CS 573: Algorithms, Fall 2014

More NP-Complete Problems

Lecture 4 September 4, 2014

Part I

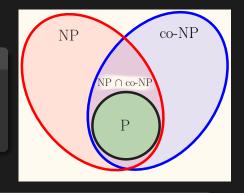
Quick & total recall

NP

Decision problems with a polynomial certifier.

Examples: SAT, Hamiltonian

Cycle, 3-Colorability.



Definition

co-NP: class of all decision problems X s.t. $\overline{X} \in NP$.

Examples: UnSAT, No-Hamiltonian-Cycle,

No-3-Colorable.

3

- NP: languages that have polynomial time certifiers/verifiers.
- \bigcirc A language L is **NP-Complete** \iff
 - L is in NP
 - ullet for every L' in $igwedge{\mathsf{NP}}$, $L' \leq_P L$
- \bigcirc L is $\mathsf{NP ext{-}Hard}$ if for every L' in NP , $L' \leq_P L$
- Cook-Level theorem...

Theorem (Cook-Levin)

Circuit-SAT is NP-Complete.

- NP: languages that have polynomial time certifiers/verifiers.
- lacksquare A language L is $\mathsf{NP ext{-}Complete}\iff$
 - \bullet L is in $\overline{\mathsf{NP}}$
 - for every L' in \mathbb{NP} , $L' \leq_P L$
- igcap L is $\mathsf{NP ext{-}Hard}$ if for every L' in NP , $L' \leq_P L$.
- Cook-Level theorem...

Theorem (Cook-Levin)

Circuit-SAT is NP-Complete

- NP: languages that have polynomial time certifiers/verifiers.
- lacksquare A language L is $oldsymbol{\mathsf{NP-Complete}} \iff$
 - L is in NP
 - for every L' in NP, $L' \leq_P L$
- \bigcirc L is **NP-Hard** if for every L' in **NP**, $L' \leq_P L$.
- Cook-Level theorem...

Theorem (Cook-Levin)

Circuit-SAT is NP-Complete

- NP: languages that have polynomial time certifiers/verifiers.
- lacksquare A language L is **NP-Complete** \iff
 - \bullet L is in \overline{NP}
 - for every L' in NP, $L' \leq_P L$
- lacksquare L is **NP-Hard** if for every L' in **NP**, $L' \leq_P L$.
- Cook-Level theorem...

Theorem (Cook-Levin)

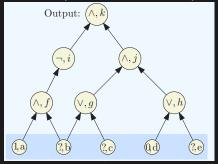
Circuit-SAT is NP-Complete.

Part II

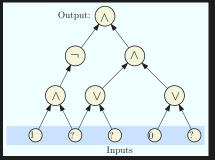
Showing that **SAT** is NP-Complete

SAT is NP-Complete

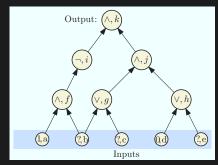
- lacksquare We have seen that $\mathsf{SAT} \in \mathsf{NP}$
- To show NP-Hardness, we will reduce Circuit Satisfiability (CSAT) to SAT Instance of CSAT (we label each node):



Label the nodes

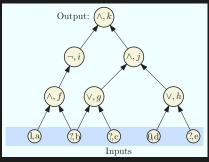


(A) Input circuit

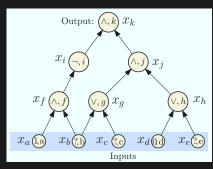


(B) Label the nodes.

Introduce a variable for each node

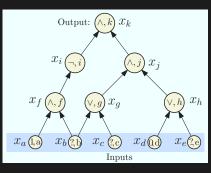


(B) Label the nodes.



(C) Introduce var for each node.

Write a sub-formula for each variable that is true if the var is computed correctly.



 x_k (Demand a sat' assignment!)

 x_k (Demand ment!) $x_k = x_i \wedge x_k$ $x_j = x_g \wedge x_h$ $x_i = \neg x_f$ $x_h = x_d \vee x_e$ $x_g = x_b \vee x_c$ $x_f = x_a \wedge x_b$ $x_d = 0$ $x_g = 1$

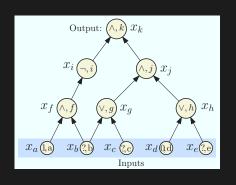
(C) Introduce var for each node.

(D) Write a sub-formula for each variable that is true if the var is computed correctly.

