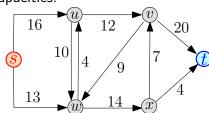
CS 573: Algorithms, Fall 2014

Network Flow

Lecture 11 September 30, 2014

Network flow

- 1. Transfer as much "merchandise" as possible from one point to another.
- 2. Wireless network, transfer a large file from s to t.
- 3. Limited capacities.



Part I

Network Flow

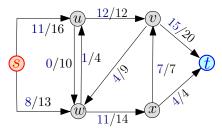
Network: Definition

- 1. Given a network with capacities on each connection.
- 2. Q: How much "flow" can transfer from source s to a sink *t*?
- 3. The flow is *splitable*.
- 4. Network examples: water pipes moving water. Electricity network.
- 5. Internet is packet base, so not quite splitable.

Definition

- $\star G = (V, E)$: a *directed* graph.
- $\star \ \forall (u \rightarrow v) \in E(G)$: capacity $c(u, v) \geq 0$,
- $\star (u \to v) \notin G \implies c(u,v) = 0.$
- ★ s: source vertex, t: target sink vertex.
- \star **G**, **s**, **t** and **c**(·): form **flow network** or **network**.

Network Example



- 1. All flow from the source ends up in the sink.
- 2. Flow on edge: non-negative quantity < capacity of edge.

5/58

Flow definition

Definition (flow)

flow in network is a function $f(\cdot, \cdot) : \mathsf{E}(\mathsf{G}) \to \mathbb{R}$:

- (A) Bounded by capacity: $\forall (u \rightarrow v) \in E \quad f(u, v) \leq c(u, v)$.
- (B) Anti symmetry: $\forall u, v f(u, v) = -f(v, u).$
- (C) Two special vertices: (i) the **source** s and the **sink** t.
- (D) **Conservation of flow** (Kirchhoff's Current Law): $\forall u \in V \setminus \{s,t\}$ $\sum_{v} f(u,v) = 0$.

flow/value of f: $|f| = \sum_{v \in V} f(s, v)$.

6/58

Problem: Max Flow

1. Flow on edge can be negative (i.e., positive flow on edge in other direction).

Problem (Maximum flow)

Given a network **G** find the **maximum flow** in **G**. Namely, compute a legal flow \mathbf{f} such that $|\mathbf{f}|$ is maximized.

Part II

Some properties of flows and residual networks

Flow across sets of vertices

1.
$$\forall X, Y \subseteq V$$
, let $f(X, Y) = \sum_{x \in X, y \in Y} f(x, y)$. $f(v, S) = f(\{v\}, S)$, where $v \in V(G)$.

Observation

$$|f|=f(s,\mathsf{V}).$$

9/58

Basic properties of flows: (ii)

Lemma

For a flow f, the following properties holds: (ii) $\forall X \subset V$ we have f(X, X) = 0,

Proof.

$$f(X,X) = \sum_{\{u,v\}\subseteq X, u\neq v} (f(u,v) + f(v,u)) + \sum_{u\in X} f(u,u)$$

=
$$\sum_{\{u,v\}\subseteq X, u\neq v} (f(u,v) - f(u,v)) + \sum_{u\in X} 0 = 0,$$

by the anti-symmetry property of flow.

Basic properties of flows: (i)

Lemma

For a flow ${\bf f}$, the following properties holds:

(i) $\forall u \in V(G)$ we have f(u, u) = 0,

Proof.

Holds since $(u \rightarrow u)$ it not an edge in **G**.

 $(u \rightarrow u)$ capacity is zero,

Flow on $(u \rightarrow u)$ is zero.

10/5

Basic properties of flows: (iii)

Lemma

For a flow \mathbf{f} , the following properties holds:

(iii) $\forall X, Y \subseteq V$ we have f(X, Y) = -f(Y, X),

Proof.

By the anti-symmetry of flow, as

$$f(X,Y) = \sum_{x \in X, y \in Y} f(x,y) = -\sum_{x \in X, y \in Y} f(y,x) = -f(Y,X).$$

11/58

Basic properties of flows: (iv)

Lemma

For a flow f, the following properties holds:

(iv) $\forall X, Y, Z \subseteq V$ such that $X \cap Y = \emptyset$ we have that $f(X \cup Y, Z) = f(X, Z) + f(Y, Z)$ and $f(Z, X \cup Y) = f(Z, X) + f(Z, Y)$.

