CS 573: Algorithms, Fall 2014

More NP-Complete Problems

Lecture 4 September 4, 2014 Part I

Quick & total recall

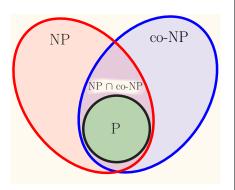
1/76

Recall...

NP

Decision problems with a polynomial certifier.

Examples: **SAT**, **Hamiltonian Cycle**, **3-Colorability**.



Definition

co-NP: class of all decision problems X s.t. $\overline{X} \in NP$.

Examples: UnSAT, No-Hamiltonian-Cycle,

No-3-Colorable.

Recall...

- 1. **NP**: languages that have polynomial time certifiers/verifiers.
- 2. A language *L* is NP-Complete ←⇒
 - ▶ L is in NP
 - for every L' in NP, $L' \leq_P L$
- 3. L is NP-Hard if for every L' in NP, $L' \leq_P L$.
- 4. Cook-Level theorem...

Theorem (Cook-Levin)

Circuit-SAT is NP-Complete.

3/76

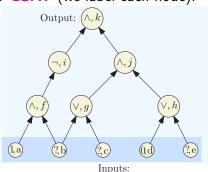
Part II

Showing that **SAT** is **NP-Complete**

5/76

SAT is **NP-Complete**

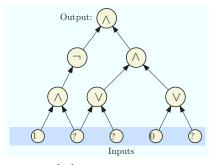
- 1. We have seen that $SAT \in NP$
- To show NP-Hardness, we will reduce Circuit Satisfiability (CSAT) to SAT Instance of CSAT (we label each node):



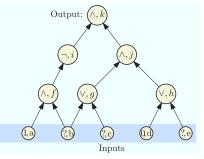
6/76

Converting a circuit into a CNF formula

Label the nodes



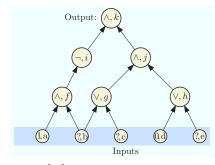
(A) Input circuit



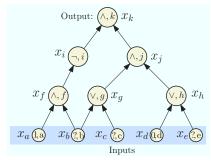
(B) Label the nodes.

Converting a circuit into a CNF formula

Introduce a variable for each node



(B) Label the nodes.

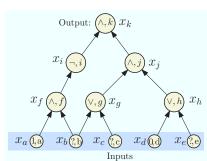


(C) Introduce var for each node.

7/76

Converting a circuit into a CNF formula

Write a sub-formula for each variable that is true if the var is computed correctly.



 $\mathbf{x_k}$ (Demand a sat' assignment!)

$$x_k = x_i \wedge x_k x_j = x_g \wedge x_h$$

$$x_i = \neg x_f$$

$$x_h = x_d \vee x_e$$

$$x_g = x_b \vee x_c$$

 $x_f = x_a \wedge x_b$

$$x_d = 0$$

$$x_a = 1$$

- (C) Introduce var for each node.
- (D) Write a sub-formula for each variable that is true if the var is computed correctly.

9/76

Converting a circuit into a CNF formula

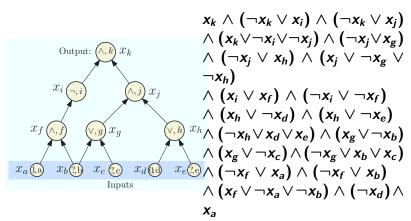
Convert each sub-formula to an equivalent CNF formula

x_k	x_k
$x_k = x_i \wedge x_j$	$(\neg x_k \vee x_i) \wedge (\neg x_k \vee x_j) \wedge (x_k \vee \neg x_i \vee \neg x_j)$
$x_j = x_g \wedge x_h$	
$x_i = \neg x_f$	$(x_i \vee x_f) \wedge (\neg x_i \vee \neg x_f)$
$x_h = x_d \vee x_e$	$(x_h \vee \neg x_d) \wedge (x_h \vee \neg x_e) \wedge (\neg x_h \vee x_d \vee x_e)$
$x_g = x_b \vee x_c$	$(x_g \vee \neg x_b) \wedge (x_g \vee \neg x_c) \wedge (\neg x_g \vee x_b \vee x_c)$
$x_f = x_a \wedge x_b$	$(\neg x_f \vee x_a) \wedge (\neg x_f \vee x_b) \wedge (x_f \vee \neg x_a \vee \neg x_b)$
$x_d = 0$	$\neg x_d$
$x_a = 1$	X _a

10/76

Converting a circuit into a CNF formula

Take the conjunction of all the CNF sub-formulas



We got a \overline{CNF} formula that is satisfiable \iff the original circuit is satisfiable.