Convert each sub-formula to an equivalent CNF formula

x_k	x_k
$x_k = x_i \wedge x_j$	$(\neg x_k \lor x_i) \land (\neg x_k \lor x_j) \land (x_k \lor \neg x_i \lor \neg x_j)$
$x_j = x_g \wedge x_h \mid$	$oxed{(\lnot x_j \lor x_g) \land (\lnot x_j \lor x_h) \land (x_j \lor \lnot x_g \lor \lnot x_h)}$
$x_i = eg x_f$	$(x_i \vee x_f) \wedge (\neg x_i \vee \neg x_f)$
$x_h = x_d ee x_e$	$(x_h ee \neg x_d) \wedge (x_h ee \neg x_e) \wedge (\neg x_h ee x_d ee x_e)$
$x_g = x_b ee x_c$	$(x_g ee eg x_b) \wedge (x_g ee eg x_c) \wedge (eg x_g ee x_b ee x_c)$
$x_f = x_a \wedge x_b$	$(\lnot x_f \lor x_a) \land (\lnot x_f \lor x_b) \land (x_f \lor \lnot x_a \lor \lnot x_b)$
$x_d=0$	$ eg x_d$
$x_a=1$	$oldsymbol{x_a}$

Take the conjunction of all the CNF sub-formulas



$$egin{aligned} x_k \wedge (\lnot x_k ee x_i) \wedge (\lnot x_k ee x_j) \ \wedge (x_k ee \lnot x_i ee \lnot x_j) \wedge (\lnot x_j ee x_g) \ \wedge (\lnot x_j ee x_h) \wedge (x_j ee \lnot x_g ee \lnot x_h) \ \wedge (x_i ee x_f) \wedge (\lnot x_i ee \lnot x_f) \ \wedge (x_i ee x_f) \wedge (\lnot x_i ee \lnot x_f) \ \wedge (x_h ee \lnot x_d) \wedge (x_h ee \lnot x_e) \ \wedge (\lnot x_h ee x_d ee x_e) \wedge (x_g ee \lnot x_b) \ \wedge (x_g ee \lnot x_c) \wedge (\lnot x_g ee x_b ee x_c) \ \wedge (\lnot x_f ee x_a) \wedge (\lnot x_f ee x_b) \ \wedge (x_f ee \lnot x_a ee \lnot x_b) \wedge (\lnot x_d) \wedge x_a \end{aligned}$$

We got a CNF formula that is satisfiable \iff the original circuit is satisfiable.

Reduction: $CSAT \leq_P SAT$

- $lacksquare{lack}{eta}$ For each gate (vertex) v in the circuit, create a variable x_v
- Case \neg : v is labeled \neg and has one incoming edge from u (so $x_v = \neg x_u$). In **SAT** formula generate, add clauses $(x_u \lor x_v)$, $(\neg x_u \lor \neg x_v)$. Observe that

$$x_v =
eg x_u$$
 is true $\iff rac{(x_u ee x_v)}{(
eg x_u ee
eg x_v)}$ both true.

Reduction: $CSAT \leq_P SAT$

Continued...

Case \vee : So $x_v = x_u \vee x_w$. In **SAT** formula generated, add clauses $(x_v \vee \neg x_u)$, $(x_v \vee \neg x_w)$, and $(\neg x_v \vee x_u \vee x_w)$. Again, observe that

$$egin{aligned} ig(x_v = x_u ee x_wig) & ext{is true} & \iff & (x_v ee
eg x_u), \ (x_v ee
eg x_w), \ (
eg x_v ee x_u ee x_w) \end{aligned}$$
 all true

Reduction: $CSAT <_P SAT$

Continued...

Case \wedge : So $x_v = x_u \wedge x_w$. In **SAT** formula generated, add clauses $(\neg x_v \vee x_u)$, $(\neg x_v \vee x_w)$, and $(x_v \vee \neg x_u \vee \neg x_w)$. Again observe that

$$x_v = x_u \wedge x_w$$
 is true $\iff egin{array}{c} (
eg x_v ee x_u), \ (
eg x_v ee x_w), \ (x_v ee
eg x_u ee
eg x_w) \end{aligned}$ all true.

Reduction: $CSAT <_P SAT$

Continued...

- $lack If \ v$ is an input gate with a fixed value then we do the following. If $x_v=1$ add clause x_v . If $x_v=0$ add clause $eg x_v$
- Add the clause x_v where v is the variable for the output gate

Correctness of Reduction

Need to show circuit C is satisfiable iff $arphi_C$ is satisfiable

- \Rightarrow Consider a satisfying assignment a for C
 - lacksquare Find values of all gates in C under a
 - Give value of gate v to variable x_v ; call this assignment a'
 - a' satisfies φ_C (exercise)
- \Leftarrow Consider a satisfying assignment a for $arphi_C$
 - lacksquare Let a' be the restriction of a to only the input variables
 - lacksquare Value of gate v under a' is the same as value of x_v in a
 - lacksquare Thus, a' satisfies C

Theorem

SAT is NP-Complete.

- \bigcirc To prove X is **NP-Complete**, show
 - - certificate/proof of polynomial size in input
 - lacksquare polynomial time certifier C(s,t)
 - Reduction from a known NP-Complete problem such as CSAT or SAT to X
 - SAT $\leq_P X$ implies that every $oldsymbol{\mathsf{NP}}$ problem $Y \leq_P X$. Why?
 - Transitivity of reductions:
 - $Y \leq_P \mathsf{SAT}$ and $\mathsf{SAT} \leq_P X$ and hence $Y \leq_P X$.

- \bullet To prove X is **NP-Complete**, show
 - - certificate/proof of polynomial size in input
 - lacksquare polynomial time certifier C(s,t)
 - Reduction from a known NP-Complete problem such as CSAT or SAT to X
- SAT $\leq_P X$ implies that every NP problem $Y \leq_P X$. Why?

