CS 573: Algorithms, Fall 2014

NP Completeness

Lecture 3 September 3, 2014

Part I

NP Completeness

Certifiers

Definition

An algorithm $C(\cdot,\cdot)$ is a *certifier* for problem X if for every $s\in X$ there is some string t such that C(s,t)= "yes", and conversely, if for some s and t, C(s,t)= "yes" then $s\in X$. The string t is called a certificate or proof for s.

Definition (Efficient Certifier.)

A certifier C is an *efficient certifier* for problem X if there is a polynomial $p(\cdot)$ such that for every string s, we have that

- $\star \ s \in X$ if and only if
- \star there is a string t:
 - $|t| \leq p(|s|),$
 - C(s,t) = "yes",
 - lacksquare and C runs in polynomial time.

3

NP-Complete Problems

Definition

A problem X is said to be **NP-Complete** if

- \bullet $X \in \mathsf{NP}$, and
- lacksquare (Hardness) For any $Y \in \mathbb{NP}$, $\mathbb{Y} \leq_P \mathbb{X}$.

Solving NP-Complete Problems

Proposition

Suppose X is **NP-Complete**. Then X can be solved in polynomial time if and only if P = NP.

Proof.

- \Rightarrow Suppose X can be solved in polynomial time
 - Let $Y \in \mathbb{NP}$. We know $Y \leq_P X$.
 - We showed that if $\mathbf{Y} \leq_P \mathbf{X}$ and \mathbf{X} can be solved in polynomial time, then \mathbf{Y} can be solved in polynomial time.
 - Thus, every problem $Y \in \mathsf{NP}$ is such that $Y \in P$; $NP \subseteq P$.
 - Since $P \subseteq NP$, we have P = NP.
- \Leftarrow Since $\mathbf{P} = \mathbf{NP}$, and $X \in \mathbf{NP}$, we have a polynomial time algorithm for X.

NP-Hard Problems

Formal definition:

Definition

A problem X is said to be NP-Hard if

- $(\mathsf{Hardness})$ For any $Y \in \mathsf{NP}$, we have that $\mathsf{Y} \leq_P \mathsf{X}$.
- An NP-Hard problem need not be in NP!
- Example: Halting problem is NP-Hard (why?) but not NP-Complete.

NP-Hard Problems

Formal definition:

Definition

A problem X is said to be NP-Hard if

- \bullet (Hardness) For any $Y \in \mathsf{NP}$, we have that $\mathsf{Y} \leq_P \mathsf{X}$.
- An NP-Hard problem need not be in NP!
- Example: Halting problem is NP-Hard (why?) but not NP-Complete.

NP-Hard Problems

Formal definition:

Definition

A problem X is said to be NP-Hard if

- (Hardness) For any $Y \in \mathsf{NP}$, we have that $\mathsf{Y} \leq_P \mathsf{X}$.
- An NP-Hard problem need not be in NP!
- Example: Halting problem is NP-Hard (why?) but not NP-Complete.

- If X is NP-Complete
 - Since we believe $P \neq NP$,
 - and solving X implies P = NP.

- At the very least, many smart people before you have failed to find an efficient algorithm for $oldsymbol{X}$.
- (This is proof by mob opinion take with a grain of salt.)

- If X is NP-Complete
 - Since we believe $P \neq NP$,
 - and solving X implies P = NP.

- At the very least, many smart people before you have failed to find an efficient algorithm for X.
- (This is proof by mob opinion take with a grain of salt.)

- If X is NP-Complete
 - Since we believe $P \neq NP$,
 - and solving X implies P = NP.

- At the very least, many smart people before you have failed to find an efficient algorithm for X.
- (This is proof by mob opinion take with a grain of salt.)

- If X is NP-Complete
 - Since we believe $P \neq NP$,
 - and solving X implies P = NP.

- At the very least, many smart people before you have failed to find an efficient algorithm for X.
- (This is proof by mob opinion take with a grain of salt.)

NP-Complete Problems

Question

Are there any problems that are NP-Complete?

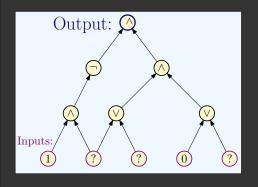
Answer

Yes! Many, many problems are NP-Complete.

Circuits

Definition

A circuit is a directed acyclic graph with



- Input vertices
 (without incoming edges) labelled with
 0, 1 or a distinct variable.
- Every other vertex is labelled ∨, ∧ or ¬.
- Single node output vertex with no outgoing edges.

Cook-Levin Theorem

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1?

