Chapter 3

NP Completeness

CS 573: Algorithms, Fall 2014

September 3, 2014

3.1 NP Completeness

3.1.0.1 Certifiers

Definition 3.1.1. An algorithm $C(\cdot, \cdot)$ is a *certifier* for problem X if for every $s \in X$ there is some string t such that C(s, t) = "yes", and conversely, if for some s and t, C(s, t) = "yes" then $s \in X$.

The string t is called a **certificate** or **proof** for s.

Definition 3.1.2 (Efficient Certifier.). A certifier C is an *efficient certifier* for problem X if there is a polynomial $p(\cdot)$ such that for every string s, we have that

- $\star \ s \in X$ if and only if
- \star there is a string t:
 - (A) $|t| \leq p(|s|)$,
 - (B) C(s,t) = "yes",
 - (C) and C runs in polynomial time.

3.1.0.2 NP-Complete Problems

Definition 3.1.3. A problem X is said to be **NP-Complete** if

- (A) $X \in \mathbf{NP}$, and
- (B) (Hardness) For any $Y \in \mathbb{NP}$, $Y \leq_P X$.

3.1.0.3 Solving NP-Complete Problems

Proposition 3.1.4. Suppose X is **NP-Complete**. Then X can be solved in polynomial time if and only if P = NP.

Proof: \Rightarrow Suppose X can be solved in polynomial time

- (A) Let $Y \in \mathbb{NP}$. We know $Y \leq_P X$.
- (B) We showed that if $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
- (C) Thus, every problem $Y \in \mathbb{NP}$ is such that $Y \in P$; $NP \subseteq P$.
- (D) Since $P \subseteq NP$, we have P = NP.
- \Leftarrow Since P = NP, and $X \in NP$, we have a polynomial time algorithm for X.

3.1.0.4 NP-Hard Problems

(A) Formal definition:

Definition 3.1.5. A problem X is said to be **NP-Hard** if

- (A) (Hardness) For any $Y \in \mathbb{NP}$, we have that $Y \leq_P X$.
- (B) An NP-Hard problem need not be in NP!
- (C) Example: Halting problem is NP-Hard (why?) but not NP-Complete.

3.1.0.5 Consequences of proving NP-Completeness

- (A) If X is NP-Complete
 - (A) Since we believe $P \neq NP$,
 - (B) and solving X implies P = NP.

X is **unlikely** to be efficiently solvable.

- (B) At the very least, many smart people before you have failed to find an efficient algorithm for X.
- (C) (This is proof by mob opinion take with a grain of salt.)

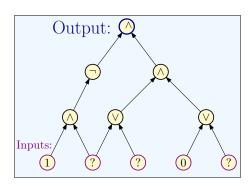
3.1.1 Preliminaries

3.1.1.1 NP-Complete Problems

Question Are there any problems that are **NP-Complete**? Answer Yes! Many, many problems are **NP-Complete**.

3.1.1.2 Circuits

Definition 3.1.6. A circuit is a directed acyclic graph with



3.1.2 Cook-Levin Theorem

3.1.2.1 Cook-Levin Theorem

Definition 3.1.7 (Circuit Satisfaction (CSAT).). Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1?

Theorem 3.1.8 (Cook-Levin). **CSAT** is NP-Complete.

Need to show

- (A) **CSAT** is in NP.
- (B) every NP problem X reduces to CSAT.

3.1.2.2 **CSAT**: Circuit Satisfaction

Claim 3.1.9. CSAT is in NP.

- (A) Certificate: Assignment to input variables.
- (B) Certifier: Evaluate the value of each gate in a topological sort of DAG and check the output gate value.

3.1.2.3 **CSAT** is NP-hard: Idea

- (A) Need to show that every NP problem X reduces to CSAT.
- (B) What does it mean that $X \in \mathbb{NP}$?
- (C) $X \in \mathbb{NP}$ implies that there are polynomials p() and q() and certifier/verifier program C such that for every string s the following is true:
 - (A) If s is a YES instance $(s \in X)$ then there is a proof t of length p(|s|) such that C(s,t) says YES.
 - (B) If s is a NO instance $(s \notin X)$ then for every string t of length at p(|s|), C(s,t) says NO.
 - (C) C(s,t) runs in time q(|s|+|t|) time (hence polynomial time).

3.1.2.4 Reducing X to CSAT

- (A) X is in **NP** means we have access to $p(), q(), C(\cdot, \cdot)$.
- (B) What is $C(\cdot,\cdot)$? It is a program or equivalently a Turing Machine!
- (C) How are p() and q() given? As numbers.
- (D) Example: if 3 is given then $p(n) = n^3$.
- (E) Thus an NP problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or a TM.

3.1.2.5 Reducing X to CSAT

- (A) **NP** problem: a three tuple $\langle p, q, C \rangle$. C: program or **TM**, $p(\cdot)$, $q(\cdot)$: polynomials.
- (B) **Problem X:** Given string s, is $s \in X$?
- (C) Equivalent:

 \exists proof t of length p(|s|) & C(s,t) returns YES.

...C(s,t) runs in q(|s|) time.

(D) Reduce from X to **CSAT**...

Need an algorithm **alg** that

- (A) takes s (and $\langle p, q, C \rangle$). Creates circuit G in poly time in |s|. $(\langle p, q, C \rangle)$ is fixed so $|\langle p, q, C \rangle| = O(1)$.)
- (B) G is satisfiable $\iff \exists \text{ proof } t \text{ s.t. } C(s,t) \text{ returns YES.}$

3.1.2.6 Reducing X to **CSAT**

- (A) \mathbf{Q} : How do we reduce X to \mathbf{CSAT} ?
- (B) Need algorithm alg that:
 - (A) Input: s (and $\langle p, q, C \rangle$).
 - (B) creates circuit G in poly-time in |s| ($\langle p, q, C \rangle$ fixed).
 - (C) G satisfiable $\iff \exists$ proof t: C(s,t) returns YES.