Transitivity of reductions:

0 $Y \leq_P \mathsf{SAT}$ and $\mathsf{SAT} \leq_P X$ and hence $Y \leq_P X$.

- \bigcirc To prove X is **NP-Complete**, show
 - - certificate/proof of polynomial size in input
 - lacksquare polynomial time certifier C(s,t)
 - Reduction from a known NP-Complete problem such as CSAT or SAT to X
- SAT $\leq_P X$ implies that every \mathbb{NP} problem $Y \leq_P X$. Why?

 Transitivity of reductions:
- $\bigcirc Y \leq_P \mathsf{SAT}$ and $\mathsf{SAT} \leq_P X$ and hence $Y \leq_P X$.

- \bigcirc To prove X is **NP-Complete**, show
 - - certificate/proof of polynomial size in input
 - lacksquare polynomial time certifier C(s,t)
 - Reduction from a known NP-Complete problem such as CSAT or SAT to X
- SAT $\leq_P X$ implies that every NP problem $Y \leq_P X$. Why?
 - Transitivity of reductions:
- \bigcirc $Y \leq_P \mathsf{SAT}$ and $\mathsf{SAT} \leq_P X$ and hence $Y \leq_P X$.

NP-Completeness via Reductions

- What we currently know:
 - CSAT is NP-Complete.
 - CSAT \leq_P SAT and SAT is in NP and hence SAT is NP-Complete.
 - SAT $\leq_P 3$ SAT and hence 3SAT is NP-Complete.
 - 3SAT \leq_P Independent Set (which is in NP) and hence Independent Set is NP-Complete.
 - Vertex Cover is NP-Complete.
 - Clique is NP-Complete.

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be **NP-Complete**.

A surprisingly frequent phenomenon!

NP-Completeness via Reductions

- What we currently know:
 - CSAT is NP-Complete.
 - CSAT \leq_P SAT and SAT is in NP and hence SAT is NP-Complete.
 - SAT \leq_P 3SAT and hence 3SAT is NP-Complete.
 - 3SAT \leq_P Independent Set (which is in NP) and hence Independent Set is NP-Complete.
 - Vertex Cover is NP-Complete.
 - Clique is NP-Complete.
- Hundreds and thousands of different problems from many areas of science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!

NP-Completeness via Reductions

- What we currently know:
 - CSAT is NP-Complete.
 - CSAT \leq_P SAT and SAT is in NP and hence SAT is NP-Complete.
 - SAT \leq_P 3SAT and hence 3SAT is NP-Complete.
 - 3SAT \leq_P Independent Set (which is in NP) and hence Independent Set is NP-Complete.
 - Vertex Cover is NP-Complete.
 - Clique is NP-Complete.
- Hundreds and thousands of different problems from many areas of science and engineering have been shown to be NP-Complete.
- A surprisingly frequent phenomenon!

Part III

More reductions...

Next...

Prove

- Hamiltonian Cycle Problem is NP-Complete.
- 3-Coloring is **NP-Complete**.
- Subset Sum.

Part IV

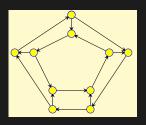
NP-Completeness of Hamiltonian Cycle

Directed Hamiltonian Cycle

Input Given a directed graph $G=(\mathit{V}, E)$ with n vertices

Goal Does G have a Hamiltonian cycle?

A Hamiltonian cycle is a cycle in the graph that visits every vertex in G exactly once

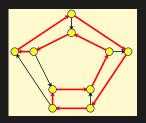


Directed Hamiltonian Cycle

Input Given a directed graph $G=(\mathit{V}, E)$ with n vertices

Goal Does G have a Hamiltonian cycle?

 A Hamiltonian cycle is a cycle in the graph that visits every vertex in G exactly once



Directed Hamiltonian Cycle is NP-Complete

- Directed Hamiltonian Cycle is in NP
 - Certificate: Sequence of vertices
 - Certifier: Check if every vertex (except the first) appears exactly once, and that consecutive vertices are connected by a directed edge
- Hardness: Will prove...

 3SAT \leq_P Directed Hamiltonian Cycle

Directed Hamiltonian Cycle is NP-Complete

- Directed Hamiltonian Cycle is in NP
 - Certificate: Sequence of vertices
 - Certifier: Check if every vertex (except the first) appears exactly once, and that consecutive vertices are connected by a directed edge
- Hardness: Will prove...
 3SAT ≤_P Directed Hamiltonian Cycle.

Reduction

- \bigcirc **3SAT** formula arphi create a graph G_{arphi} such that
 - \circ G_{arphi} has a Hamiltonian cycle $\iff arphi$ is satisfiable
 - G_{arphi} should be constructible from arphi by a polynomial time algorithm ${\mathcal A}$
 - Notation: arphi has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .

Reduction

- **3SAT** formula arphi create a graph G_{arphi} such that
 - ullet G_{arphi} has a Hamiltonian cycle $\iff arphi$ is satisfiable
 - G_{arphi} should be constructible from arphi by a polynomial time algorithm ${\mathcal A}$
 - Notation: arphi has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .

