Chapter 11

Network Flow

CS 573: Algorithms, Fall 2014

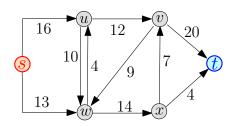
September 30, 2014

11.1 Network Flow

11.1.1 Network Flow

11.1.1.1 Network flow

- (A) Transfer as much "merchandise" as possible from one point to another.
- (B) Wireless network, transfer a large file from s to t.
- (C) Limited capacities.



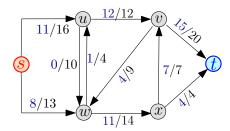
11.1.1.2 Network: Definition

- (A) Given a network with capacities on each connection.
- (B) Q: How much "flow" can transfer from source s to a sink t?
- (C) The flow is **splitable**.
- (D) Network examples: water pipes moving water. Electricity network.
- (E) Internet is packet base, so not quite splitable.

Definition 11.1.1. \star G = (V, E): a *directed* graph.

- $\star \ \forall (u \to v) \in \mathsf{E}(\mathsf{G}): \ \boldsymbol{capacity} \ c(u,v) \ge 0,$
- $\star (u \to v) \notin G \implies c(u, v) = 0.$
- \star s: source vertex, t: target sink vertex.
- \star G, s, t and $c(\cdot)$: form **flow network** or **network**.

11.1.1.3 Network Example



- (A) All flow from the source ends up in the sink.
- (B) Flow on edge: non-negative quantity \leq capacity of edge.

11.1.1.4 Flow definition

Definition 11.1.2 (flow). *flow* in network is a function $f(\cdot, \cdot) : \mathsf{E}(\mathsf{G}) \to \mathbb{R}$:

- (A) **Bounded by capacity**: $\forall (u \to v) \in \mathsf{E} \qquad f(u, v) \le c(u, v).$
- (B) Anti symmetry:
 - $\forall u, v$ f(u, v) = -f(v, u).
- (C) Two special vertices: (i) the source s and the sink t.
- (D) Conservation of flow (Kirchhoff's Current Law): $\forall u \in V \setminus \{s, t\}$ $\sum f(u, v) = 0$.

 $\forall u \in V \setminus \{s, t\}$ $\sum_{v \in V} f(u, v) = 0.$ $f(s, t) = \sum_{v \in V} f(s, v).$

11.1.1.5 Problem: Max Flow

(A) Flow on edge can be negative (i.e., positive flow on edge in other direction).

Problem 11.1.3 (Maximum flow). Given a network G find the *maximum flow* in G. Namely, compute a legal flow f such that |f| is maximized.

11.2 Some properties of flows and residual networks

11.2.0.6 Flow across sets of vertices

(A)
$$\forall X, Y \subseteq \mathsf{V}$$
, let $f(X, Y) = \sum_{x \in X, y \in Y} f(x, y)$.
 $f(v, S) = f(\{v\}, S)$, where $v \in \mathsf{V}(\mathsf{G})$.

Observation 11.2.1. |f| = f(s, V).

11.2.0.7 Basic properties of flows: (i)

Lemma 11.2.2. For a flow f, the following properties holds:

(i)
$$\forall u \in V(G)$$
 we have $f(u, u) = 0$,

Proof: Holds since $(u \to u)$ it not an edge in G .

$$(u \to u)$$
 capacity is zero,

Flow on $(u \to u)$ is zero.

11.2.0.8 Basic properties of flows: (ii)

Lemma 11.2.3. For a flow f, the following properties holds: (ii) $\forall X \subseteq V$ we have f(X,X) = 0,

Proof:

$$f(X,X) = \sum_{\{u,v\}\subseteq X, u\neq v} (f(u,v) + f(v,u)) + \sum_{u\in X} f(u,u)$$
$$= \sum_{\{u,v\}\subseteq X, u\neq v} (f(u,v) - f(u,v)) + \sum_{u\in X} 0 = 0,$$

by the anti-symmetry property of flow.

11.2.0.9 Basic properties of flows: (iii)

Lemma 11.2.4. For a flow f, the following properties holds:

(iii)
$$\forall X, Y \subseteq V$$
 we have $f(X, Y) = -f(Y, X)$,

Proof: By the anti-symmetry of flow, as

$$f(X,Y) = \sum_{x \in X, y \in Y} f(x,y) = -\sum_{x \in X, y \in Y} f(y,x) = -f(Y,X).$$

11.2.0.10 Basic properties of flows: (iv)

Lemma 11.2.5. For a flow f, the following properties holds:

(iv)
$$\forall X, Y, Z \subseteq V$$
 such that $X \cap Y = \emptyset$ we have that $f(X \cup Y, Z) = f(X, Z) + f(Y, Z)$ and $f(Z, X \cup Y) = f(Z, X) + f(Z, Y)$.

