Chapter 7

Approximation Algorithms

CS 573: Algorithms, Fall 2014

September 16, 2014

7.0.0.1 Today's Lecture

Don't give up on **NP-Hard** problems:

- (A) Faster exponential time algorithms: $n^{O(n)}$, 3^n , 2^n , etc.
- (B) Fixed parameter tractable.
- (C) Find an approximate solution.

7.1 Greedy algorithms and approximation algorithms

7.1.0.2 Greedy algorithms

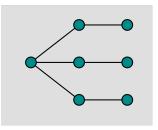
- (A) greedy algorithms: do locally the right thing...
- (B) ...and they suck.

VertexCoverMin

Instance: A graph G.

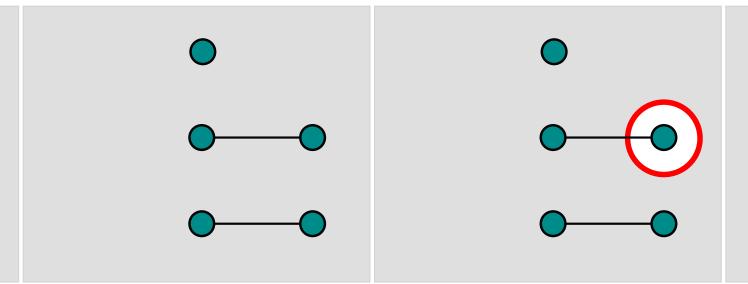
Question: Return the smallest subset $S \subseteq V(G)$, s.t. S touches all the edges of G.

(C) **GreedyVertexCover**: pick vertex with highest degree, remove, repeat.



7.1.1 Greedy algorithms

7.1.1.1 GreedyVertexCover in action...



Observation 7.1.1. Greedy Vertex Cover returns 4 vertices, but opt is 3 vertices.

7.1.1.2 Good enough...

Definition 7.1.2. In a *minimization* optimization problem, one looks for a valid solution that minimizes a certain target function.

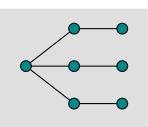
- (A) VertexCoverMin: $Opt(G) = \min_{S \subset V(G), S \text{ cover of } G} |S|$.
- (B) VertexCover(G): set realizing sol.
- (C) $\operatorname{Opt}(\mathsf{G})$: value of the target function for the optimal solution.

Definition 7.1.3. Alg is α -approximation algorithm for problem Min, achieving an approximation $\alpha \geq 1$, if for all inputs G, we have:

$$\frac{\mathbf{Alg}(\mathsf{G})}{\mathrm{Opt}(\mathsf{G})} \leq \alpha.$$

$7.1.1.3 \quad \text{Back to GreedyVertexCover} \\$

- (A) **GreedyVertexCover**: pick vertex with highest degree, remove, repeat.
- (B) Returns 4, but opt is 3!



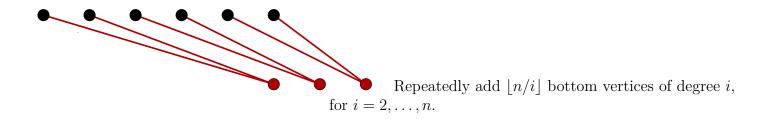
- (C) Can **not** be better than a 4/3-approximation algorithm.
- (D) Actually it is much worse!

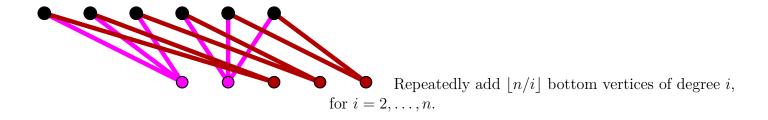
7.1.1.4 How bad is GreedyVertexCover?

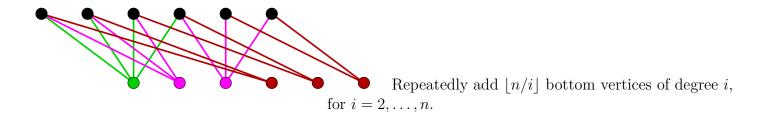
Build a bipartite graph.

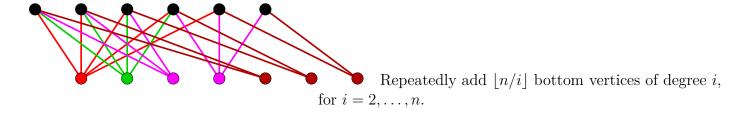
Let the top partite set be of size n.