Reduction

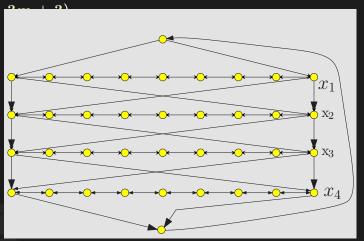
- **③ 3SAT** formula arphi create a graph G_{arphi} such that
 - ullet G_arphi has a Hamiltonian cycle $\iff arphi$ is satisfiable
 - G_{arphi} should be constructible from arphi by a polynomial time algorithm ${\mathcal A}$
 - Notation: arphi has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .

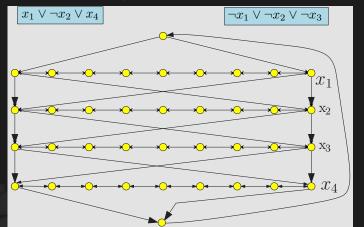
- lacksquare 3SAT formula $oldsymbol{arphi}$ create a graph $G_{oldsymbol{arphi}}$ such that
 - ullet G_{arphi} has a Hamiltonian cycle $\iff arphi$ is satisfiable
 - G_{arphi} should be constructible from arphi by a polynomial time algorithm ${\mathcal A}$
- Notation: φ has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .

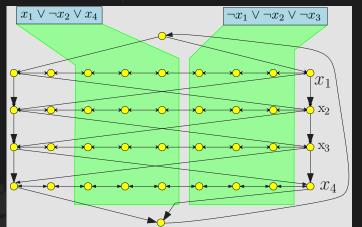
Reduction: First Ideas

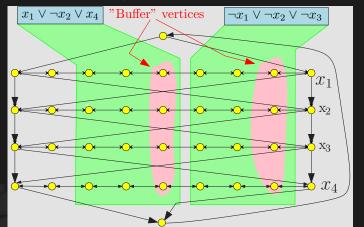
- Viewing SAT: Assign values to n variables, and each clauses has 3 ways in which it can be satisfied.
- Construct graph with 2^n Hamiltonian cycles, where each cycle corresponds to some boolean assignment.
- Then add more graph structure to encode constraints on assignments imposed by the clauses.

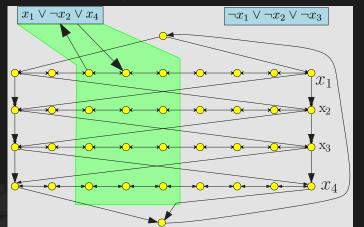
- Traverse path i from left to right $\iff x_i$ is set to true.
- Each path has 3(m+1) nodes where m is number of clauses in φ ; nodes numbered from left to right (1 to

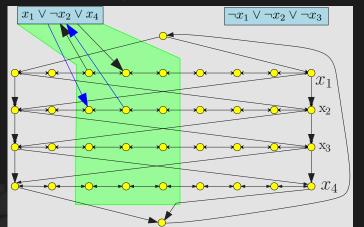


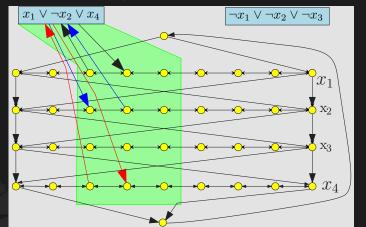


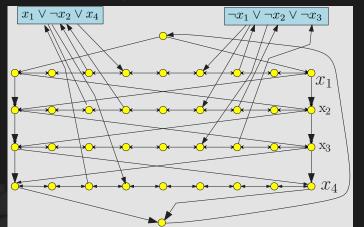












Correctness Proof

Proposition

arphi has satisfying assignment \iff G_{arphi} has Hamiltonian cycle.

Proof.

- \Rightarrow Let α be the satisfying assignment for φ . Define Hamiltonian cycle as follows
 - ullet If $lpha(x_i)=1$ then traverse path i from left to right
 - If $lpha(x_i)=0$ then traverse path i from right to left.
 - For each clause, path of at least one variable is in the "right" direction to splice in the node corresponding to clause.

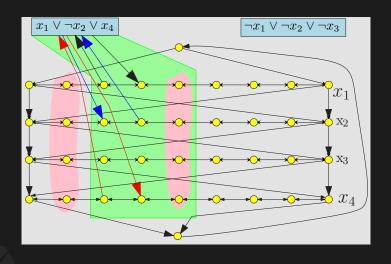
Hamiltonian Cycle ⇒ Satisfying assignment

Proof continued

Suppose Π is a Hamiltonian cycle in \emph{G}_{arphi}

- If Π enters c_j (vertex for clause C_j) from vertex 3j on path i then it must leave the clause vertex on edge to 3j+1 on the same path i
 - If not, then only unvisited neighbor of 3j+1 on path i is 3j+2
 - Thus, we don't have two unvisited neighbors (one to enter from, and the other to leave) to have a Hamiltonian Cycle
- ullet Similarly, if Π enters c_j from vertex 3j+1 on path i then it must leave the clause vertex c_j on edge to 3j on path i

Example



Hamiltonian Cycle \implies Satisfying assignment (contd)

- ullet Thus, vertices visited immediately before and after C_i are connected by an edge
- ullet We can remove c_j from cycle, and get Hamiltonian cycle in $G-c_j$
- Consider Hamiltonian cycle in $G \{c_1, \ldots c_m\}$; it traverses each path in only one direction, which determines the truth assignment

(Undirected) Hamiltonian Cycle

Problem (Undirected Hamiltonian Cycle)

Input: Given undirected graph G = (V, E).