Proof.

Follows from definition. (Check!)

13/58

Basic properties of flows: (v)

Lemma

For a flow f, the following properties holds:

(v)
$$\forall u \in V \setminus \{s, t\}$$
, we have $f(u, V) = f(V, u) = 0$.

Proof.

This is a restatement of the conservation of flow property. \Box

14/58

Basic properties of flows: summary

Lemma

For a flow f, the following properties holds:

- (i) $\forall u \in V(G)$ we have f(u, u) = 0,
- (ii) $\forall X \subseteq V$ we have f(X, X) = 0,
- (iii) $\forall X, Y \subseteq V$ we have f(X, Y) = -f(Y, X),
- (iv) $\forall X, Y, Z \subseteq V$ such that $X \cap Y = \emptyset$ we have that $f(X \cup Y, Z) = f(X, Z) + f(Y, Z)$ and $f(Z, X \cup Y) = f(Z, X) + f(Z, Y)$.
- (v) For all $u \in V \setminus \{s, t\}$, we have f(u, V) = f(V, u) = 0.

All flow gets to the sink

Claim

$$|f|=f(V,t).$$

Proof.

$$|f| = f(s, V) = f(V \setminus (V \setminus \{s\}), V)$$

$$= f(V, V) - f(V \setminus \{s\}, V)$$

$$= -f(V \setminus \{s\}, V) = f(V, V \setminus \{s\})$$

$$= f(V, t) + f(V, V \setminus \{s, t\})$$

$$= f(V, t) + \sum_{u \in V \setminus \{s, t\}} f(V, u)$$

$$= f(V, t) + \sum_{u \in V \setminus \{s, t\}} 0$$

$$= f(V, t),$$

Residual capacity

Definition

c: capacity, f: flow.

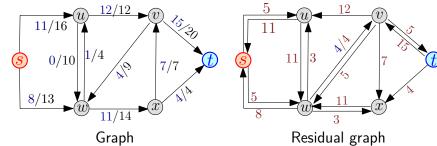
The $\emph{residual capacity}$ of an edge $(\emph{u} \rightarrow \emph{v})$ is

$$c_f(u,v)=c(u,v)-f(u,v).$$

- 1. residual capacity $c_f(u, v)$ on $(u \rightarrow v)$ = amount of unused capacity on $(u \rightarrow v)$.
- 2. ... next construct graph with all edges not being fully used by f.

17/58

Residual graph



 $f(u, w) = -f(w, u) = -1 \implies c_f(u, w) = 10 - (-1) = 11.$

18/58

Residual graph: Definition

Definition

Given f, G = (V, E) and c, as above, the **residual graph** (or **residual network**) of G and f is the graph $G_f = (V, E_f)$ where

$$\mathsf{E}_{f} = \big\{ (u, v) \in \mathsf{V} \times \mathsf{V} \mid c_{f}(u, v) > 0 \big\}.$$

- 1. $(u \rightarrow v) \in E$: might induce two edges in E_f
- 2. If $(u \rightarrow v) \in E$, f(u, v) < c(u, v) and $(v \rightarrow u) \notin E(G)$
- $3. \implies c_f(u,v) = c(u,v) f(u,v) > 0$
- 4. ... and $(u \rightarrow v) \in \mathsf{E}_f$. Also, $c_f(v,u) = c(v,u) f(v,u) = 0 (-f(u,v)) = f(u,v)$, since c(v,u) = 0 as $(v \rightarrow u)$ is not an edge of G .
- 5. \Longrightarrow $(v \rightarrow u) \in E_f$.

Residual network properties

Since every edge of G induces at most two edges in G_f , it follows that G_f has at most twice the number of edges of G; formally, $|E_f| < 2|E|$.

Lemma

Given a flow f defined over a network G, then the residual network G_f together with c_f form a flow network.

Proof.

One need to verify that $c_f(\cdot)$ is always a non-negative function, which is true by the definition of \mathbf{E}_f .

Increasing the flow

Lemma

G(V, E), a flow f, and h a flow in G_f . G_f : residual network of f.

Then $\mathbf{f} + \mathbf{h}$ is a flow in \mathbf{G} and its capacity is $|\mathbf{f} + \mathbf{h}| = |\mathbf{f}| + |\mathbf{h}|$.

proof

By definition: (f + h)(u, v) = f(u, v) + h(u, v) and thus (f + h)(X, Y) = f(X, Y) + h(X, Y). Verify legal...