Reduction: $CSAT \leq_{P} SAT$

- 1. For each gate (vertex) \mathbf{v} in the circuit, create a variable $\mathbf{x}_{\mathbf{v}}$
- 2. Case \neg : \mathbf{v} is labeled \neg and has one incoming edge from \mathbf{u} (so $\mathbf{x}_{\mathbf{v}} = \neg \mathbf{x}_{\mathbf{u}}$). In **SAT** formula generate, add clauses $(\mathbf{x}_{\mathbf{u}} \vee \mathbf{x}_{\mathbf{v}})$, $(\neg \mathbf{x}_{\mathbf{u}} \vee \neg \mathbf{x}_{\mathbf{v}})$. Observe that

$$x_v = \neg x_u$$
 is true \iff $(x_u \lor x_v) \pmod{(\neg x_u \lor \neg x_v)}$ both true.

11/76

Reduction: CSAT < P SAT

Continued...

1. Case \vee : So $x_v = x_u \vee x_w$. In **SAT** formula generated, add clauses $(x_v \vee \neg x_u)$, $(x_v \vee \neg x_w)$, and $(\neg x_v \vee x_u \vee x_w)$. Again, observe that

$$(x_v = x_u \lor x_w) \text{ is true } \iff \begin{array}{c} (x_v \lor \neg x_u), \\ (x_v \lor \neg x_w), \\ (\neg x_v \lor x_u \lor x_w) \end{array} \text{ all true.}$$

13/76

Reduction: CSAT < P SAT

Continued...

- 1. If ${m v}$ is an input gate with a fixed value then we do the following. If ${m x}_{{m v}}={m 1}$ add clause ${m x}_{{m v}}$. If ${m x}_{{m v}}={m 0}$ add clause $\neg {m x}_{{m v}}$
- 2. Add the clause $\mathbf{x}_{\mathbf{v}}$ where \mathbf{v} is the variable for the output gate

Reduction: CSAT < P SAT

Continued...

1. Case \wedge : So $x_v = x_u \wedge x_w$. In **SAT** formula generated, add clauses $(\neg x_v \vee x_u)$, $(\neg x_v \vee x_w)$, and $(x_v \vee \neg x_u \vee \neg x_w)$. Again observe that

$$x_{\nu} = x_{u} \wedge x_{w}$$
 is true \iff $(\neg x_{\nu} \vee x_{u}), (\neg x_{\nu} \vee x_{w}), (x_{\nu} \vee \neg x_{u} \vee \neg x_{w})$ all true.

14/76

Correctness of Reduction

Need to show circuit C is satisfiable iff φ_C is satisfiable

- \Rightarrow Consider a satisfying assignment **a** for **C**
 - 0.1 Find values of all gates in C under a
 - 0.2 Give value of gate \mathbf{v} to variable $\mathbf{x}_{\mathbf{v}}$; call this assignment \mathbf{a}'
 - 0.3 a' satisfies φ_{C} (exercise)
- \leftarrow Consider a satisfying assignment **a** for $\varphi_{\mathcal{C}}$
 - 0.1 Let a' be the restriction of a to only the input variables
 - 0.2 Value of gate \mathbf{v} under \mathbf{a}' is the same as value of $\mathbf{x}_{\mathbf{v}}$ in \mathbf{a}
 - 0.3 Thus, a' satisfies C

Theorem

SAT is NP-Complete.

Proving that a problem **X** is NP-Complete

- 1. To prove **X** is **NP-Complete**, show
 - 1.1 Show **X** is in **NP**.
 - 1.1.1 certificate/proof of polynomial size in input
 - 1.1.2 polynomial time certifier C(s, t)
 - 1.2 Reduction from a known **NP-Complete** problem such as **CSAT** or **SAT** to **X**
- 2. **SAT** $\leq_P X$ implies that every **NP** problem $Y \leq_P X$. Why?

Transitivity of reductions:

3. $Y \leq_P \mathsf{SAT}$ and $\mathsf{SAT} \leq_P X$ and hence $Y \leq_P X$.

17/76

Part III

More reductions...