Goal: Does **G** have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

NP-Completeness

Theorem

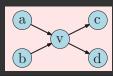
Hamiltonian cycle problem for **undirected** graphs is **NP-Complete**.

Proof.

- The problem is in NP; proof left as exercise.
- Hardness proved by reducing Directed Hamiltonian Cycle to this problem.

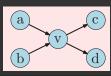
Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path if and only if G' has Hamiltonian path

- \circ Replace each vertex v by 3 vertices: $v_{in},\,v,$ and v_{out}
- \circ A directed edge (a,b) is replaced by edge (a_{out},b_{in})



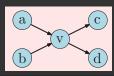
Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path if and only if G' has Hamiltonian path

- ullet Replace each vertex v by 3 vertices: $v_{in}, v,$ and v_{out}
- \circ A directed edge (a,b) is replaced by edge $(a_{out},\,b_{in})$



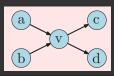
Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path if and only if G' has Hamiltonian path

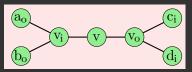
- ullet Replace each vertex v by 3 vertices: $v_{in}, v,$ and v_{out}
- ullet A directed edge (a,b) is replaced by edge (a_{out},b_{in})



Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path if and only if G' has Hamiltonian path

- ullet Replace each vertex v by 3 vertices: $v_{in}, v,$ and v_{out}
- ullet A directed edge (a,b) is replaced by edge (a_{out},b_{in})





Reduction: Wrapup

- The reduction is polynomial time (exercise)
- The reduction is correct (exercise)

Part V

NP-Completeness of Graph Coloring

Graph Coloring

Instance: G = (V, E): Undirected graph, integer k. **Question**: Can the vertices of the graph be colored using k colors so that vertices connected by an edge do not get the same color?

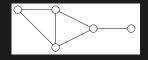
3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be colored using

 ${f 3}$ colors so that vertices connected by an edge do not get

the same color?

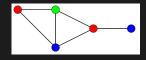


3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do not get

the same color?



- Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets
 G is k-colorable.
- Graph 2-Coloring can be decided in polynomial time.
 - G is 2-colorable $\iff G$ is bipartite! There is a linear time algorithm to check if G is bipartite using **BFS** (we saw this earlier).

- Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets
 G is k-colorable.
- Graph 2-Coloring can be decided in polynomial time.
 - G is 2-colorable $\iff G$ is bipartite! There is a linear time algorithm to check if G is bipartite using **BFS** (we saw this earlier).

- Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets
 G is k-colorable.
- ullet Graph 2-Coloring can be decided in polynomial time.
- igoplus G is 2-colorable $\iff G$ is bipartite! There is a linear time algorithm to check if G is bipartite using BFS (we saw this earlier).

- Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets
 G is k-colorable.
- Graph 2-Coloring can be decided in polynomial time.
- G is 2-colorable $\iff G$ is bipartite! There is a linear time algorithm to check if G is bipartite using BFS (we saw this earlier).

Register Allocation

Assign variables to (at most) k registers such that variables needed at the same time are not assigned to the same register

Interference Graph

Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

- [Chaitin] Register allocation problem is equivalent to coloring the interference graph with $m{k}$ colors
- ullet ... $oldsymbol{3} ext{-}\mathsf{COLOR} \leq_P k\mathsf{Register}$ Allocation, for any $k \geq 3$

Register Allocation

Assign variables to (at most) ${\it k}$ registers such that variables needed at the same time are not assigned to the same register

Interference Graph

Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

- Chaitin] Register allocation problem is equivalent to coloring the interference graph with $m{k}$ colors
- ... 3-COLOR $\leq_P k$ Register Allocation, for any $k \geq 3$

Register Allocation

Assign variables to (at most) k registers such that variables needed at the same time are not assigned to the same register

Interference Graph

Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

- [Chaitin] Register allocation problem is equivalent to coloring the interference graph with $m{k}$ colors
- ... 3-COLOR $\leq_P k$ Register Allocation, for any $k \geq 3$

Register Allocation

Assign variables to (at most) k registers such that variables needed at the same time are not assigned to the same register

Interference Graph

Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

- [Chaitin] Register allocation problem is equivalent to coloring the interference graph with $m{k}$ colors
- ullet ... 3-COLOR $\leq_P k$ Register Allocation, for any $k \geq 3$

Class Room Scheduling

- Given n classes and their meeting times, are k rooms sufficient?
 - Reduce to Graph k-Coloring problem
- ullet Create graph G
 - \circ a node v_i for each class i
 - ullet an edge between v_i and v_j if classes i and j conflict
- lacksquare Exercise: G is k-colorable $\iff k$ rooms are sufficient.

