it has value k.

Definition (0/1-flow)

A flow f is a 0/1-flow if every edge has either no flow on it, or one unit of flow.

2/32

0/1 flow

Lemma

 $f \colon 0/1$ flow in H with flow value μ . Then there are μ edge disjoint paths between s and t in H.

proof

- 1. Induction on # edges \in \pmb{H} with $\pmb{1}$ unit of flow on them. If $\pmb{\mu} = \pmb{0}...$
- 2. Otherwise... Travel from \mathbf{s} on edges with flow $\mathbf{1}$. Extract path. Repeat.
- 3. If reached t. Take path π . Reduce flow along π . H'/f': new network/flow $|f'| = \mu 1$, H' has less edges,
- 4. By induction: has $\mu-1$ edge disjoint paths in H' between s and t. With π this forms μ such paths.

5/32

0/1 flow proof continued

Lemma

f:0/1 flow in ${\pmb H}$ with flow value ${\pmb \mu}.$ Then there are ${\pmb \mu}$ edge disjoint paths between ${\pmb s}$ and ${\pmb t}$ in ${\pmb H}.$

Proof continued

- 1. If visit a vertex \mathbf{v} for the second time (while extracting π).
- 2. Traversal contains a cycle \boldsymbol{C} .
- 3. C edges in H have flow 1 on them.
- 4. Set flow along edges of **C** to **0**.
- 5. Induction on the remaining graph.
- 6. Value of f did not change by removing C.
- 7. By induction $\exists \mu$ edge disjoint paths $s \rightsquigarrow t$ in H.

6/32

Extracting paths

- 1. **G** is simple
- 2. \implies $\leq n = |V(H)|$ edges leaving s.
- 3. max flow in \mathbf{H} is < n.
- 4. Ford-Fulkerson takes O(mn) time.
- 5. Extraction of paths takes linear time (by proof).

Theorem

G: directed graph, \mathbf{n} vertices, \mathbf{m} edges, \mathbf{s} , \mathbf{t} vertices. Compute max # edge disjoint paths from \mathbf{s} to \mathbf{t} in O(mn) time.

edge disjoint paths

Max-flow min-cut theorem strikes again!

Lemma

G, **s**, **t** as above.

 $\begin{array}{c}
\text{Max } \# \text{ edge disjoint } \mathbf{s} - \mathbf{t} \\
\text{paths}
\end{array} = \begin{array}{c}
\text{min } \# \text{ edges whose removal separates } \mathbf{s} \text{ from } \mathbf{t}.
\end{array}$

Proof.

- 1. U: set of edge-disjoint paths from s to t.
- 2. \mathbf{F} : set of edges removing them separates \mathbf{s} from \mathbf{t}
- 3. every path in U contains edge of F. $\Longrightarrow |U| \leq |F|$.
- 4. **F**: form a cut in **G** between **s** and **t**.
- 5. \mathbf{F} minimal = $\mathbf{s} \mathbf{t}$ min cut.
- 6. max-flow mincut theorem $|F| = \max$ flow in **G**
- 7. $\implies \exists |F| \text{ disjoint paths in } G. \implies |F| \leq |U|$.

9/32

Part II

Circulations with demands

Edge-disjoint paths in undirected graphs

Problem

G: undirected graph **G**, **s** and **t**, find max # edge-disjoint paths between **s** and **t**.

- 1. Duplicate every edge in $\mathbf{G} \implies$ directed graph \mathbf{H} , apply algorithm for directed case.
- 2. Problem: flow f might use simultaneously edge in both directions: $(u \rightarrow v)$ and $(v \rightarrow u)$.
- 3. Solution: Remove 2-cycle! Repeat.
- 4. Then use algorithm for directed case...

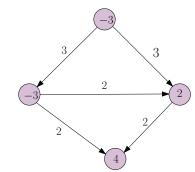
Lemma

 \exists **k** edge-disjoint **s** - **t** paths in undirected **G** \iff max flow in (directed) graph is at least **k**.

Paths in G computed in O(mn) time (Ford-Fulkerson).

10/32

Circulations with demands



G = (V, E).

 $\forall v \in V$ there is a **demand** d_v :

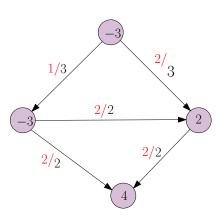
- 1. $d_{\nu} > 0$: sink requiring d_{ν} flow into this node.
- 2. $d_v < 0$: source with $-d_v$ units of flow leaving it.
- 3. $d_v = 0$: regular node.

 $\boldsymbol{\mathcal{S}}$ set of source vertices

T: set of sink vertices.

A circulation with demands: example

A valid circulation for the given instance



13/32

Definition: Circulation with demands

Definition

circulation with demands $\{d_v\}$ is a function $f: \mathsf{E}(\mathsf{G}) \to \mathbb{R}^+$:

- ▶ Capacity condition: $\forall e \in E$: $f(e) \le c(e)$.
- Conservation condition: $\forall v \in V$: $f^{in}(v) - f^{out}(v) = d_v$.