NP-Completeness via Reductions

- 1. What we currently know:
 - 1.1 **CSAT** is **NP-Complete**.
 - 1.2 CSAT \leq_P SAT and SAT is in NP and hence SAT is NP-Complete.
 - 1.3 **SAT** \leq_P **3SAT** and hence **3SAT** is **NP-Complete**.
 - 1.4 3SAT \leq_P Independent Set (which is in NP) and hence Independent Set is NP-Complete.
 - 1.5 Vertex Cover is NP-Complete.
 - 1.6 Clique is NP-Complete.
- 2. Hundreds and thousands of different problems from many areas of science and engineering have been shown to be **NP-Complete**.
- 3. A surprisingly frequent phenomenon!

18/76

Next...

Prove

- ► Hamiltonian Cycle Problem is NP-Complete.
- ▶ 3-Coloring is **NP-Complete**.
- ► Subset Sum.

19/76

Part IV

NP-Completeness of Hamiltonian Cycle

21/76

Directed Hamiltonian Cycle is NP-Complete

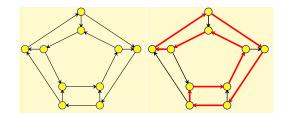
- ▶ Directed Hamiltonian Cycle is in *NP*
 - ► Certificate: Sequence of vertices
 - Certifier: Check if every vertex (except the first) appears exactly once, and that consecutive vertices are connected by a directed edge
- ► Hardness: Will prove...3SAT ≤_P Directed Hamiltonian Cycle.

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices

Goal Does **G** have a Hamiltonian cycle?

► A Hamiltonian cycle is a cycle in the graph that visits every vertex in *G* exactly once



22/7

Reduction

- 1. **3SAT** formula φ create a graph G_{φ} such that
 - ullet $oldsymbol{G}_{arphi}$ has a Hamiltonian cycle $\iff arphi$ is satisfiable
 - $m{\mathcal{G}}_{arphi}$ should be constructible from arphi by a polynomial time algorithm $m{\mathcal{A}}$
- 2. Notation: φ has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .

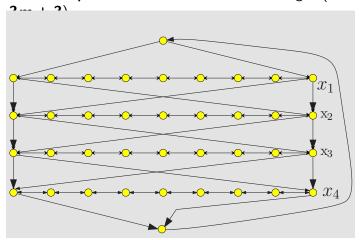
23/76

Reduction: First Ideas

- ▶ Viewing SAT: Assign values to *n* variables, and each clauses has 3 ways in which it can be satisfied.
- ► Construct graph with **2**ⁿ Hamiltonian cycles, where each cycle corresponds to some boolean assignment.
- ► Then add more graph structure to encode constraints on assignments imposed by the clauses.

The Reduction: Phase I

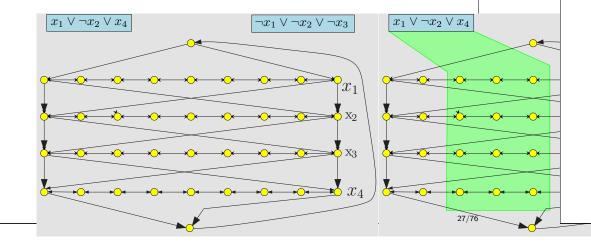
- ▶ Traverse path i from left to right $\iff x_i$ is set to true.
- Each path has 3(m+1) nodes where m is number of clauses in φ ; nodes numbered from left to right (1 to



26/76

The Reduction: Phase II

Add vertex c_j for clause C_j . c_j has edge from vertex 3j and to vertex 3j + 1 on path i if x_i appears in clause C_j , and has edge from vertex 3j + 1 and to vertex 3j if $\neg x_i$ appears in C_i .



Correctness Proof

Proposition

 φ has satisfying assignment \iff \mathbf{G}_{φ} has Hamiltonian cycle.

Proof.

- \Rightarrow Let α be the satisfying assignment for φ . Define Hamiltonian cycle as follows
 - If $\alpha(x_i) = 1$ then traverse path *i* from left to right
 - If $\alpha(x_i) = 0$ then traverse path *i* from right to left.
 - ► For each clause, path of at least one variable is in the "right" direction to splice in the node corresponding to clause.