Theorem (Cook-Levin)

CSAT is NP-Complete.

Need to show

- CSAT is in NP.
- \bullet every **NP** problem X reduces to **CSAT**.

CSAT: Circuit Satisfaction

Claim

CSAT is in NP.

- Certificate: Assignment to input variables.
- Certifier: Evaluate the value of each gate in a topological sort of DAG and check the output gate value.

CSAT: Circuit Satisfaction

Claim

CSAT is in NP.

- Certificate: Assignment to input variables.
- lacktriangle Certifier: Evaluate the value of each gate in a topological sort of DAG and check the output gate value.

- Need to show that every NP problem X reduces to CSAT.
- What does it mean that $X \in \mathsf{NP}$?
 - $X \in \mathbb{NP}$ implies that there are polynomials p() and q() and certifier/verifier program C such that for every string s the following is true:
 - of length p(|s|) such that C(s,t) says YES.
 - If s is a NO instance $(s \not\in X)$ then for every string t of length at p(|s|), C(s,t) says NO.
 - C(s,t) runs in time q(|s|+|t|) time (hence polynomial time).

- Need to show that every NP problem X reduces to CSAT.
- \bigcirc What does it mean that $X \in \mathbb{NP}$?
 - $X \in \mathbb{NP}$ implies that there are polynomials p() and q() and certifier/verifier program C such that for every string s the following is true:
 - of length p(|s|) such that C(s,t) says YES.
 - If s is a NO instance $(s \not\in X)$ then for every string t of length at p(|s|), C(s,t) says NO.
 - C(s,t) runs in time q(|s|+|t|) time (hence polynomial time).

- Need to show that every NP problem X reduces to CSAT.
- What does it mean that $X \in \mathbb{NP}$?
- $X \in \mathsf{NP}$ implies that there are polynomials p() and q() and certifier/verifier program C such that for every string s the following is true:
 - of length p(|s|) such that C(s,t) says YES.
 - If s is a NO instance $(s \not\in X)$ then for every string t of length at p(|s|), C(s,t) says NO.
 - C(s,t) runs in time q(|s|+|t|) time (hence polynomial time).

- Need to show that every NP problem X reduces to CSAT.
- lacksquare What does it mean that $X \in \mathsf{NP}$?
- $X \in \mathsf{NP}$ implies that there are polynomials p() and q() and certifier/verifier program C such that for every string s the following is true:
 - of length p(|s|) such that C(s,t) says YES.
 - If s is a NO instance $(s \not\in X)$ then for every string t of length at $p(|s|),\ C(s,t)$ says NO .
 - C(s,t) runs in time q(|s|+|t|) time (hence polynomial time).

- lacksquare X is in NP means we have access to $p(), q(), C(\cdot, \cdot)$.
- What is $C(\cdot, \cdot)$? It is a program or equivalently a Turing Machine!
- How are p() and q() given? As numbers.
- lacksquare Example: if 3 is given then $p(n)=n^3$.
- Thus an NP problem is essentially a three tuple $\langle p,q,C
 angle$ where C is either a program or a TM

- X is in **NP** means we have access to $p(), q(), C(\cdot, \cdot)$.
- What is $C(\cdot, \cdot)$? It is a program or equivalently a Turing Machine!
- How are p() and q() given? As numbers.
- ${\color{black} igcup}$ Example: if 3 is given then $p(n)=n^3$.
- Thus an old P problem is essentially a three tuple $\langle p,q,C
 angle$ where C is either a program or a ${
 m TM}$

- X is in **NP** means we have access to $p(), q(), C(\cdot, \cdot)$.
- What is $C(\cdot, \cdot)$? It is a program or equivalently a Turing Machine!
- How are p() and q() given? As numbers.
- igcap Example: if 3 is given then $p(n)=n^3$.
- Thus an old NP problem is essentially a three tuple $\langle p,q,C
 angle$ where C is either a program or a $ext{TM}$

- lacksquare X is in $oxed{\mathsf{NP}}$ means we have access to $p(),q(),C(\cdot,\cdot)$.
- What is $C(\cdot, \cdot)$? It is a program or equivalently a Turing Machine!
- How are p() and q() given? As numbers.
- $\, \odot \,$ Example: if 3 is given then $p(n)=n^3.$
- Thus an old P problem is essentially a three tuple $\langle p,q,C
 angle$ where C is either a program or a ${
 m TM}$

- **N** is in **NP** means we have access to $p(), q(), C(\cdot, \cdot)$.
- What is $C(\cdot, \cdot)$? It is a program or equivalently a Turing Machine!
- How are p() and q() given? As numbers.
- lacksquare Example: if 3 is given then $p(n)=n^3$.
- Thus an NP problem is essentially a three tuple $\langle p,q,C
 angle$ where C is either a program or a TM