- 1. Anti symmetry: (f + h)(u, v) = f(u, v) + h(u, v) = -f(v, u) h(v, u) = -(f + h)(v, u).
- 2. Bounded by capacity:

$$(f+h)(u,v) \le f(u,v) + h(u,v) \le f(u,v) + c_f(u,v)$$

= $f(u,v) + (c(u,v) - f(u,v)) = c(u,v)$.

21/58

Increasing the flow - proof continued

proof continued

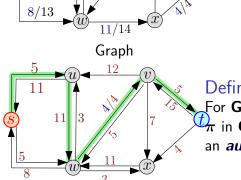
- 1. For $u \in V s t$ we have (f + h)(u, V) = f(u, V) + h(u, V) = 0 + 0 = 0 and as such f + h comply with the conservation of flow requirement.
- 2. Total flow is

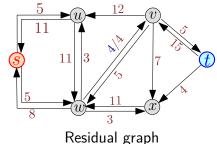
$$|f + h| = (f + h)(s, V) = f(s, V) + h(s, V) = |f| + |h|.$$

2/58

Augmenting path

0/10 | 1/4





Definition For **G** and a flow f, a path π in G_f between s and t is an augmenting path.

More on augmenting paths

- 1. π : augmenting path.
- 2. All edges of π have positive capacity in G_f .
- 3. ... otherwise not in $\mathbf{E}_{\mathbf{f}}$.
- 4. f, π : can improve f by pushing positive flow along π .

23/58

Residual capacity

Definition

 π : augmenting path of f.

 $c_f(\pi)$: maximum amount of flow can push on π .

 $c_f(\pi)$ is **residual capacity** of π .

Formally,

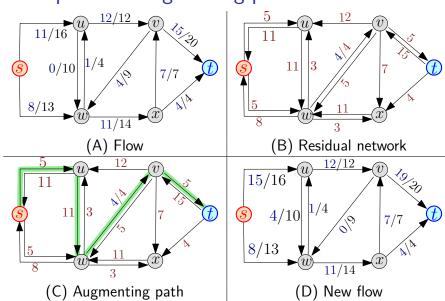
$$c_f(\pi) = \min_{(u \to v) \in \pi} c_f(u, v).$$

25/58

Flow along augmenting path

$$f_{\pi}(u,v) = \left\{ egin{array}{ll} c_f(\pi) & ext{if } (u
ightarrow v) ext{ is in } \pi \ -c_f(\pi) & ext{if } (v
ightarrow u) ext{ is in } \pi \ 0 & ext{otherwise.} \end{array}
ight.$$

An example of an augmenting path



Increase flow by augmenting flow

Lemma

 π : augmenting path. f_{π} is flow in G_f and $|f_{\pi}|=c_f(\pi)>0$. Get bigger flow...

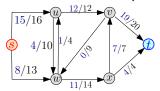
Lemma

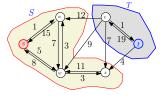
Let \mathbf{f} be a flow, and let π be an augmenting path for \mathbf{f} . Then $\mathbf{f} + \mathbf{f}_{\pi}$ is a "better" flow. Namely, $|\mathbf{f} + \mathbf{f}_{\pi}| = |\mathbf{f}| + |\mathbf{f}_{\pi}| > |\mathbf{f}|$.

27 /EQ

Flowing into the wall

- 1. Namely, $\mathbf{f} + \mathbf{f}_{\pi}$ is flow with larger value than \mathbf{f} .
- 2. Can this flow be improved? Consider residual flow...





- 3. \mathbf{s} is disconnected from \mathbf{t} in this residual network.
- 4. unable to push more flow.
- 5. Found local maximum!
- 6. Is that a global maximum?
- 7. Is this the maximum flow?