Where:

- 1. $f^{in}(v)$ flow into v.
- 2. $f^{out}(v)$: flow out of v.

Problem

Is there a circulation that comply with the demand requirements?

4/32

Feasible circulation lemma

Lemma

If there is a feasible circulation with demands $\{d_v\}$, then $\sum_v d_v = 0$.

Proof.

- 1. Circulation $\implies \forall v \ d_v = f^{in}(v) f^{out}(v)$.
- 2. $\sum_{v \in V} d_v = \sum_v f^{in}(v) \sum_v f^{out}(v)$
- 3. Flow on every edge is summed twice, one with positive sign, one with negative sign.
- 4. $\Longrightarrow \sum_{v} d_{v} = \sum_{v} f^{in}(v) \sum_{v} f^{out}(v) = 0,$

Computing circulations

 \exists feasible circulation only if

$$D = \sum_{v,d_v>0} d_v = \sum_{v,d_v<0} -d_v.$$

Algorithm for computing circulation

- (A) G = (V, E): input network with demands on vertices.
- (B) Check $D = \sum_{v,d_v>0} d_v = \sum_{v,d_v<0} -d_v$.
- (C) Create super source s. Connect to all v with $d_v < 0$. Set capacity $(s \to v)$ to $-d_v$.
- (D) Create super sink t. Connect to all vertices u with $d_u > 0$. Set capacity $(u \to t)$ to d_u .
- (E) \mathbf{H} : new network flow. Compute max-flow \mathbf{f} in \mathbf{H} from \mathbf{s} to \mathbf{t} .
- (F) If $|f| = D \implies \exists$ valid circulation. Easy to recover.

Result: Circulations with demands

Theorem

 \exists feasible circulation with demands $\{d_v\}$ in $G \iff$ max-flow in H has value D.

Integrality: If all capacities and demands in **G** are integers, and there is a feasible circulation, then there is a feasible circulation that is integer valued.

Part III

Circulations with demands and lower bounds

18/32

Circulations with demands and lower bounds

- 1. circulation and demands + for each edge a lower bound on flow.
- 2. $\forall e \in E(G)$: $\ell(e) < c(e)$.
- 3. Compute f such that $\forall e \ \ell(e) < f(e) < c(e)$.
- 4. Be stupid! Consider flow: $\forall e \ f_0(e) = \ell(e)$.
- 5. f_0 violates conservation of flow!

$$L_{v} = f_0^{in}(v) - f_0^{out}(v) = \sum_{e \text{ into } v} \ell(e) - \sum_{e \text{ out of } v} \ell(e).$$

- 6. If $L_v = d_v$, then no problem.
- 7. Fix-up demand: $\forall v \ d'_v = d_v L_v$. Fix-up capacity: $c'(e) = c(e) - \ell(e)$.
- 8. **G'**: new network w. new demands/capacities (no lower bounds!)
- 9. Compute circulation f' on G'. \implies The flow $f = f_0 + f'$, is a legal circulation,

Circulations with demands and lower bounds

Lemma

 \exists feasible circulation in $G \iff \exists$ feasible circulation in G'. **Integrality**: If all numbers are integers $\implies \exists$ integral feasible circulation.

Proof.

Let f' be a circulation in G'. Let $f(e) = f_0(e) + f'(e)$. Clearly, f satisfies the capacity condition in G, and the lower bounds.

$$\begin{array}{l} f^{in}(\mathbf{v}) - f^{out}(\mathbf{v}) = \sum_{e \; into \; \mathbf{v}} (\ell(e) + f'(e)) - \\ \sum_{e \; out \; of \; \mathbf{v}} (\ell(e) + f'(e)) = L_{\mathbf{v}} + (d_{\mathbf{v}} - L_{\mathbf{v}}) = d_{\mathbf{v}}. \\ f: \; \text{valid circulation in } \mathbf{G}. \; \text{Then } f'(e) = f(e) - \ell(e) \; \text{is a} \\ \text{valid circulation for } \mathbf{G}'. \end{array}$$

Part IV

Applications

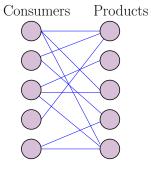
21/32

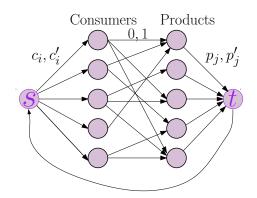
Survey design

- 1. Ask "Consumer *i*: what did you think of product *j*?"
- 2. **i**th consumer willing to answer between c_i to c'_i questions.
- 3. For each product j: at least p_j opinions, no more than p'_j opinions.
- 4. Full knowledge which consumers can be asked on which products.
- 5. Problem: How to assign questions to consumers?

22/32

Survey design...





Result...

Lemma

Given n consumers and u products with their constraints $c_1, c'_1, c_2, c'_2, \ldots, c_n, c'_n, p_1, p'_1, \ldots, p_u, p'_u$ and a list of length m of which products where used by which consumers. An algorithm can compute a valid survey under these constraints, if such a survey exists, in time $O((n + u)m^2)$.

22/22