- lacksquare X is in NP means we have access to $p(),q(),C(\cdot,\cdot)$.
- What is $C(\cdot, \cdot)$? It is a program or equivalently a Turing Machine!
- How are p() and q() given? As numbers.
- lacksquare Example: if 3 is given then $p(n)=n^3$.
- Thus an $\overline{\sf NP}$ problem is essentially a three tuple $\langle p,q,C
 angle$ where C is either a program or a ${
 m TM}.$

- **NP** problem: a three tuple $\langle p,q,C \rangle$. C: program or $\mathrm{TM}, p(\cdot), q(\cdot)$: polynomials.
 - Problem X: Given string s, is $s \in X$?
- Equivalent:
 - \exists proof t of length pig(|s|ig) & C(s,t) returns YES.
 - $\ldots C(s,t)$ runs in qig(|s|ig) time.
 - Reduce from X to $\mathsf{CSAT}...$ Need an algorithm alg that
 - takes s (and $\langle p,q,C \rangle$).

 Creates circuit G in poly time in |s|. $(\langle p,q,C \rangle$ is fixed so $|\langle p,q,C \rangle| = O(1)$.)
 - $m{G}$ is satisfiable
 - \iff \exists proof t s.t. C(s,t) returns YES.

- **NP** problem: a three tuple $\langle p,q,C \rangle$. C: program or $\mathrm{TM}, \quad p(\cdot), \ q(\cdot)$: polynomials.
- Problem X: Given string s, is $s \in X$?
- Equivalent:
 - \exists proof t of length p(|s|) & C(s,t) returns YES. ... C(s,t) runs in a(|s|) time.
- Reduce from X to $\mathsf{CSAT}...$ Need an algorithm alg that
 - takes s (and $\langle p,q,C \rangle$).

 Creates circuit G in poly time in |s|. $(\langle p,q,C \rangle$ is fixed so $|\langle p,q,C \rangle| = O(1)$.)
 - \iff \exists proof t s.t. C(s,t) returns YES

- **NP** problem: a three tuple $\langle p, q, C \rangle$. C: program or TM, $p(\cdot)$, $q(\cdot)$: polynomials.
- Problem X: Given string s, is $s \in X$?
- Equivalent:

 \exists proof t of length pig(|s|ig) & C(s,t) returns YES.

...C(s,t) runs in qig(|s|ig) time.

- Reduce from X to CSAT...Need an algorithm alg that
 - takes s (and $\langle p,q,C \rangle$). Creates circuit G in poly time in |s|. $(\langle p,q,C \rangle$ is fixed so $|\langle p,q,C \rangle| = O(1)$.)
 - ullet G is satisfiable

 \iff \exists proof t s.t. C(s,t) returns YES.

- **NP** problem: a three tuple $\langle p, q, C \rangle$. C: program or TM, $p(\cdot)$, $q(\cdot)$: polynomials.
- Problem X: Given string s, is $s \in X$?
- Equivalent:
 - \exists proof t of length pig(|s|ig) & C(s,t) returns YES. ... C(s,t) runs in qig(|s|ig) time.
 - Reduce from X to CSAT...

 Need an algorithm alg that
 - takes s (and $\langle p,q,C \rangle$). Creates circuit G in poly time in |s|. $(\langle p,q,C \rangle$ is fixed so $|\langle p,q,C \rangle| = O(1)$.)
 - $m{G}$ is satisfiable
 - \iff \exists proof t s.t. C(s,t) returns YES.

- **NP** problem: a three tuple $\langle p, q, C \rangle$. C: program or TM, $p(\cdot)$, $q(\cdot)$: polynomials.
- Problem X: Given string s, is $s \in X$?
- Equivalent:
 - \exists proof t of length pig(|s|ig) & C(s,t) returns YES. ... C(s,t) runs in qig(|s|ig) time.
- lacksquare Reduce from $oldsymbol{X}$ to $oldsymbol{\mathsf{CSAT}}$...

Need an algorithm **alg** that

- takes s (and $\langle p,q,C \rangle$). Creates circuit G in poly time in |s|. $(\langle p,q,C \rangle$ is fixed so $|\langle p,q,C \rangle| = O(1)$.)
 - $m{G}$ is satisfiable
 - \iff \exists proof t s.t. C(s,t) returns YES.