29/58

Part III

On maximum flows

The Ford-Fulkerson method

```
\begin{array}{c} \mathsf{algFordFulkerson}(\mathsf{G},c) \\ \mathsf{begin} \\ f \leftarrow \mathsf{Zero} \ \mathsf{flow} \ \mathsf{on} \ \mathsf{G} \\ \mathsf{while} \ (\mathsf{G}_f \ \mathsf{has} \ \mathsf{augmenting} \\ & \mathsf{path} \ p) \ \mathsf{do} \\ (* \ \mathsf{Recompute} \ \mathsf{G}_f \ \mathsf{for} \\ & \mathsf{this} \ \mathsf{check} \ *) \\ f \leftarrow f + f_p \\ \mathsf{return} \ f \\ \mathsf{end} \end{array}
```

30/58

Some definitions

Definition

(S,T): directed cut in flow network G=(V,E). A partition of V into S and $T=V\setminus S$, such that $s\in S$ and $t\in T$.

Definition

The net flow of f across a cut (S, T) is $f(S, T) = \sum_{s \in S, t \in T} f(s, t)$.

Definition

The *capacity* of (S, T) is $c(S, T) = \sum_{s \in S, t \in T} c(s, t)$.

Definition

The *minimum cut* is the cut in **G** with the minimum capacity.

Flow across cut is the whole flow

Lemma

G,f,s,t. (S,T): cut of G. Then f(S,T) = |f|.

Proof.

$$f(S, T) = f(S, V) - f(S, S) = f(S, V)$$

= $f(s, V) + f(S - s, V) = f(s, V)$
= $|f|$,

since $T = V \setminus S$, and $f(S - s, V) = \sum_{u \in S - s} f(u, V) = 0$ (note that u can not be t as $t \in T$).

33/58

Flow bounded by cut capacity

Claim

The flow in a network is upper bounded by the capacity of any cut (S, T) in G.

Proof.

Consider a cut (S, T). We have $|f| = f(S, T) = \sum_{u \in S, v \in T} f(u, v) \le \sum_{u \in S, v \in T} c(u, v) = c(S, T)$.

34/59

THE POINT

Key observation

Maximum flow is bounded by the capacity of the minimum cut.

Surprisingly...

Maximum flow is exactly the value of the minimum cut.

The Min-Cut Max-Flow Theorem

Theorem (Max-flow min-cut theorem)

If f is a flow in a flow network G = (V, E) with source s and sink t, then the following conditions are equivalent:

- (A) \mathbf{f} is a maximum flow in \mathbf{G} .
- (B) The residual network G_f contains no augmenting paths.
- (C) |f| = c(S, T) for some cut (S, T) of G. And (S, T) is a minimum cut in G.

35/58

Proof: $(A) \Rightarrow (B)$:

Proof.

(A) \Rightarrow (B): By contradiction. If there was an augmenting path p then $c_f(p) > 0$, and we can generate a new flow $f + f_p$, such that $|f + f_p| = |f| + c_f(p) > |f|$. A contradiction as f is a maximum flow.

37/58

Proof: (B) \Rightarrow (C):

Proof. s and t are disconnected in G_f . Set $S = \{v \mid \text{Exists a path between } s \text{ and } v \text{ in } G_f\}$ $T = V \setminus S$. Have: $s \in S$, $t \in T$, $\forall u \in S$ and $\forall v \in T$: f(u,v) = c(u,v). By contradiction: $\exists u \in S$, $v \in T$ s.t. f(u,v) < c(u,v) $\Longrightarrow (u \to v) \in E_f \Longrightarrow v$ would be reachable from s in G_f . Contradiction. $\Longrightarrow |f| = f(S,T) = c(S,T)$. (S,T) must be mincut. Otherwise $\exists (S',T')$: c(S',T') < c(S,T) = f(S,T) = |f|,

But... |f| = f(S', T') < c(S', T'). A contradiction.

38/58

Proof: $(C) \Rightarrow (A)$:

Proof.

Well, for any cut (U, V), we know that $|f| \le c(U, V)$. This implies that if |f| = c(S, T) then the flow can not be any larger, and it is thus a maximum flow.

Implications

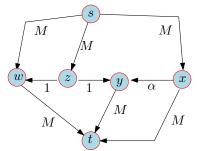
- The max-flow min-cut theorem ⇒ if algFordFulkerson terminates, then computed max flow.
- 2. Does not imply algFordFulkerson always terminates.
- 3. algFordFulkerson might not terminate.

39/58

Part IV

Non-termination of Ford-Fulkerson

Ford-Fulkerson runs in vain



- 1. **M**: large positive integer.
- 2. $\alpha = (\sqrt{5} 1)/2 \approx 0.618$.
- 3. $\alpha < 1$
- 4. $1-\alpha < \alpha$
- 5. Maximum flow in this network is: 2M + 1.