- (C) Simple but Big Idea: Programs are the same as Circuits!
 - (A) Convert C(s,t) into a circuit G with t as unknown inputs (rest is known including s)
 - (B) Known: $|t| \le p(|s|)$ so express boolean string t as p(|s|) variables t_1, t_2, \ldots, t_k where k = p(|s|).
 - (C) Asking if there is a proof t that makes C(s,t) say YES is same as whether there is an assignment of values to "unknown" variables t_1, t_2, \ldots, t_k that will make G evaluate to true/YES.

3.1.2.7 Example: Independent Set

(A) Formal definition:

Independent Set

```
Instance: G = (V, E), k
Question: Does G = (V, E) have an Independent Set of size \geq k
```

- (B) Certificate: Set $S \subseteq V$.
- (C) Certifier: Check $|S| \geq k$ and no pair of vertices in S is connected by an edge.
- (D) **Q:** Formally, why is **Independent Set** in **NP**?

3.1.3 Example: Independent Set

3.1.3.1 Formally why is Independent Set in NP?

(A) Input is a "binary" vector:

$$\langle n, y_{1,1}, y_{1,2}, \dots, y_{1,n}, y_{2,1}, \dots, y_{2,n}, \dots, y_{n,1}, \dots, y_{n,n}, k \rangle$$

encodes $\langle G, k \rangle$.

- (A) n is number of vertices in G
- (B) $y_{i,j}$ is a bit which is 1 if edge (i,j) is in G and 0 otherwise (adjacency matrix representation)
- (C) k: size of independent set.
- (B) Certificate: $t = t_1 t_2 \dots t_n$.

Interpretation: $t_i = 1$ if vertex i is in independent set. ... 0 otherwise.

3.1.3.2 Certifier for Independent Set

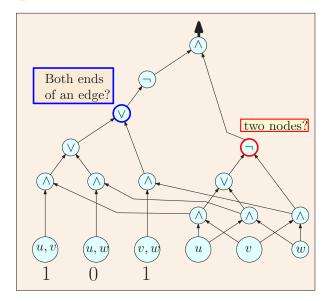
Certifier C(s,t) for **Independent Set**:

```
\mathbf{if} \ (t_1+t_2+\ldots+t_n < k) \ \mathbf{then} return NO \mathbf{else} \mathbf{for} \ \mathbf{each} \ (i,j) \ \mathbf{do} \mathbf{if} \ (t_i \wedge t_j \wedge y_{i,j}) \ \mathbf{then} return NO \mathbf{return} \ \mathbf{NO}
```

3.1.4 Example: Independent Set

3.1.4.1 A certifier circuit for Independent Set

Figure 3.1: Graph G with k = 2



3.1.4.2 Programs, Turing Machines and Circuits

- (A) alg: "program" that takes f(|s|) steps on input string s.
- (B) **Questions**: What computer is used? What does *step* mean?
- (C) "Real" computers difficult to reason with mathematically:
 - (A) instruction set is too rich
 - (B) pointers and control flow jumps in one step
 - (C) assumption that pointer to code fits in one word
- (D) Turing Machines:
 - (A) simpler model of computation to reason with
 - (B) can simulate real computers with *polynomial* slow down
 - (C) all moves are local (head moves only one cell)

3.1.4.3 Certifiers that at TMs

- (A) Assume $C(\cdot,\cdot)$ is a (deterministic) Turing Machine M
- (B) **Problem:** Given M, input s, p, q decide if:
 - (A) \exists proof t of length $\leq p(|s|)$
 - (B) M executed on the input s,t halts in q(|s|) time and returns YES.
- (C) ConvCSAT reduces above problem to CSAT:
 - 1. computes p(|s|) and q(|s|).
 - 2. As such, M:
 - (A) Uses at most q(|s|) memory/tape cells.
 - (B) M can run for at most q(|s|) time.
 - 3. Simulates evolution of the states of M and memory over time, using a big circuit.

3.1.4.4 Simulation of Computation via Circuit

- (A) M state at time ℓ : A string $x^{\ell} = x_1 x_2 \dots x_k$ where each $x_i \in \{0, 1, B\} \times Q \cup \{q_{-1}\}$.
- (B) Time 0: State of M = input string s, a guess t of p(|s|) "unknowns", and rest q(|s|) blank symbols.

- (C) Time q(|s|)? Does M stops in q_{accept} with blank tape.
- (D) Build circuit C_{ℓ} : Evaluates to YES \iff transition of M from time ℓ to time $\ell+1$ valid. (Circuit of size O(q(|s|)).
- (E) $C: C_0 \wedge C_1 \wedge \cdots \wedge C_{q(|s|)}$. Polynomial size!
- (F) Output of \mathcal{C} true \iff sequence of states of M is legal and leads to an accept state.

3.1.4.5 NP-Hardness of Circuit Satisfaction

Key Ideas in reduction:

- (A) Use TMs as the code for certifier for simplicity
- (B) Since p() and q() are known to A, it can set up all required memory and time steps in advance
- (C) Simulate computation of the TM from one time to the next as a circuit that only looks at three adjacent cells at a time

Note: Above reduction can be done to **SAT** as well. Reduction to **SAT** was the original proof of Steve Cook.