- **NP** problem: a three tuple $\langle p, q, C \rangle$. C: program or TM, $p(\cdot)$, $q(\cdot)$: polynomials.
- Problem X: Given string s, is $s \in X$?
- Equivalent:

```
\exists proof t of length pig(|s|ig) & C(s,t) returns YES. ... C(s,t) runs in qig(|s|ig) time.
```

- Reduce from X to CSAT...Need an algorithm alg that
 - takes s (and $\langle p,q,C\rangle$).

 Creates circuit G in poly time in |s|. $(\langle p,q,C\rangle)$ is fixed so $|\langle p,q,C\rangle|=O(1)$.) G is satisfiable

- **NP** problem: a three tuple $\langle p, q, C \rangle$. C: program or TM, $p(\cdot)$, $q(\cdot)$: polynomials.
- Problem X: Given string s, is $s \in X$?
- Equivalent:

```
\exists proof t of length pig(|s|ig) & C(s,t) returns YES. ... C(s,t) runs in qig(|s|ig) time.
```

- Reduce from X to CSAT...Need an algorithm alg that
 - takes s (and $\langle p,q,C \rangle$). Creates circuit G in poly time in |s|. $(\langle p,q,C \rangle$ is fixed so $|\langle p,q,C \rangle| = O(1)$.) G is satisfiable $\Rightarrow \exists$ proof t s.t. C(s,t) returns YES.

- **NP** problem: a three tuple $\langle p, q, C \rangle$. C: program or TM, $p(\cdot)$, $q(\cdot)$: polynomials.
- Problem X: Given string s, is $s \in X$?
- Equivalent:

```
\exists proof t of length pig(|s|ig) & C(s,t) returns YES. ... C(s,t) runs in qig(|s|ig) time.
```

- Reduce from X to CSAT...Need an algorithm alg that
 - takes s (and $\langle p,q,C \rangle$). Creates circuit G in poly time in |s|. $(\langle p,q,C \rangle$ is fixed so $|\langle p,q,C \rangle| = O(1)$.)
 - G is satisfiable $\iff \exists$ proof t s.t. C(s,t) returns YES.

- \mathbf{Q} : How do we reduce X to **CSAT**?
 - Need algorithm **alg** that:
 - \bigcirc Input: s (and $\langle p,q,C \rangle$).
 - \odot creates circuit G in poly-time in |s| $(\langle p,q,C \rangle$ fixed).
 - \odot G satisfiable $\iff \exists$ proof t: C(s,t) returns YES
 - Simple but Big Idea: Programs are the same as Circuits!
 - Convert C(s,t) into a circuit G with t as unknown inputs (rest is known including s)
 - Known: $|t| \leq p(|s|)$ so express boolean string t as p(|s|) variables t_1, t_2, \ldots, t_k where k = p(|s|).
 - Asking if there is a proof t that makes C(s,t) say YES is same as whether there is an assignment of values to "unknown" variables t_1,t_2,\ldots,t_k that will make G evaluate to true/YES.

- Q: How do we reduce X to CSAT?
- Need algorithm alg that:
 - \odot Input: s (and $\langle p,q,C
 angle$).
 - \bigcirc creates circuit G in poly-time in |s| ($\langle p, q, C \rangle$ fixed).
 - \odot G satisfiable \iff \exists proof t: C(s,t) returns YES
 - Simple but Big Idea: Programs are the same as Circuits!
 - Convert C(s,t) into a circuit G with t as unknown inputs (rest is known including s)
 - Known: $|t| \leq p(|s|)$ so express boolean string t as p(|s|) variables t_1, t_2, \ldots, t_k where k = p(|s|).
 - Asking if there is a proof t that makes C(s,t) say YES is same as whether there is an assignment of values to "unknown" variables t_1,t_2,\ldots,t_k that will make G evaluate to true/YES.

- Q: How do we reduce X to CSAT?
- Need algorithm alg that:
 - lacksquare Input: s (and $\langle p,q,C
 angle$).
 - lacksquare creates circuit G in poly-time in |s| $(\langle p,q,C
 angle$ fixed).
 - lacktriangledown G satisfiable $\iff \exists$ proof t: C(s,t) returns YES.

Simple but Big Idea: Programs are the same as Circuits!

- Convert C(s,t) into a circuit G with t as unknown inputs (rest is known including s)
- Known: $|t| \leq p(|s|)$ so express boolean string t as p(|s|) variables t_1, t_2, \ldots, t_k where k = p(|s|).
 - Asking if there is a proof t that makes C(s,t) say YES is same as whether there is an assignment of values to "unknown" variables t_1,t_2,\ldots,t_k that will make G evaluate to true/YES.