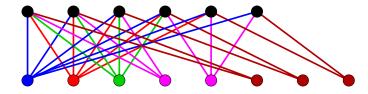
• In the bottom set add $\lfloor n/2 \rfloor$ vertices of degree 2, such that each edge goes to a different vertex above.



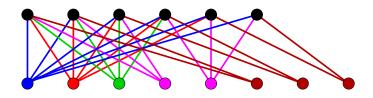




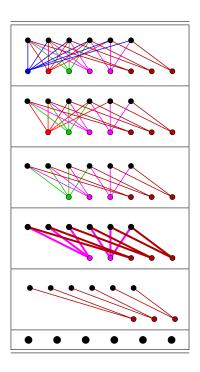




Bottom row has $\sum_{i=2}^{n} \lfloor n/i \rfloor = \Theta(n \log n)$ vertices.



7.1.1.5 How bad is GreedyVertexCover?



- (A) Bottom row taken by Greedy.
- (B) Top row was a smaller solution.

Lemma 7.1.4. The algorithm **GreedyVertex-Cover** is $\Omega(\log n)$ approximation to the optimal solution to VertexCoverMin.

See notes for details!

7.1.1.6 Greedy Vertex Cover

Theorem 7.1.5. The greedy algorithm for **VertexCover** achieves $\Theta(\log n)$ approximation, where n (resp. m) is the number of vertices (resp., edges) in the graph. Running time is $O(mn^2)$.

Proof Lower bound follows from lemma.

Upper bound follows from analysis of greedy algorithm for **Set Cover**, which will be done shortly.

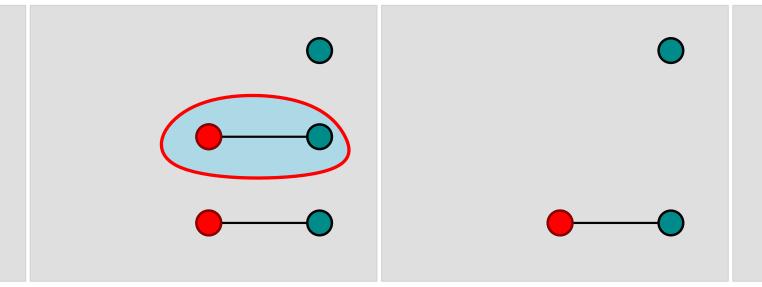
As for the running time, each iteration of the algorithm takes O(mn) time, and there are at most n iterations.

7.1.1.7 Two for the price of one

Theorem 7.1.6. ApproxVertexCover is a 2-approximation algorithm for VertexCoverMin that runs in $O(n^2)$ time.

Proof...

7.1.1.8 Two for the price of one - example



7.2 Fixed parameter tractability, approximation, and fast exponential time algorithms (to say nothing of the dog)

7.2.1 A silly brute force algorithm for vertex cover

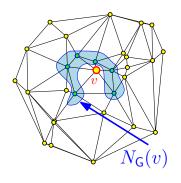
7.2.1.1 What if the vertex cover is small?

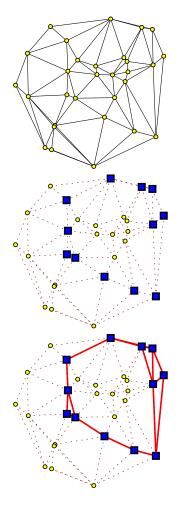
- (A) G = (V, E) with n vertices
- (B) $K \leftarrow \text{Approximate VertexCoverMin}$ up to a factor of two.
- (C) Any vertex cover of G is of size $\geq K/2$.
- (D) Naively compute optimal in $O(n^{K+2})$ time.

7.2.1.2 Induced subgraph

Definition 7.2.2. Let G = (V, E) be a graph. For a subset $S \subseteq V$, let G_S be the *induced sub-graph* over S.

Definition 7.2.1. $N_{\mathsf{G}}(v)$: **Neighborhood** of v – set of vertices of G adjacent to v.