Proof: Follows from definition. (Check!)

11.2.0.11 Basic properties of flows: (v)

Lemma 11.2.6. For a flow f, the following properties holds:

(v)
$$\forall u \in V \setminus \{s, t\}$$
, we have $f(u, V) = f(V, u) = 0$.

Proof: This is a restatement of the conservation of flow property.

11.2.0.12 Basic properties of flows: summary

Lemma 11.2.7. For a flow f, the following properties holds:

- (i) $\forall u \in V(G)$ we have f(u, u) = 0,
- (ii) $\forall X \subseteq V$ we have f(X,X) = 0,
- (iii) $\forall X, Y \subseteq V$ we have f(X,Y) = -f(Y,X),
- (iv) $\forall X, Y, Z \subseteq V$ such that $X \cap Y = \emptyset$ we have that $f(X \cup Y, Z) = f(X, Z) + f(Y, Z)$ and $f(Z, X \cup Y) = f(Z, X) + f(Z, Y)$.
- (v) For all $u \in V \setminus \{s, t\}$, we have f(u, V) = f(V, u) = 0.

11.2.0.13 All flow gets to the sink

Claim 11.2.8. |f| = f(V, t).

Proof:

$$\begin{split} |f| &= f(s,\mathsf{V}) = f\Big(\mathsf{V} \setminus (\mathsf{V} \setminus \{s\})\,, V\Big) \\ &= f(\mathsf{V},V) - f(V \setminus \{s\}\,, \mathsf{V}) \\ &= -f(V \setminus \{s\}\,, \mathsf{V}) \\ &= f(\mathsf{V},t) + f(\mathsf{V},\mathsf{V} \setminus \{s,t\}) \\ &= f(\mathsf{V},t) + \sum_{u \in V \setminus \{s,t\}} f(\mathsf{V},u) \\ &= f(\mathsf{V},t) + \sum_{u \in V \setminus \{s,t\}} 0 \\ &= f(\mathsf{V},t), \end{split}$$

Since f(V, V) = 0 by (i) and f(V, u) = 0 by (iv).

11.2.0.14 Residual capacity

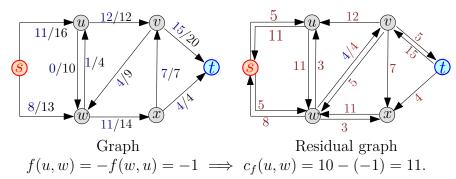
Definition 11.2.9. c: capacity, f: flow.

The **residual capacity** of an edge $(u \rightarrow v)$ is

$$c_f(u,v) = c(u,v) - f(u,v).$$

- (A) residual capacity $c_f(u, v)$ on $(u \to v)$ = amount of unused capacity on $(u \to v)$.
- (B) ... next construct graph with all edges not being fully used by f.

11.2.0.15 Residual graph



11.2.0.16 Residual graph: Definition

Definition 11.2.10. Given f, G = (V, E) and c, as above, the **residual graph** (or **residual network**) of G and f is the graph $G_f = (V, E_f)$ where

$$\mathsf{E}_f = \left\{ (u, v) \in V \times \mathsf{V} \mid c_f(u, v) > 0 \right\}.$$

- (A) $(u \to v) \in E$: might induce two edges in E_f
- (B) If $(u \to v) \in E$, f(u, v) < c(u, v) and $(v \to u) \notin E(G)$

- (C) $\implies c_f(u, v) = c(u, v) f(u, v) > 0$
- (D) ... and $(u \to v) \in \mathsf{E}_f$. Also,

$$c_f(v, u) = c(v, u) - f(v, u) = 0 - (-f(u, v)) = f(u, v),$$

since c(v, u) = 0 as $(v \to u)$ is not an edge of G.

(E)
$$\Longrightarrow$$
 $(v \to u) \in \mathsf{E}_f$.

11.2.0.17 Residual network properties

Since every edge of G induces at most two edges in G_f , it follows that G_f has at most twice the number of edges of G; formally, $|E_f| \le 2 |E|$.

Lemma 11.2.11. Given a flow f defined over a network G, then the residual network G_f together with c_f form a flow network.

Proof: One need to verify that $c_f(\cdot)$ is always a non-negative function, which is true by the definition of E_f .