- Q: How do we reduce X to CSAT?
- Need algorithm alg that:
 - lacksquare Input: s (and $\langle p,q,C
 angle$).
 - ullet creates circuit G in poly-time in |s| $(\langle p,q,C
 angle$ fixed).
 - lacktriangledown G satisfiable $\iff \exists$ proof t: C(s,t) returns YES.
- Simple but Big Idea: Programs are the same as Circuits!
 - Convert C(s,t) into a circuit G with t as unknown inputs (rest is known including s)
 - Known: $|t| \leq p(|s|)$ so express boolean string t as p(|s|) variables t_1, t_2, \ldots, t_k where k = p(|s|).
 - Asking if there is a proof t that makes C(s,t) say YES is same as whether there is an assignment of values to "unknown" variables t_1,t_2,\ldots,t_k that will make G evaluate to true/YES.

- Q: How do we reduce X to CSAT?
- Need algorithm alg that:
 - lacksquare Input: s (and $\langle p,q,C
 angle$).
 - lacksquare creates circuit G in poly-time in |s| $(\langle p,q,C
 angle$ fixed).
 - lacktriangledown G satisfiable $\iff \exists$ proof t: C(s,t) returns YES.
- Simple but Big Idea: Programs are the same as Circuits!
 - Convert C(s,t) into a circuit G with t as unknown inputs (rest is known including s)
 - Known: $|t| \leq p(|s|)$ so express boolean string t as p(|s|) variables t_1, t_2, \ldots, t_k where k = p(|s|).
 - Asking if there is a proof t that makes C(s,t) say YES is same as whether there is an assignment of values to "unknown" variables t_1, t_2, \ldots, t_k that will make G evaluate to true/YES.

Formal definition:

Independent Set

Instance: G = (V, E), k

Question: Does G = (V, E) have an **Indepen**

- Certificate: Set $S \subseteq V$
- Certifier: Check $|S| \geq k$ and no pair of vertices in S is connected by an edge.
- lacksquare lacksquare

Formal definition:

Independent Set

Instance: G = (V, E), k

Question: Does G = (V, E) have an **Indepen**-

- lacksquare Certificate: Set $S\subseteq V$.
 - Certifier: Check $|S| \ge k$ and no pair of vertices in S is connected by an edge.
- lue f Q: Formally, why is Independent Set in f NP?

Formal definition:

Independent Set

Instance: G = (V, E), k

Question: Does G = (V, E) have an **Indepen**-

- \bigcirc Certificate: Set $S \subseteq V$.
- Certifier: Check $|S| \geq k$ and no pair of vertices in S is connected by an edge.
- ullet Q: Formally, why is Independent Set in old NP?

Formal definition:

Independent Set

Instance: G = (V, E), k

Question: Does G = (V, E) have an **Indepen**-

- \bigcirc Certificate: Set $S \subseteq V$.
- Certifier: Check $|S| \geq k$ and no pair of vertices in S is connected by an edge.
- Q: Formally, why is Independent Set in NP?

Formally why is Independent Set in NP?

Input is a "binary" vector:

$$\langle n, y_{1,1}, y_{1,2}, \ldots, y_{1,n}, y_{2,1}, \ldots, y_{2,n}, \ldots, y_{n,1}, \\ \ldots, y_{n,n}, k
angle$$

encodes $\langle G, k \rangle$.

- lacksquare n is number of vertices in G
- $y_{i,j}$ is a bit which is 1 if edge (i,j) is in G and 0 otherwise (adjacency matrix representation)
- k: size of independent set.

Certificate: $t = t_1 t_2 \dots t_n$. Interpretation: $t_i = 1$ if vertex i is in independent set ... 0 otherwise.

Formally why is Independent Set in NP?

Input is a "binary" vector:

$$\langle n, y_{1,1}, y_{1,2}, \ldots, y_{1,n}, y_{2,1}, \ldots, y_{2,n}, \ldots, y_{n,1}, \\ \ldots, y_{n,n}, k
angle$$

encodes $\langle G, k \rangle$.

- lacksquare n is number of vertices in G
- $y_{i,j}$ is a bit which is 1 if edge (i,j) is in G and 0 otherwise (adjacency matrix representation)
- k: size of independent set.
- Certificate: $t=t_1t_2\dots t_n$. Interpretation: $t_i=1$ if vertex i is in independent set.

... 0 otherwise.

Formally why is Independent Set in NP?

Input is a "binary" vector:

$$\langle n, y_{1,1}, y_{1,2}, \ldots, y_{1,n}, y_{2,1}, \ldots, y_{2,n}, \ldots, y_{n,1}, \\ \ldots, y_{n,n}, k
angle$$

encodes $\langle extbf{ extit{G}}, extbf{ extit{k}}
angle$.