7.2.2 Exact fixed parameter tractable algorithm

7.2.2.1 Fixed parameter tractable algorithm for VertexCoverMin.

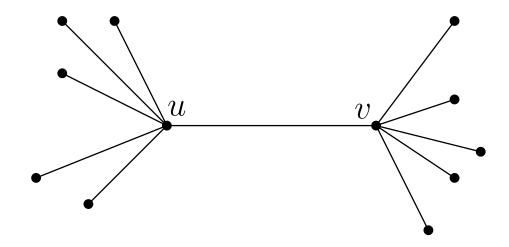
Computes minimum vertex cover for the induced graph G_X :

```
\begin{array}{c} \mathbf{fpVCI}(X,\beta) \\ \hspace{0.5cm} //\hspace{0.1cm} \beta \colon \text{ size of VC computed so far.} \\ \hspace{0.5cm} \mathbf{if} \hspace{0.1cm} X = \emptyset \text{ or } \mathsf{G}_X \text{ has no edges then return } \beta \\ \hspace{0.5cm} \mathbf{e} \leftarrow \text{ any edge } uv \text{ of } \mathsf{G}_X. \\ \hspace{0.5cm} \beta_1 = \mathbf{fpVCI} \left( X \setminus \left\{ u, v \right\}, \beta + 2 \right) \\ \hspace{0.5cm} \beta_2 = \mathbf{fpVCI} \left( X \setminus \left\{ \left\{ u \right\} \cup N_{\mathsf{G}_X}(v) \right), \beta + |N_{\mathsf{G}_X}(v)| \right) \\ \hspace{0.5cm} \beta_3 = \mathbf{fpVCI} \left( X \setminus \left\{ \left\{ v \right\} \cup N_{\mathsf{G}_X}(u) \right), \beta + |N_{\mathsf{G}_X}(u)| \right) \\ \hspace{0.5cm} \mathbf{return } \min(\beta_1, \beta_2, \beta_3). \\ \\ \hspace{0.5cm} \mathbf{algFPVertexCover} \left( \mathsf{G} = (\mathsf{V}, \mathsf{E}) \right) \\ \hspace{0.5cm} \mathbf{return } \hspace{0.5cm} \mathbf{fpVCI}(\mathsf{V}, 0) \end{array}
```

7.2.2.2 Depth of recursion

Lemma 7.2.3. The algorithm algFPVertexCover returns the optimal solution to the given instance of VertexCoverMin.

Proof...



7.2.2.3 Depth of recursion II

Lemma 7.2.4. The depth of the recursion of algFPVertexCover(G) is at most α , where α is the minimum size vertex cover in G.

Proof: (A) When the algorithm takes both u and v - one of them in opt. Can happen at most α times.

- (B) Algorithm picks $N_{\mathsf{G}_X}(v)$ (i.e., β_2). Conceptually add v to the vertex cover being computed.
- (C) Do the same thing for the case of β_3 .
- (D) Every such call add one element of the opt to conceptual set cover. Depth of recursion is $\leq \alpha$.

7.2.3 Vertex Cover

7.2.3.1 Exact fixed parameter tractable algorithm

Theorem 7.2.5. G: graph with n vertices. Min vertex cover of size α . Then, algFPVertexCover returns opt. vertex cover.

Running time is $O(3^{\alpha}n^2)$.

Proof:

- (A) By lemma, recursion tree has depth α .
- (B) Rec-tree contains $< 2 \cdot 3^{\alpha}$ nodes.
- (C) Each node requires $O(n^2)$ work.

Algorithms with running time $O(n^c f(\alpha))$, where α is some parameter that depends on the problem are *fixed parameter tractable*.

7.3 Traveling Salesperson Problem

7.3.0.2 TSP

TSP-Min

Instance: G = (V, E) a complete graph, and $\omega(e)$ a cost function on edges of G. Question: The cheapest tour that visits all the vertices of G exactly once.

Solved exactly naively in $\approx n!$ time. Using DP, solvable in $O(n^22^n)$ time.

7.3.0.3 TSP Hardness

Theorem 7.3.1. TSP-Min can not be approximated within any factor unless NP = P.

Proof.