26/76

Hamiltonian Cycle ⇒ Satisfying assignment

Proof continued

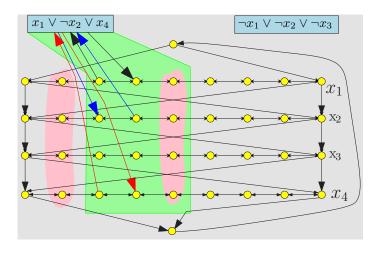
Suppose Π is a Hamiltonian cycle in G_{ω}

- ▶ If Π enters c_i (vertex for clause C_i) from vertex 3j on path *i* then it must leave the clause vertex on edge to 3j + 1 on the same path i
 - If not, then only unvisited neighbor of 3i + 1 on path iis 3i + 2
 - ▶ Thus, we don't have two unvisited neighbors (one to enter from, and the other to leave) to have a Hamiltonian Cycle
- ▶ Similarly, if Π enters c_i from vertex 3i + 1 on path i then it must leave the clause vertex c_i on edge to 3j on path i

Hamiltonian Cycle ⇒ Satisfying assignment (contd)

- ightharpoonup Thus, vertices visited immediately before and after C_i are connected by an edge
- ightharpoonup We can remove c_i from cycle, and get Hamiltonian cycle in $G - c_i$
- ▶ Consider Hamiltonian cycle in $G \{c_1, \ldots c_m\}$; it traverses each path in only one direction, which determines the truth assignment

Example



(Undirected) Hamiltonian Cycle

Problem (Undirected Hamiltonian Cycle)

Input: Given undirected graph G = (V, E).

Goal: Does G have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and

end vertex)?

NP-Completeness

Theorem

Hamiltonian cycle problem for undirected graphs is **NP-Complete**.

Proof.

- ▶ The problem is in **NP**; proof left as exercise.
- ► Hardness proved by reducing Directed Hamiltonian Cycle to this problem.

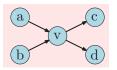
33/76

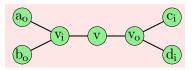
Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path if and only if G' has Hamiltonian path

Reduction

- ▶ Replace each vertex \mathbf{v} by 3 vertices: \mathbf{v}_{in} , \mathbf{v} , and \mathbf{v}_{out}
- ▶ A directed edge (a, b) is replaced by edge (a_{out}, b_{in})





34 / 76

Reduction: Wrapup

- ▶ The reduction is polynomial time (exercise)
- ► The reduction is correct (exercise)

Part V

NP-Completeness of Graph Coloring

35/76

Graph Coloring

Graph Coloring

Instance: G = (V, E): Undirected graph, integer k. Question: Can the vertices of the graph be colored using k colors so that vertices connected by an edge do not get the same color?

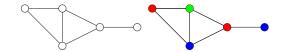
37/76

3 Coloring

Graph 3-Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be colored using **3** colors so that vertices connected by an edge do not get the same color?



38 / 76

Graph Coloring

- Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets
 G is k-colorable.
- 2. Graph 2-Coloring can be decided in polynomial time.
- 3. G is 2-colorable $\iff G$ is bipartite! There is a linear time algorithm to check if G is bipartite using BFS (we saw this earlier).

Graph Coloring and Register Allocation

Register Allocation

Assign variables to (at most) k registers such that variables needed at the same time are not assigned to the same register

Interference Graph

Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

Observations

- ► [Chaitin] Register allocation problem is equivalent to coloring the interference graph with *k* colors
- ▶ ... 3-COLOR $\leq_P k$ Register Allocation, for any k > 3

20 /76

Class Room Scheduling

1. Given *n* classes and their meeting times, are *k* rooms sufficient?

Reduce to Graph k-Coloring problem

- 2. Create graph **G**
 - ightharpoonup a node v_i for each class i
 - ightharpoonup an edge between v_i and v_i if classes i and j conflict
- 3. Exercise: **G** is k-colorable $\iff k$ rooms are sufficient.

41/76

3-Coloring is NP-Complete

- ► 3-Coloring is in NP.
 - ▶ Certificate: for each node a color from {1, 2, 3}.
 - ▶ Certifier: Check if for each edge (u, v), the color of u is different from that of v.
- ► Hardness: Show...3SAT ≤_P 3-Coloring.

Frequency Assignments in Cellular Networks

- Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)
 - ▶ Breakup a frequency range [a, b] into disjoint *bands* of frequencies $[a_0, b_0], [a_1, b_1], \dots, [a_k, b_k]$
 - ► Each cell phone tower (simplifying) gets one band
 - ► Constraint: nearby towers cannot be assigned same band, otherwise signals will interference
- 2. Problem: given **k** bands and some region with **n** towers, is there a way to assign the bands to avoid interference?
- 3. Can reduce to **k**-coloring by creating interference/conflict graph on towers.