- lacksquare n is number of vertices in G
- $y_{i,j}$ is a bit which is 1 if edge (i,j) is in G and 0 otherwise (adjacency matrix representation)
- k: size of independent set.
- Certificate: $t=t_1t_2\dots t_n$. Interpretation: $t_i=1$ if vertex i is in independent set. ... 0 otherwise.

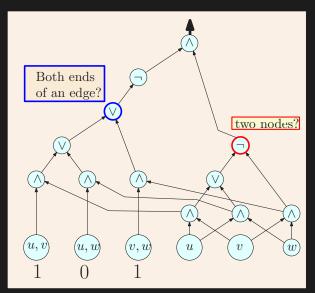
Certifier for Independent Set

```
Certifier C(s,t) for Independent Set: if (t_1+t_2+\ldots+t_n < k) then return NO else for each (i,j) do if (t_i \wedge t_j \wedge y_{i,j}) then return NO
```

return YES

A certifier circuit for Independent Set

Figure: Graph G with k = 2



- lacksquare alg: "program" that takes f(|s|) steps on input string s.
 - Questions: What computer is used? What does *step* mean?
 - "Real" computers difficult to reason with mathematically:
 - instruction set is too rich
 - pointers and control flow jumps in one step
 - assumption that pointer to code fits in one word
- Turing Machines:
 - simpler model of computation to reason with
 - can simulate real computers with polynomial slow down
 - all moves are local (head moves only one cell)

- lacksquare lacksquare alg: "program" that takes f(|s|) steps on input string s.
- Questions: What computer is used? What does step mean?
 - "Real" computers difficult to reason with mathematically:
 - instruction set is too rich
 - pointers and control flow jumps in one step
 - assumption that pointer to code fits in one word
 - Turing Machines:
 - simpler model of computation to reason with
 - can simulate real computers with polynomial slow down
 - all moves are local (head moves only one cell)

- lacksquare lacksquare alg: "program" that takes $\overline{f(|s|)}$ steps on input string s.
- Questions: What computer is used? What does step mean?
- "Real" computers difficult to reason with mathematically:
 - instruction set is too rich
 - pointers and control flow jumps in one step
 - assumption that pointer to code fits in one word

Turing Machines:

- simpler model of computation to reason with
- can simulate real computers with polynomial slow down
- all moves are local (head moves only one cell

- lacksquare lacksquare alg: "program" that takes f(|s|) steps on input string s.
- Questions: What computer is used? What does step mean?
- "Real" computers difficult to reason with mathematically:
 - instruction set is too rich
 - pointers and control flow jumps in one step
 - assumption that pointer to code fits in one word

Turing Machines

- simpler model of computation to reason with
- can simulate real computers with polynomial slow down
- all moves are local (head moves only one cell)

- lacksquare alg: "program" that takes f(|s|) steps on input string s.
- Questions: What computer is used? What does step mean?
- "Real" computers difficult to reason with mathematically:
 - instruction set is too rich
 - pointers and control flow jumps in one step
 - assumption that pointer to code fits in one word
- Turing Machines:
 - simpler model of computation to reason with
 - can simulate real computers with polynomial slow down
 - all moves are local (head moves only one cell)

- lacksquare Assume $C(\cdot,\cdot)$ is a (deterministic) Turing Machine M
 - Problem: Given M, input s, p, q decide if:
 - lacksquare \exists proof t of length $\leq p(|s|)$
 - M executed on the input s,t halts in q(|s|) time and returns YES.
 - ConvCSAT reduces above problem to CSAT:
 - 1. computes p(|s|) and q(|s|).
 - 2. As such, *M*:
 - Uses at most q(|s|) memory/tape cells.
 - lacksquare M can run for at most q(|s|) time
 - 3. Simulates evolution of the states of ${\it M}$ and memory over time, using a big circuit.

- lacksquare Assume $C(\cdot,\cdot)$ is a (deterministic) Turing Machine M
- lacksquare Problem: Given M, input s, p, q decide if:
 - \bigcirc \exists proof t of length $\leq p(|s|)$
 - M executed on the input s,t halts in q(|s|) time and returns YES.
 - ConvCSAT reduces above problem to CSAT:
 - 1. computes p(|s|) and q(|s|).
 - 2. As such, M:
 - Uses at most q(|s|) memory/tape cells.
 - lacksquare M can run for at most q(|s|) time.
 - 3. Simulates evolution of the states of ${\it M}$ and memory over time, using a big circuit.