- (A) Reduction from **Hamiltonian Cycle** into **TSP**.
- (B) G = (V, E): instance of Hamiltonian cycle.
- (C) H: Complete graph over V.

$$\forall u, v \in \mathsf{V} \quad w_\mathsf{H}(uv) = \begin{cases} 1 & uv \in \mathsf{E} \\ 2 & \text{otherwise.} \end{cases}$$

- (D) \exists tour of price n in $\mathsf{H} \iff \exists$ Hamiltonian cycle in G .
- (E) No Hamiltonian cycle \implies TSP price at least n+1.
- (F) But... replace 2 by cn, for c an arbitrary number

7.3.0.4 TSP Hardness - proof continued

Proof: (A) Price of all tours are either:

- (i) n (only if \exists Hamiltonian cycle in G),
- (ii) larger than cn + 1 (actually, $\geq cn + (n-1)$).
- (B) Suppose you had a poly time c-approximation to TSP-Min.
- (C) Run it on H:
 - (i) If returned value $\geq cn + 1 \implies$ no Ham Cycle since (cn + 1)/c > n
 - (ii) If returned value $\leq cn \implies \text{Ham Cycle since } OPT \leq cn < cn + 1$
- (D) c-approximation algorithm to $\overline{TSP} \implies \text{poly-time algorithm for } \overline{NP-Complete}$ problem. Possible only if $P = \overline{NP}$.

7.3.1 **TSP** with the triangle inequality

7.3.1.1 Because it is not that bad after all.

TSP_{∧≠}-Min

Instance: G = (V, E) is a complete graph. There is also a cost function $\omega(\cdot)$ defined over the edges of G, that complies with the triangle inequality.

Question: The cheapest tour that visits all the vertices of G exactly once.

triangle inequality: $\omega(\cdot)$ if

$$\forall u, v, w \in V(G), \quad \omega(u, v) \leq \omega(u, w) + \omega(w, v).$$

Shortcutting σ : a path from s to t in $G \implies \omega(st) \leq \omega(\sigma)$.

7.3.2 **TSP** with the triangle inequality

7.3.2.1 Continued...

Definition 7.3.2. Cycle in G is *Eulerian* if it visits every edge of G exactly once.

Assume you already seen the following:

Lemma 7.3.3. A graph G has a cycle that visits every edge of G exactly once (i.e., an Eulerian cycle) if and only if G is connected, and all the vertices have even degree. Such a cycle can be computed in O(n+m) time, where n and m are the number of vertices and edges of G, respectively.

7.3.3 **TSP** with the triangle inequality

7.3.3.1 Continued...

- (A) C_{opt} optimal **TSP** tour in **G**.
- (B) **Observation**: $\omega(C_{\text{opt}}) \geq \text{weight} \Big(\text{cheapest spanning graph of } \mathsf{G} \Big).$
- (C) MST: cheapest spanning graph of G. $\omega(C_{\text{opt}}) \ge \omega(\text{MST}(\mathsf{G}))$
- (D) $O(n \log n + m) = O(n^2)$: time to compute MST. $n = |V(G)|, m = \binom{n}{2}$.

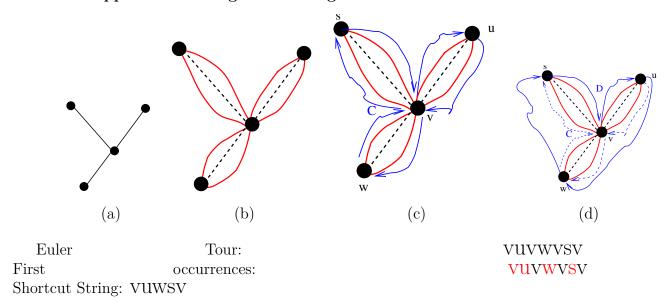
7.3.4 **TSP** with the triangle inequality

7.3.4.1 2-approximation

- (A) $T \leftarrow MST(G)$
- (B) $H \leftarrow$ duplicate very edge of T.
- (C) H has an Eulerian tour.
- (D) C: Eulerian cycle in H.
- (E) $\omega(\mathsf{C}) = \omega(H) = 2\omega(T) = 2\omega(MST(\mathsf{G})) \le 2\omega(C_{\mathrm{opt}}).$
- (F) π : Shortcut C so visit every vertex once.
- (G) $\omega(\pi) < \omega(\mathsf{C})$

7.3.5 **TSP** with the triangle inequality

7.3.5.1 2-approximation algorithm in figures



7.3.6 **TSP** with the triangle inequality

7.3.6.1 2-approximation - result

Theorem 7.3.4. G: Instance of $TSP_{\triangle \neq}$ -Min.

 C_{opt} : min cost TSP tour of G.

 \implies Compute a tour of G of length $\leq 2\omega(C_{\text{opt}})$.