11.2.0.18 Increasing the flow

Lemma 11.2.12. G(V, E), a flow f, and h a flow in G_f . G_f : residual network of f. Then f + h is a flow in G and its capacity is |f + h| = |f| + |h|.

proof By definition: (f+h)(u,v) = f(u,v) + h(u,v) and thus (f+h)(X,Y) = f(X,Y) + h(X,Y). Verify legal...

- (A) Anti symmetry: (f+h)(u,v) = f(u,v) + h(u,v) = -f(v,u) h(v,u) = -(f+h)(v,u).
- (B) Bounded by capacity:

$$(f+h)(u,v) \le f(u,v) + h(u,v) \le f(u,v) + c_f(u,v)$$

= $f(u,v) + (c(u,v) - f(u,v)) = c(u,v)$

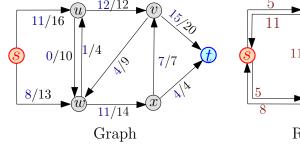
11.2.0.19 Increasing the flow – proof continued

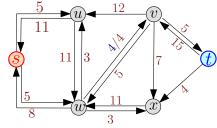
proof continued

- (A) For $u \in V s t$ we have (f + h)(u, V) = f(u, V) + h(u, V) = 0 + 0 = 0 and as such f + h comply with the conservation of flow requirement.
- (B) Total flow is

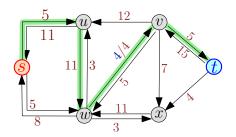
$$|f + h| = (f + h)(s, V) = f(s, V) + h(s, V) = |f| + |h|.$$

11.2.0.20 Augmenting path





Residual graph



Definition 11.2.13. For G and a flow f, a path π in G_f between s and t is an **augmenting** path.

11.2.0.21 More on augmenting paths

(A) π : augmenting path.

(B) All edges of π have positive capacity in G_f .

(C) ... otherwise not in E_f .

(D) f, π : can improve f by pushing positive flow along π .

11.2.0.22 Residual capacity

Definition 11.2.14. π : augmenting path of f.

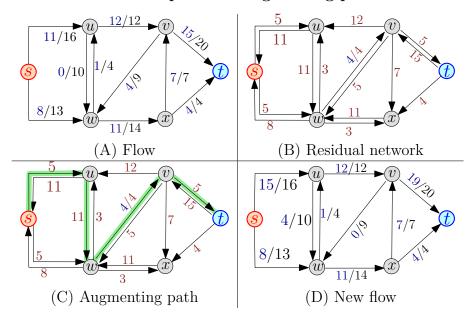
 $c_f(\pi)$: maximum amount of flow can push on π .

 $c_f(\pi)$ is **residual capacity** of π .

Formally,

$$c_f(\pi) = \min_{(u \to v) \in \pi} c_f(u, v).$$

11.2.0.23 An example of an augmenting path



11.2.0.24 Flow along augmenting path

$$f_{\pi}(u,v) = \begin{cases} c_f(\pi) & \text{if } (u \to v) \text{ is in } \pi \\ -c_f(\pi) & \text{if } (v \to u) \text{ is in } \pi \\ 0 & \text{otherwise.} \end{cases}$$

11.2.0.25 Increase flow by augmenting flow

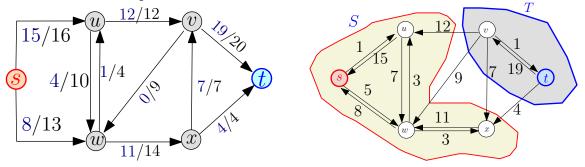
Lemma 11.2.15. π : augmenting path. f_{π} is flow in G_f and $|f_{\pi}| = c_f(\pi) > 0$.

Get bigger flow...

Lemma 11.2.16. Let f be a flow, and let π be an augmenting path for f. Then $f + f_{\pi}$ is a "better" flow. Namely, $|f + f_{\pi}| = |f| + |f_{\pi}| > |f|$.

11.2.0.26 Flowing into the wall

- (A) Namely, $f + f_{\pi}$ is flow with larger value than f.
- (B) Can this flow be improved? Consider residual flow...



- (C) s is disconnected from t in this residual network.
- (D) unable to push more flow.
- (E) Found local maximum!
- (F) Is that a global maximum?
- (G) Is this the maximum flow?