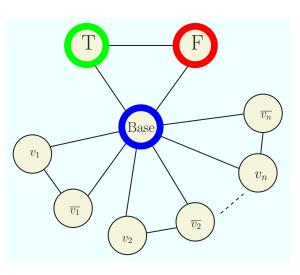
42/76

Reduction Idea

Start with **3SAT** formula (i.e., **3**CNF formula) φ with n variables x_1, \ldots, x_n and m clauses C_1, \ldots, C_m . Create graph G_{φ} such that G_{φ} is 3-colorable $\iff \varphi$ is satisfiable

- 1. Need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{ω} .
- 2. Create triangle with nodes true, false, base.
- 3. For each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with the special node **base**.
- 4. If graph is 3-colored, either v_i or \bar{v}_i gets the same color as **true**. Interpret this as a truth assignment to v_i .
- 5. Need to add constraints to ensure clauses are satisfied (next phase).

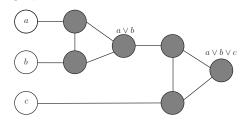
Figure



45/76

Clause Satisfiability Gadget

- 1. For each clause $C_j = (a \lor b \lor c)$, create a small gadget graph
 - ▶ gadget graph connects to nodes corresponding to a, b, c
 - needs to implement OR
- 2. OR-gadget-graph:



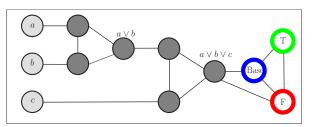
6/76

OR-Gadget Graph

- 1. Property: if **a**, **b**, **c** are colored **false** in a 3-coloring then output node of OR-gadget has to be colored **false**.
- 2. Property: if one of **a**, **b**, **c** is colored **true** then OR-gadget can be 3-colored such that output node of OR-gadget is colored **true**.

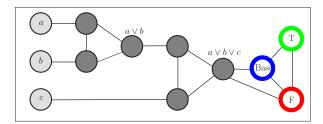
Reduction

- 1. Create triangle with nodes true, false, base.
- 2. for each variable x_i two nodes v_i and \overline{v}_i connected in a triangle with the above **base** vertex.
- 3. For each clause $C_j = (a \lor b \lor c)$, add OR-gadget graph with input nodes a, b, c and connect output node of gadget to both **false** and **base**.



47/76

Reduction



Claim

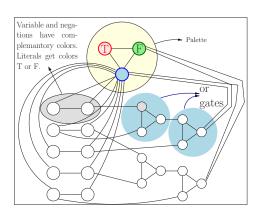
No legal 3-coloring of above graph (with coloring of nodes T, F, B fixed) in which a, b, c are colored false. If any of a, b, c are colored True then there is a legal 3-coloring of above graph.

49/76

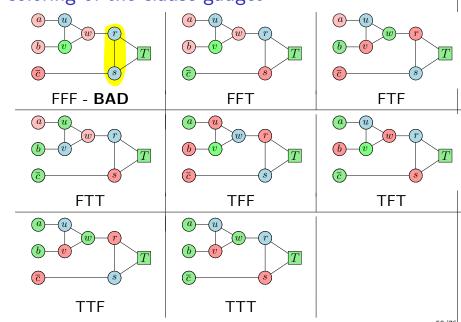
Reduction Outline

Example

$$\varphi = (u \vee \neg v \vee w) \wedge (v \vee x \vee \neg y)$$



3 coloring of the clause gadget

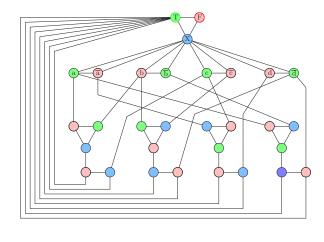


Correctness of Reduction

- 1. φ is satisfiable implies \mathbf{G}_{φ} is 3-colorable
 - 1.1 if x_i is assigned 1, color v_i true and \bar{v}_i false.
 - 1.2 for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.
- 2. ${\it G}_{\varphi}$ is 3-colorable implies φ is satisfiable
 - 2.1 If v_i is colored **true** then set x_i to be **1**, this is a legal truth assignment.
 - 2.2 Consider any clause $C_j = (a \lor b \lor c)$. it cannot be that all a, b, c are all colored **false**. If so, output of OR-gadget for C_j has to be colored **false** but output is connected to **base** and **false**!