Running time of the algorithm is $O(n^2)$.

G: n vertices, cost function $\omega(\cdot)$ on the edges that comply with the triangle inequality.

7.3.7 **TSP** with the triangle inequality

7.3.7.1 3/2-approximation

Definition 7.3.5. G = (V, E), a subset $M \subseteq E$ is a **matching** if no pair of edges of M share endpoints.

A $perfect\ matching$ is a matching that covers all the vertices of ${\sf G}.$

w: weight function on the edges. Min-weight perfect matching, is the minimum weight matching among all perfect matching, where

$$\omega(M) = \sum_{e \in M} \omega(e) \,.$$

7.3.8 **TSP** with the triangle inequality

7.3.8.1 3/2-approximation

The following is known:

Theorem 7.3.6. Given a graph G and weights on the edges, one can compute the min-weight perfect matching of G in polynomial time.

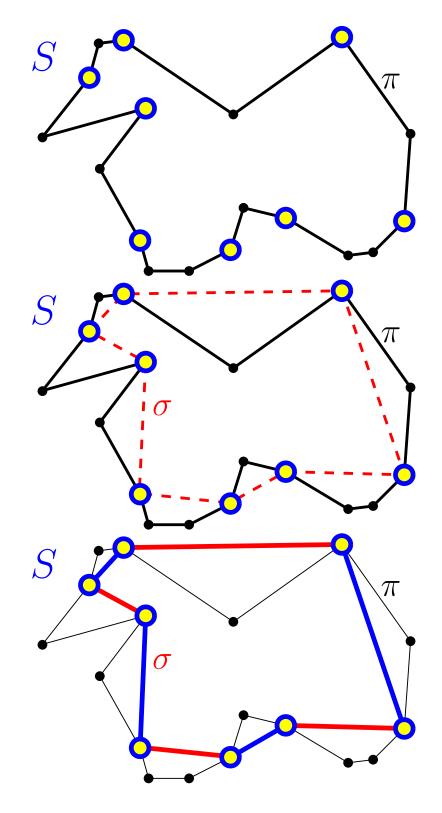
7.3.8.2 Min weight perfect matching vs. TSP

Lemma 7.3.7. G = (V, E): complete graph.

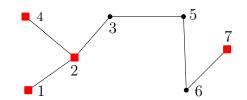
 $S \subseteq V$: even size.

 $\omega(\cdot)$: a weight function over E.

 \implies min-weight perfect matching in G_S is $\leq \omega(TSP(G))/2$.



7.3.8.3 A more perfect tree?



- (A) How to make the tree Eulerian?
- (B) Pesky odd degree vertices must die!
- (C) Number of odd degree vertices in a graph is even!
- (D) Compute min-weight matching on odd vertices, and add to MST.
- (E) H = MST + min weight matching is Eulerian.
- (F) Weight of resulting cycle in $H \leq (3/2)\omega(TSP)$.

7.3.8.4 Even number of odd degree vertices

Lemma 7.3.8. The number of odd degree vertices in any graph G' is even.

Proof: $\mu = \sum_{v \in V(G')} d(v) = 2|E(G')|$ and thus even.

$$U = \sum_{v \in V(G'), d(v) \text{ is even }} d(v)$$
 even too.

Thus,

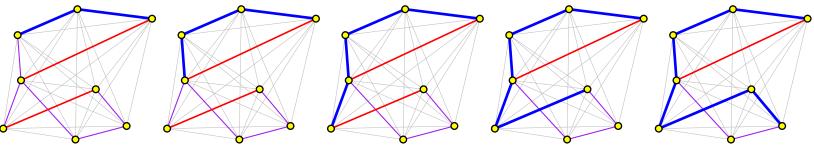
$$\alpha = \sum_{v \in V, d(v) \text{ is odd}} d(v) = \mu - U = \text{even number},$$

since μ and U are both even.

Number of elements in sum of all odd numbers must be even, since the total sum is even.

7.3.9 3/2-approximation algorithm for TSP

7.3.9.1 Animated!



7.3.10 3/2-approximation algorithm for TSP

7.3.10.1 The result

Theorem 7.3.9. Given an instance of TSP with the triangle inequality, one can compute in polynomial time, a (3/2)-approximation to the optimal TSP.

7.3.10.2 Biographical Notes

The 3/2-approximation for TSP with the triangle inequality is due to ?.