Class Room Scheduling

- Given n classes and their meeting times, are k rooms sufficient?
 - Reduce to Graph k-Coloring problem
- ullet Create graph G
 - \circ a node v_i for each class i
 - ullet an edge between v_i and v_j if classes i and j conflict
- lacksquare Exercise: G is k-colorable $\iff k$ rooms are sufficient.

Class Room Scheduling

- Given n classes and their meeting times, are k rooms sufficient?
 Reduce to Graph k-Coloring problem
- lacksquare Create graph $oldsymbol{G}$
 - \circ a node v_i for each class i
 - \circ an edge between v_i and v_j if classes i and j conflict
- igcup Exercise: G is k-colorable $\iff k$ rooms are sufficient.

Class Room Scheduling

- Given n classes and their meeting times, are k rooms sufficient?
 Reduce to Graph k-Coloring problem
- ullet Create graph $oldsymbol{G}$
 - ullet a node v_i for each class i
 - ullet an edge between v_i and v_j if classes i and j conflict
- ${}^{\circ}{}$ Exercise: G is k-colorable $\iff k$ rooms are sufficient.

Class Room Scheduling

- Given n classes and their meeting times, are k rooms sufficient?
 Reduce to Graph k-Coloring problem
- lacksquare Create graph $oldsymbol{G}$
 - a node v_i for each class i
 - ullet an edge between v_i and v_j if classes i and j conflict
- lacksquare Exercise: G is k-colorable $\iff k$ rooms are sufficient.

Frequency Assignments in Cellular Networks

- Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)
 - Breakup a frequency range [a, b] into disjoint bands of frequencies $[a_0, b_0], [a_1, b_1], \ldots, [a_k, b_k]$
 - Each cell phone tower (simplifying) gets one band
 - Constraint: nearby towers cannot be assigned same band, otherwise signals will interference
 - Problem: given k bands and some region with n towers, is there a way to assign the bands to avoid interference?
 - Can reduce to k-coloring by creating interference/conflict graph on towers.

Frequency Assignments in Cellular Networks

- Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)
 - Breakup a frequency range [a,b] into disjoint bands of frequencies $[a_0,b_0],[a_1,b_1],\ldots,[a_k,b_k]$
 - Each cell phone tower (simplifying) gets one band
 - Constraint: nearby towers cannot be assigned same band, otherwise signals will interference
- **Problem:** given k bands and some region with n towers, is there a way to assign the bands to avoid interference?
 - Can reduce to k-coloring by creating interference/conflict graph on towers.

Frequency Assignments in Cellular Networks

- Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)
 - Breakup a frequency range [a,b] into disjoint bands of frequencies $[a_0,b_0],[a_1,b_1],\ldots,[a_k,b_k]$
 - Each cell phone tower (simplifying) gets one band
 - Constraint: nearby towers cannot be assigned same band, otherwise signals will interference
- Problem: given k bands and some region with n towers, is there a way to assign the bands to avoid interference?
- lacksquare Can reduce to k-coloring by creating interference/conflict graph on towers.

3-Coloring is NP-Complete

- 3-Coloring is in NP.
 - Certificate: for each node a color from $\{1, 2, 3\}$.
 - Certifier: Check if for each edge (u, v), the color of u is different from that of v.
- Hardness: Show... $3SAT \leq_P 3$ -Coloring.

3-Coloring is NP-Complete

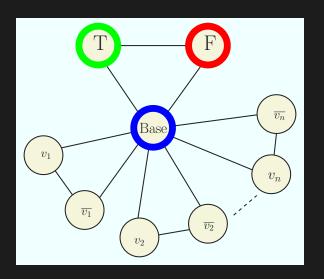
- 3-Coloring is in NP.
 - Certificate: for each node a color from $\{1, 2, 3\}$.
 - Certifier: Check if for each edge (u, v), the color of u is different from that of v.
- Hardness: Show... $3SAT \leq_P 3$ -Coloring.

Reduction Idea

Start with **3SAT** formula (i.e., 3 CNF formula) φ with n variables x_1, \ldots, x_n and m clauses C_1, \ldots, C_m . Create graph G_{φ} such that G_{φ} is 3-colorable $\iff \varphi$ is satisfiable

- Need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- Create triangle with nodes true, false, base.
- For each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with the special node **base**.
- If graph is 3-colored, either v_i or \bar{v}_i gets the same color as **true**. Interpret this as a truth assignment to v_i .
- Need to add constraints to ensure clauses are satisfied (next phase).

Figure

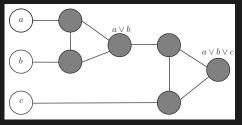


Clause Satisfiability Gadget

- lacksquare For each clause $C_j = (a ee b ee c)$, create a small gadget graph
 - ullet gadget graph connects to nodes corresponding to a,b,c
 - needs to implement OR
- OR-gadget-graph:

Clause Satisfiability Gadget

- lacksquare For each clause $C_j = (a ee b ee c)$, create a small gadget graph
 - ullet gadget graph connects to nodes corresponding to a,b,c
 - needs to implement OR
- OR-gadget-graph:



OR-Gadget Graph

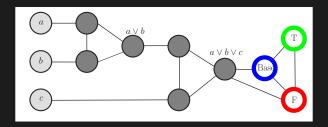
- Property: if a, b, c are colored **false** in a 3-coloring then output node of OR-gadget has to be colored **false**.
 - Property: if one of a,b,c is colored **true** then OR-gadget can be 3-colored such that output node of OR-gadget is colored **true**.