11.3 The Ford-Fulkerson method

11.3.0.27 The Ford-Fulkerson method

```
\begin{array}{c} \textbf{algFordFulkerson}(\mathsf{G},c) \\ \textbf{begin} \\ f \leftarrow \mathsf{Zero} \ \mathsf{flow} \ \mathsf{on} \ \mathsf{G} \\ \textbf{while} \ (\mathsf{G}_f \ \mathsf{has} \ \mathsf{augmenting} \\ & \mathsf{path} \ p) \ \mathbf{do} \\ (* \ \mathsf{Recompute} \ \mathsf{G}_f \ \mathsf{for} \\ & \mathsf{this} \ \mathsf{check} \ *) \\ f \leftarrow f + f_p \\ \textbf{return} \ f \\ \textbf{end} \end{array}
```

11.4 On maximum flows

11.4.0.28 Some definitions

Definition 11.4.1. (S,T): **directed cut** in flow network G = (V, E). A partition of V into S and $T = V \setminus S$, such that $s \in S$ and $t \in T$.

Definition 11.4.2. The net **flow of** f **across a cut** (S,T) is $f(S,T) = \sum_{s \in S, t \in T} f(s,t)$.

Definition 11.4.3. The *capacity* of (S,T) is $c(S,T) = \sum_{s \in S, t \in T} c(s,t)$.

Definition 11.4.4. The *minimum cut* is the cut in G with the minimum capacity.

11.4.0.29 Flow across cut is the whole flow

Lemma 11.4.5.
$$G, f, s, t.$$
 (S, T) : cut of G .
Then $f(S, T) = |f|$.

Proof:

$$f(S,T) = f(S,V) - f(S,S) = f(S,V)$$

= $f(s,V) + f(S-s,V) = f(s,V)$
= $|f|$,

since $T = V \setminus S$, and $f(S - s, V) = \sum_{u \in S - s} f(u, V) = 0$ (note that u can not be t as $t \in T$).

11.4.0.30 Flow bounded by cut capacity

Claim 11.4.6. The flow in a network is upper bounded by the capacity of any cut (S,T) in G.

Proof: Consider a cut (S,T). We have $|f| = f(S,T) = \sum_{u \in S, v \in T} f(u,v) \leq \sum_{u \in S, v \in T} c(u,v) = c(S,T)$.

11.4.0.31 THE POINT

Key observation Maximum flow is bounded by the capacity of the minimum cut.

Surprisingly... Maximum flow is exactly the value of the minimum cut.

11.4.0.32 The Min-Cut Max-Flow Theorem

Theorem 11.4.7 (Max-flow min-cut theorem). If f is a flow in a flow network G = (V, E) with source s and sink t, then the following conditions are equivalent:

- (A) f is a maximum flow in G.
- (B) The residual network G_f contains no augmenting paths.
- (C) |f| = c(S,T) for some cut (S,T) of G. And (S,T) is a minimum cut in G.

11.4.0.33 Proof: (A) \Rightarrow (B):

Proof: (A) \Rightarrow (B): By contradiction. If there was an augmenting path p then $c_f(p) > 0$, and we can generate a new flow $f + f_p$, such that $|f + f_p| = |f| + c_f(p) > |f|$. A contradiction as f is a maximum flow.

11.4.0.34 Proof: (B) \Rightarrow (C):

Proof: s and t are disconnected in G_f .

Set $S = \{v \mid \text{Exists a path between } s \text{ and } v \text{ in } \mathsf{G}_f\}$ $T = \mathsf{V} \setminus S$.

Have: $s \in S$, $t \in T$, $\forall u \in S$ and $\forall v \in T$: f(u, v) = c(u, v).

By contradiction: $\exists u \in S, v \in T \text{ s.t. } f(u,v) < c(u,v) \implies (u \to v) \in \mathsf{E}_f \implies v \text{ would be reachable from } s \text{ in } \mathsf{G}_f$. Contradiction.

$$\implies |f| = f(S,T) = c(S,T).$$

(S,T) must be mincut. Otherwise $\exists (S',T'): c(S',T') < c(S,T) = f(S,T) = |f|,$

But... $|f| = f(S', T') \le c(S', T')$. A contradiction.

11.4.0.35 Proof: (C) \Rightarrow (A):

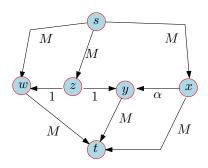
Proof: Well, for any cut (U, V), we know that $|f| \le c(U, V)$. This implies that if |f| = c(S, T) then the flow can not be any larger, and it is thus a maximum flow.

11.4.0.36 Implications

- (A) The max-flow min-cut theorem \implies if algFordFulkerson terminates, then computed max flow.
- (B) Does not imply algFordFulkerson always terminates.
- (C) algFordFulkerson might not terminate.

11.5 Non-termination of Ford-Fulkerson

11.5.0.37 Ford-Fulkerson runs in vain



- (A) M: large positive integer.
- (B) $\alpha = (\sqrt{5} 1)/2 \approx 0.618$.
- (C) $\alpha < 1$,
- (D) $1 \alpha < \alpha$.
- (E) Maximum flow in this network is: 2M + 1.