41/58

Some algebra...

For
$$\alpha = \frac{\sqrt{5}-1}{2}$$
:

$$\alpha^{2} = \left(\frac{\sqrt{5} - 1}{2}\right)^{2} = \frac{1}{4} \left(\sqrt{5} - 1\right)^{2} = \frac{1}{4} \left(5 - 2\sqrt{5} + 1\right)$$

$$= 1 + \frac{1}{4} \left(2 - 2\sqrt{5}\right)$$

$$= 1 + \frac{1}{2} \left(1 - \sqrt{5}\right)$$

$$= 1 - \frac{\sqrt{5} - 1}{2}$$

$$= 1 - \alpha.$$

Some algebra...

Claim

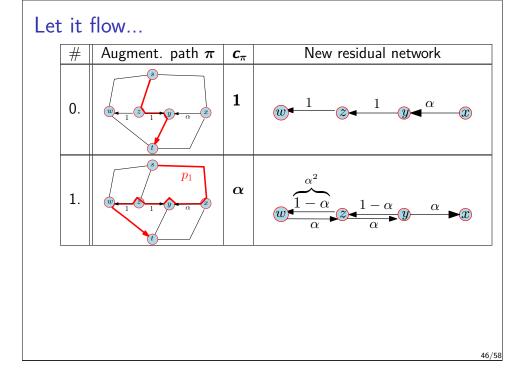
Given:
$$\alpha = (\sqrt{5} - 1)/2$$
 and $\alpha^2 = 1 - \alpha$.

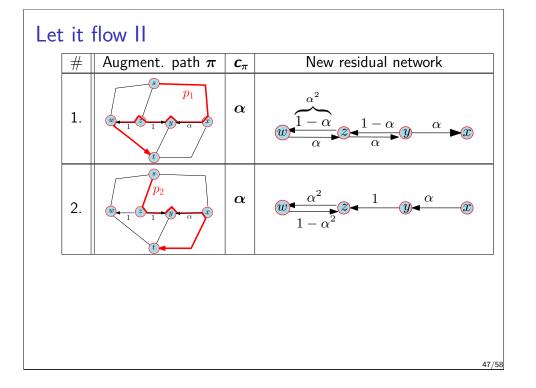
$$\implies \forall i \qquad \alpha^i - \alpha^{i+1} = \alpha^{i+2}$$

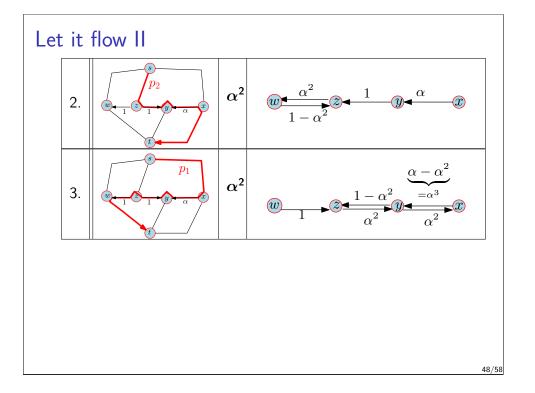
Proof.

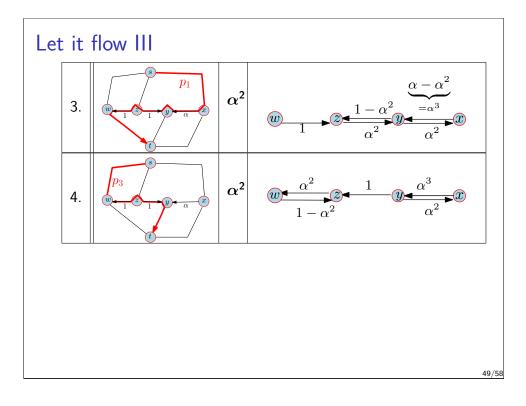
$$\alpha^{i} - \alpha^{i+1} = \alpha^{i}(1 - \alpha) = \alpha^{i}\alpha^{2} = \alpha^{i+2}.$$

3/58









Let it flow III

moves	Residual network after		
0			
moves $0, (1, 2, 3, 4)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
moves $0, (1, 2, 3, 4)^2$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$0.(1,2,3,4)^{i}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Namely, the algorithm never terminates.