OR-Gadget Graph

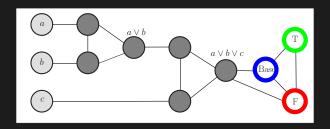
- Property: if a, b, c are colored **false** in a 3-coloring then output node of OR-gadget has to be colored **false**.
- Property: if one of a, b, c is colored true then OR-gadget can be 3-colored such that output node of OR-gadget is colored true.

Reduction

- Create triangle with nodes true, false, base.
- for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with the above **base** vertex.
- For each clause $C_j = (a \lor b \lor c)$, add OR-gadget graph with input nodes a, b, c and connect output node of gadget to both **false** and **base**.



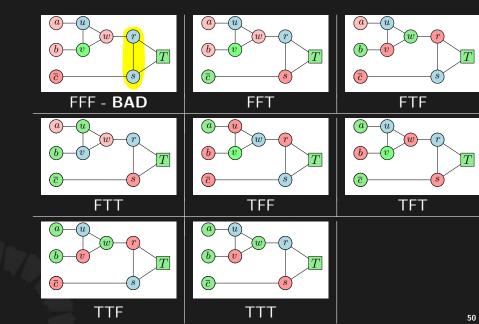
Reduction



Claim

No legal 3-coloring of above graph (with coloring of nodes T, F, B fixed) in which a, b, c are colored false. If any of a, b, c are colored True then there is a legal 3-coloring of above graph.

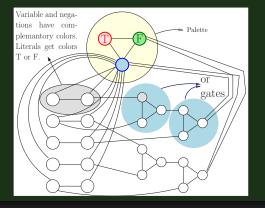
3 coloring of the clause gadget



Reduction Outline

Example

$$\varphi = (u \vee \neg v \vee w) \wedge (v \vee x \vee \neg y)$$



Correctness of Reduction

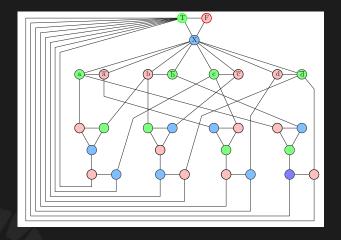
- ullet arphi is satisfiable implies G_arphi is 3-colorable
 - if x_i is assigned 1, color v_i true and \bar{v}_i false.
 - for each clause $C_j=(a\vee b\vee c)$ at least one of a,b,c is colored True. OR-gadget for C_j can be 3-colored such that output is True.
 - G_{arphi} is 3-colorable implies arphi is satisfiable
 - If v_i is colored **true** then set x_i to be 1, this is a legal truth assignment.
 - Consider any clause $C_j = (a \lor b \lor c)$. it cannot be that all a, b, c are all colored false. If so, output of OR-gadget for C_j has to be colored false but output is connected to base and false!

Correctness of Reduction

- $\bigcirc\hspace{0.1cm} arphi$ is satisfiable implies G_{arphi} is 3-colorable
 - if x_i is assigned 1, color v_i true and \bar{v}_i false.
 - for each clause $C_j=(a\vee b\vee c)$ at least one of a,b,c is colored True. OR-gadget for C_j can be 3-colored such that output is True.
 - $lacksquare G_arphi$ is 3-colorable implies $oldsymbol{arphi}$ is satisfiable
 - If v_i is colored **true** then set x_i to be 1, this is a legal truth assignment.
 - Consider any clause $C_j = (a \lor b \lor c)$. it cannot be that all a, b, c are all colored **false**. If so, output of OR-gadget for C_j has to be colored **false** but output is connected to **base** and **false**!

Graph generated in reduction...

... from 3SAT to 3COLOR



Part VI

Hardness of Subset Sum

Subset Sum

Subset Sum

Instance: S - set of positive integers, t: - an integer number (Target)

Question: Is there a subset $X\subseteq S$ such that

 $\sum_{x\in X} x = t$?

Claim

Subset Sum is NP-Complete.

Vector Subset Sum

We will prove following problem is NP-Complete...

Vec Subset Sum

Instance: S - set of n vectors of dimension k, each vector has non-negative numbers for its coordinates, and a target vector \overrightarrow{t} .

Question: Is there a subset $X \subseteq S$ such that $\sum_{\overrightarrow{x} \in X} \overrightarrow{x} = \overrightarrow{t}$?

Reduction from **3SAT**.

Vector Subset Sum

Handling a single clause

Think about vectors as being lines in a table.

First gadget

Selecting between two lines.

Target	??	??	01	???
a_1	??	??	01	??
a_2	??	??	01	??

Two rows for every variable x: selecting either x=0 or x=1.