11.5.0.38 Some algebra...

For
$$\alpha = \frac{\sqrt{5} - 1}{2}$$
:

$$\alpha^{2} = \left(\frac{\sqrt{5} - 1}{2}\right)^{2} = \frac{1}{4}\left(\sqrt{5} - 1\right)^{2} = \frac{1}{4}\left(5 - 2\sqrt{5} + 1\right)$$

$$= 1 + \frac{1}{4}\left(2 - 2\sqrt{5}\right)$$

$$= 1 + \frac{1}{2}\left(1 - \sqrt{5}\right)$$

$$= 1 - \frac{\sqrt{5} - 1}{2}$$

$$= 1 - \alpha.$$

11.5.0.39 Some algebra...

Claim 11.5.1. Given: $\alpha = (\sqrt{5} - 1)/2$ and $\alpha^2 = 1 - \alpha$.

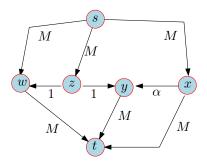
$$\implies \forall i \qquad \alpha^i - \alpha^{i+1} = \alpha^{i+2}$$

Proof:

$$\alpha^{i} - \alpha^{i+1} = \alpha^{i}(1 - \alpha) = \alpha^{i}\alpha^{2} = \alpha^{i+2}.$$

9

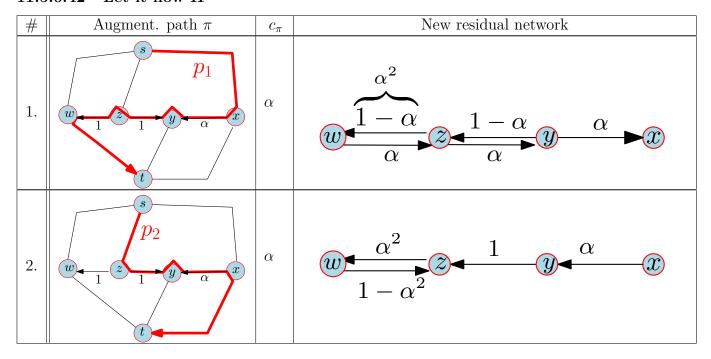
11.5.0.40 The network



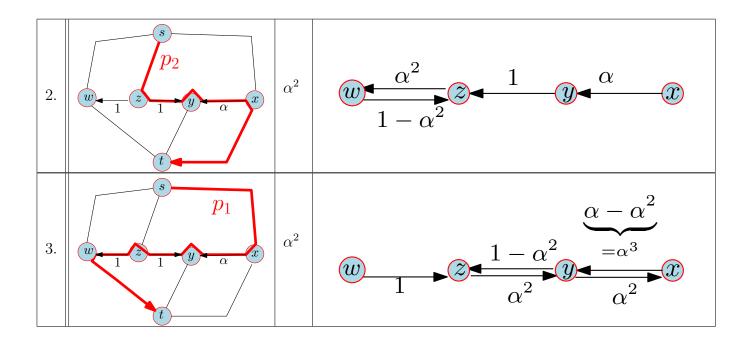
11.5.0.41 Let it flow...

#	Augment. path π	c_{π}	New residual network
0.		1	
1.	p_1 p_1 p_1	α	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

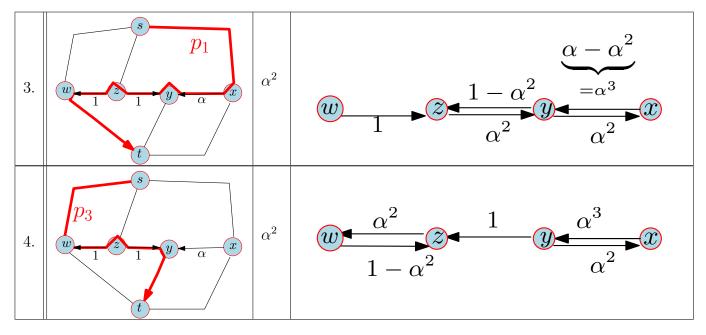
11.5.0.42 Let it flow II



11.5.0.43 Let it flow II



11.5.0.44 Let it flow III



 $11.5.0.45 \quad \text{Let it flow III} \quad$

moves	Residual network after			
0				
moves $0, (1, 2, 3, 4)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
moves $0, (1, 2, 3, 4)^2$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$0.(1,2,3,4)^i$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			

Namely, the algorithm never terminates.