Graph generated in reduction...

... from 3SAT to 3COLOR



Part VI

Hardness of Subset Sum

54/76

Subset Sum

Subset Sum

Instance: **S** - set of positive integers, **t**: - an integer number (Target)

Question: Is there a subset $X \subseteq S$ such that $\sum_{x \in X} x = t$?

Claim

Subset Sum is NP-Complete.

Vector Subset Sum

We will prove following problem is **NP-Complete**...

Vec Subset Sum

Instance: S - set of n vectors of dimension k, each vector has non-negative numbers for its coordinates, and a target vector \overrightarrow{t} .

Question: Is there a subset $X \subseteq S$ such that $\sum_{\overrightarrow{x} \in X} \overrightarrow{x} = \overrightarrow{t}$?

Reduction from 3SAT.

55/76

Vector Subset Sum

Handling a single clause

Think about vectors as being lines in a table.

First gadget

Selecting between two lines.

Target	??	??	01	???
a ₁	??	??	01	??
a_2	??	??	01	??

Two rows for every variable x: selecting either x = 0 or x = 1.

57/10

Handling a clause...

We will have a column for every clause...

numbers		$C \equiv a \lor b \lor \overline{c}$	
а		01	
ā		00	
ь		01	
$\overline{m{b}}$		00	
С		00	
<u>c</u>		01	
C fix-up 1	000	07	000
C fix-up 2	000	08	000
C fix-up 3	000	09	000
TARGET		10	

58/76

3SAT to **Vec Subset Sum**

	_		_	. <u>-</u>	_ = =	
numbers	a∨ā	$b \vee \overline{b}$	$c \vee \overline{c}$	$d \vee \overline{d}$	$D \equiv \overline{b} \vee c \vee \overline{d}$	$C \equiv a \lor b \lor \overline{c}$
а	1	0	0	0	00	01
ā	1	0	0	0	00	00
b	0	1	0	0	00	01
\overline{b}	0	1	0	0	01	00
С	0	0	1	0	01	00
- C	0	0	1	0	00	01
d	0	0	0	1	00	00
d	0	0	0	1	01	01
C fix-up 1	0	0	0	0	00	07
C fix-up 2	0	0	0	0	00	08
C fix-up 3	0	0	0	0	00	09
D fix-up 1	0	0	0	0	07	00
D fix-up 2	0	0	0	0	08	00
D fix-up 3	0	0	0	0	09	00
TARGET	1	1	1	1	10	10

Vec Subset Sum to Subset Sum

numbers
010000000001
010000000000
000100000001
000100000100
000001000100
000001000001
00000010000
00000010101
000000000007
80000000000
000000000009
000000000700
00800000000
000000000900
010101011010

59/

Other NP-Complete Problems

- ▶ 3-Dimensional Matching
- Subset Sum

Read book.

61/76

Need to Know NP-Complete Problems

- ► 3SAT.
- ► Circuit-SAT
- ► Independent Set.
- Vertex Cover.
- ► Clique.
- ► Set Cover.
- ► **Hamiltonian Cycle** (in Directed/Undirected Graphs).
- ► 3Coloring.
- ► 3-D Matching.
- ► Subset Sum.

2/76

Subset Sum and Knapsack

- 1. Subset Sum Problem: Given n integers a_1, a_2, \ldots, a_n and a target B, is there a subset of S of $\{a_1, \ldots, a_n\}$ such that the numbers in S add up *precisely* to B?
- 2. Subset Sum is **NP-Complete** see book.
- 3. Knapsack: Given **n** items with item **i** having size **s**_i and profit **p**_i, a knapsack of capacity **B**, and a target profit **P**, is there a subset **S** of items that can be packed in the knapsack and the profit of **S** is at least **P**?
- 4. Show Knapsack problem is **NP-Complete** via reduction from Subset Sum (exercise).

Subset Sum and Knapsack

- 1. Subset Sum can be solved in O(nB) time using dynamic programming (exercise).
- 2. Implies that problem is hard only when numbers a_1, a_2, \ldots, a_n are exponentially large compared to n. That is, each a_i requires polynomial in n bits.
- 3. *Number problems* of the above type are said to be **weakly NP-Complete**.

63/