Handling a clause...

We will have a column for every clause...

numbers		$C \equiv a ee b ee \overline{c}$	
a		01	
$\overline{m{a}}$		00	
b		01	
$\overline{m{b}}$		00	
c		00	
$\overline{oldsymbol{c}}$		01	
$oldsymbol{C}$ fix-up 1	000	07	000
<i>C</i> fix-up 2	000	08	000
<i>C</i> fix-up 3	000	09	000
TARGET		10	

3SAT to Vec Subset Sum

$\overline{}$						
numbers	$a ee \overline{a}$	$b ee \overline{b}$	$c \vee \overline{c}$	$d ee \overline{d}$	$D \equiv \overline{b} \lor c \lor \overline{d}$	$C \equiv a \lor b \lor \overline{c}$
		0	0	0	00	01
<u>a</u>	1	-				
\overline{a}	1	0	0	0	00	00
b	0	1	0	0	00	01
\overline{b}	0	1	0	0	01	00
c	0	0	1	0	01	00
\overline{c}	0	0	1	0	00	01
d	0	0	0	1	00	00
\overline{d}	0	0	0	1	01	01
C fix-up 1	0	0	0	0	00	07
C fix-up 2	0	0	0	0	00	08
C fix-up 3	0	0	0	0	00	09
D fix-up 1	0	0	0	0	07	00
D fix-up 2	0	0	0	0	08	00
D fix-up 3	0	0	0	0	09	00
TARGET	1	1	1	1	10	10

Vec Subset Sum to Subset Sum

numbers
010000000001
010000000000
000100000001
000100000100
000001000100
000001000001
00000010000
00000010101
000000000007
80000000000
000000000009
000000000700
00800000000
000000000900

Other NP-Complete Problems

- 3-Dimensional Matching
- Subset Sum

Read book.

Need to Know NP-Complete Problems

- 3SAT.
- Circuit-SAT.
- Independent Set.
- Vertex Cover.
- Clique.
- Set Cover.
- Hamiltonian Cycle (in Directed/Undirected Graphs).
- 3Coloring.
- 3-D Matching.
- Subset Sum.

- Subset Sum Problem: Given n integers a_1, a_2, \ldots, a_n and a target B, is there a subset of S of $\{a_1, \ldots, a_n\}$ such that the numbers in S add up precisely to B?
- Subset Sum is NP-Complete— see book.
- Knapsack: Given n items with item i having size s_i and profit p_i , a knapsack of capacity B, and a target profit P, is there a subset S of items that can be packed in the knapsack and the profit of S is at least P?
- Show Knapsack problem is NP-Complete via reduction from Subset Sum (exercise).

- Subset Sum Problem: Given n integers a_1, a_2, \ldots, a_n and a target B, is there a subset of S of $\{a_1, \ldots, a_n\}$ such that the numbers in S add up precisely to B?
- Subset Sum is NP-Complete— see book.
 - Knapsack: Given n items with item i having size s_i and profit p_i , a knapsack of capacity B, and a target profit P, is there a subset S of items that can be packed in the knapsack and the profit of S is at least P?
- Show Knapsack problem is NP-Complete via reduction from Subset Sum (exercise).

- Subset Sum Problem: Given n integers a_1, a_2, \ldots, a_n and a target B, is there a subset of S of $\{a_1, \ldots, a_n\}$ such that the numbers in S add up precisely to B?
- Subset Sum is NP-Complete— see book.
- Mnapsack: Given n items with item i having size s_i and profit p_i , a knapsack of capacity B, and a target profit P, is there a subset S of items that can be packed in the knapsack and the profit of S is at least P?
- Show Knapsack problem is NP-Complete via reduction from Subset Sum (exercise).

- Subset Sum Problem: Given n integers a_1, a_2, \ldots, a_n and a target B, is there a subset of S of $\{a_1, \ldots, a_n\}$ such that the numbers in S add up precisely to B?
- Subset Sum is NP-Complete— see book.
- Mnapsack: Given n items with item i having size s_i and profit p_i , a knapsack of capacity B, and a target profit P, is there a subset S of items that can be packed in the knapsack and the profit of S is at least P?
- Show Knapsack problem is NP-Complete via reduction from Subset Sum (exercise).

- Subset Sum can be solved in O(nB) time using dynamic programming (exercise).
- Implies that problem is hard only when numbers $a_1,\,a_2,\,\ldots,\,a_n$ are exponentially large compared to n. That is, each a_i requires polynomial in n bits.
- Number problems of the above type are said to be weakly NP-Complete.

- Subset Sum can be solved in O(nB) time using dynamic programming (exercise).
- Implies that problem is hard only when numbers a_1, a_2, \ldots, a_n are exponentially large compared to n. That is, each a_i requires polynomial in n bits.
- Number problems of the above type are said to be weakly NP-Complete.

- Subset Sum can be solved in O(nB) time using dynamic programming (exercise).
- Implies that problem is hard only when numbers a_1, a_2, \ldots, a_n are exponentially large compared to n. That is, each a_i requires polynomial in n bits.
- Number problems of the above type are said to be weakly NP-Complete.