- lacksquare Assume $C(\cdot,\cdot)$ is a (deterministic) Turing Machine M
- lacksquare Problem: Given M, input s, p, q decide if:
 - lacksquare \exists proof t of length $\leq p(|s|)$
 - M executed on the input s, t halts in q(|s|) time and returns YES.
 - ConvCSAT reduces above problem to CSAT:
 - 1. computes p(|s|) and q(|s|).
 - 2. As such, *M*:
 - \bigcirc Uses at most q(|s|) memory/tape cells.
 - lacksquare M can run for at most q(|s|) time.
 - 3. Simulates evolution of the states of ${\it M}$ and memory over time, using a big circuit.

- lacksquare Assume $C(\cdot,\cdot)$ is a (deterministic) Turing Machine M
- lacksquare Problem: Given M, input s, p, q decide if:
 - lacksquare \exists proof t of length $\leq p(|s|)$
 - M executed on the input s, t halts in q(|s|) time and returns YES.
 - ConvCSAT reduces above problem to CSAT:
 - 1. computes p(|s|) and q(|s|).
 - 2. As such, *M*:
 - igcup Uses at most q(|s|) memory/tape cells.
 - ullet M can run for at most q(|s|) time.
 - 3. Simulates evolution of the states of ${\it M}$ and memory over time, using a big circuit.

- lacksquare Assume $C(\cdot,\cdot)$ is a (deterministic) Turing Machine M
- $igcap \operatorname{\mathsf{Problem}}$: Given M, input s, p, q decide if:
 - lacksquare \exists proof t of length $\leq p(|s|)$
 - M executed on the input s,t halts in q(|s|) time and returns YES.
- ConvCSAT reduces above problem to CSAT:
 - 1. computes p(|s|) and q(|s|).
 - 2. As such, M:
 - ullet Uses at most q(|s|) memory/tape cells.
 - lacksquare M can run for at most q(|s|) time
 - 3. Simulates evolution of the states of M and memory over time, using a big circuit.

- lacksquare Assume $C(\cdot,\cdot)$ is a (deterministic) Turing Machine M
- $igcap \operatorname{\mathsf{Problem}}$: Given M, input s, p, q decide if:
 - lacksquare \exists proof t of length $\leq p(|s|)$
 - M executed on the input s, t halts in q(|s|) time and returns YES.
- ConvCSAT reduces above problem to CSAT:
 - 1. computes p(|s|) and q(|s|).
 - 2. As such, *M*:
 - Uses at most q(|s|) memory/tape cells.
 - lacksquare M can run for at most q(|s|) time.
 - 3. Simulates evolution of the states of $oldsymbol{M}$ and memory over time, using a big circuit.

- lacksquare Assume $C(\cdot,\cdot)$ is a (deterministic) Turing Machine M
- Problem: Given M, input s, p, q decide if:
 - lacksquare \exists proof t of length $\leq p(|s|)$
 - M executed on the input s, t halts in q(|s|) time and returns YES.
- ConvCSAT reduces above problem to CSAT:
 - 1. computes p(|s|) and q(|s|).
 - 2. As such, *M*:
 - Uses at most q(|s|) memory/tape cells.
 - lacksquare M can run for at most q(|s|) time.
 - 3. Simulates evolution of the states of M and memory over time, using a big circuit.

- lack M state at time ℓ : A string $x^\ell = x_1 x_2 \dots x_k$ where each $x_i \in \{0,1,B\} imes Q \cup \{q_{-1}\}.$
- Time 0: State of M= input string s, a guess t of p(|s|) "unknowns", and rest q(|s|) blank symbols.
- lacksquare Time q(|s|)? Does M stops in q_{accept} with blank tape.
- Build circuit C_ℓ : Evaluates to YES \iff transition of M from time ℓ to time $\ell+1$ valid (Circuit of size Oig(q(|s|)ig).
- $\mathcal{C}\colon\thinspace C_0\wedge C_1\wedge\cdots\wedge C_{q(|s|)}.$ Polynomial size!
 - Output of ${\mathcal C}$ true \iff sequence of states of M is legal and leads to an accept state.

- lack M state at time ℓ : A string $x^\ell = x_1 x_2 \dots x_k$ where each $x_i \in \{0,1,B\} imes Q \cup \{q_{-1}\}.$
- Time 0: State of M= input string s, a guess t of p(|s|) "unknowns", and rest q(|s|) blank symbols.
- lacksquare Time q(|s|)? Does M stops in q_{accept} with blank tape.
- Build circuit C_ℓ : Evaluates to YES \iff transition of M from time ℓ to time $\ell+1$ valid (Circuit of size Oig(q(|s|)ig).
- $\mathcal{C}\colon\thinspace C_0\wedge C_1\wedge\cdots\wedge C_{q(|s|)}.$ Polynomial size!
- Output of $\mathcal C$ true \iff sequence of states of M is legal and leads to an accept state.

- lack M state at time ℓ : A string $x^\ell = x_1 x_2 \dots x_k$ where each $x_i \in \{0,1,B\} imes Q \cup \{q_{-1}\}.$
- Time 0: State of M= input string s, a guess t of p(|s|) "unknowns", and rest q(|s|) blank symbols.
- lacksquare Time q(|s|)? Does M stops in q_{accept} with blank tape.
- Build circuit C_ℓ : Evaluates to YES \iff transition of M from time ℓ to time $\ell+1$ valid (Circuit of size Oig(q(|s|)ig).
- $\mathcal{C}\colon\thinspace C_0\wedge C_1\wedge\cdots\wedge C_{q(|s|)}.$ Polynomial size!
 - Output of $\mathcal C$ true \iff sequence of states of M is legal and leads to an accept state.

- M state at time ℓ : A string $x^\ell = x_1 x_2 \dots x_k$ where each $x_i \in \{0,1,B\} imes Q \cup \{q_{-1}\}.$
- Time 0: State of M= input string s, a guess t of p(|s|) "unknowns", and rest q(|s|) blank symbols.
- lacksquare Time q(|s|)? Does M stops in q_{accept} with blank tape.
- Build circuit C_ℓ : Evaluates to YES \iff transition of M from time ℓ to time $\ell+1$ valid. (Circuit of size Oig(q(|s|)ig).
 - $\mathcal{C}\colon\thinspace C_0\wedge C_1\wedge\cdots\wedge C_{q(|s|)}.$ Polynomial size!
 - Output of $\mathcal C$ true \iff sequence of states of M is legal and leads to an accept state.

- M state at time ℓ : A string $x^\ell = x_1 x_2 \dots x_k$ where each $x_i \in \{0,1,B\} imes Q \cup \{q_{-1}\}$.
- Time 0: State of M= input string s, a guess t of p(|s|) "unknowns", and rest q(|s|) blank symbols.
- lacksquare Time q(|s|)? Does M stops in q_{accept} with blank tape.
- Build circuit C_ℓ : Evaluates to YES \iff transition of M from time ℓ to time $\ell+1$ valid. (Circuit of size Oig(q(|s|)ig).
- $\mathcal{C}\colon\thinspace C_0\wedge C_1\wedge\cdots\wedge C_{q(|s|)}.$ Polynomial size!
 - Output of $\mathcal C$ true \iff sequence of states of M is legal and leads to an accept state.

- M state at time ℓ : A string $x^\ell = x_1 x_2 \dots x_k$ where each $x_i \in \{0,1,B\} imes Q \cup \{q_{-1}\}.$
- Time 0: State of M= input string s, a guess t of p(|s|) "unknowns", and rest q(|s|) blank symbols.
- lacksquare Time q(|s|)? Does M stops in q_{accept} with blank tape.
- Build circuit C_ℓ : Evaluates to YES \iff transition of M from time ℓ to time $\ell+1$ valid. (Circuit of size Oig(q(|s|)ig).
- ${\mathcal C}\colon\thinspace C_0\wedge C_1\wedge\cdots\wedge C_{q(|s|)}.$ Polynomial size!
- Output of \mathcal{C} true \iff sequence of states of M is legal and leads to an accept state.

NP-Hardness of Circuit Satisfaction

Key Ideas in reduction:

- $lue{}$ Use $\mathrm{TM}\mathsf{s}$ as the code for certifier for simplicity
- Since p() and q() are known to \mathcal{A} , it can set up all required memory and time steps in advance
- $lue{ }$ Simulate computation of the TM from one time to the next as a circuit that only looks at three adjacent cells at a time

Note: Above reduction can be done to **SAT** as well. Reduction to **SAT** was the original proof of Steve Cook

NP-Hardness of Circuit Satisfaction

Key Ideas in reduction:

- $lue{}$ Use $\mathrm{TM}\mathsf{s}$ as the code for certifier for simplicity
- Since p() and q() are known to \mathcal{A} , it can set up all required memory and time steps in advance
- $lue{f S}$ Simulate computation of the TM from one time to the next as a circuit that only looks at three adjacent cells at a time

Note: Above reduction can be done to **SAT** as well. Reduction to **SAT** was the original proof of Steve Cook.