CS 573: Algorithms, Fall 2014

Reductions and NP

Lecture 2 August 28, 2014

Part I

Reductions Continued

Propositional Formulas

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- A *literal* is either a boolean variable x_i or its negation $\neg x_i$.
- A *clause* is a disjunction of literals. For example, $x_1 \lor x_2 \lor \neg x_4$ is a clause.
- lacktriangle A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses
 - $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is a CNF formula.
- A formula φ is a 3CNF: A CNF formula such that every clause has **exactly** 3 literals.
 - $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_1)$ is a 3 CNF formula, but $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is not.

Propositional Formulas

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- A *literal* is either a boolean variable x_i or its negation $\neg x_i$.
- A *clause* is a disjunction of literals. For example, $x_1 \lor x_2 \lor \neg x_4$ is a clause.
- A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses
 - \bullet $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is a CNF formula.
- A formula φ is a $3 \mathrm{CNF}$:

 A CNF formula such that every clause has **exactly** 3 literals.
 - $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_1)$ is a $3\mathrm{CNF}$ formula, but $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is not.

Satisfiability

SAT

Instance: A CNF formula φ .

Question: Is there a truth assignment to the variable of

arphi such that arphi evaluates to true?

3SAT

Instance: A 3CNF formula φ .

Question: Is there a truth assignment to the variable of

 φ such that φ evaluates to true?

4

Satisfiability

SAT

Given a CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

Example

- $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is satisfiable; take $x_1, x_2, \dots x_5$ to be all true
- $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \land (x_1 \lor x_2)$ is not satisfiable.

3SAT

Given a $3\mathrm{CNF}$ formula φ , is there a truth assignment to variables such that φ evaluates to true?

(More on **2SAT** in a bit...)

5

Importance of **SAT** and **3SAT**

- SAT, 3SAT: basic constraint satisfaction problems.
- Many different problems can reduced to them: simple+powerful expressivity of constraints.
- Arise in many hardware/software verification/correctness applications.
- ... fundamental problem of NP-Completeness.

How **SAT** is different from **3SAT**?

In **SAT** clauses might have arbitrary length: $1, 2, 3, \ldots$ variables:

$$\Big(x \vee y \vee z \vee w \vee u\Big) \wedge \Big(\neg x \vee \neg y \vee \neg z \vee w \vee u\Big) \wedge \Big(\neg x\Big)$$

In **3SAT** every clause must have *exactly* 3 different literals.

Reduce from of **SAT** to **3SAT**: make all clauses to have 3 variables...

Basic idea

- Pad short clauses so they have 3 literals.
- Break long clauses into shorter clauses.
- Repeat the above till we have a 3CNF.

How **SAT** is different from **3SAT**?

In **SAT** clauses might have arbitrary length: $1, 2, 3, \ldots$ variables:

$$ig(xee yee zee wee uig)\wedgeig(
eg xee
eg yee
eg zee wee uig)\wedgeig(
eg x$$

In **3SAT** every clause must have *exactly* 3 different literals.

Reduce from of **SAT** to **3SAT**: make all clauses to have **3** variables...

Basic idea

- Pad short clauses so they have 3 literals.
- Break long clauses into shorter clauses.
- lacksquare Repeat the above till we have a $3\mathrm{CNF}.$

$\mathsf{3SAT} \leq_{\mathrm{P}} \mathsf{SAT}$

- 3SAT \leq_P SAT.
- Because...A **3SAT** instance is also an instance of **SAT**.

Claim

 $SAT <_P 3SAT$.

Given φ a **SAT** formula we create a **3SAT** formula φ' such that

Idea: if a clause of φ is not of length 3, replace it with several clauses of length exactly 3.

Claim

 $SAT \leq_P 3SAT$.

Given φ a **SAT** formula we create a **3SAT** formula φ' such that

- $\bigcirc \varphi$ is satisfiable iff φ' is satisfiable.
- lacksquare arphi' can be constructed from arphi in time polynomial in |arphi|.

Idea: if a clause of φ is not of length 3, replace it with several clauses of length exactly 3.

Claim

 $SAT <_P 3SAT$.

Given φ a **SAT** formula we create a **3SAT** formula φ' such that

- $\bigcirc \varphi$ is satisfiable iff φ' is satisfiable.
- lacksquare arphi' can be constructed from arphi in time polynomial in |arphi|.

Idea: if a clause of φ is not of length 3, replace it with several clauses of length exactly 3.

SAT < P 3SAT

A clause with a single literal

Reduction Ideas

Challenge: Some clauses in φ # liters \neq 3.

 \forall clauses with $\neq 3$ literals: construct set logically equivalent clauses.

Clause with one literal: $c=\ell$ clause with a single literal. u,v be new variables. Consider

$$egin{array}{ll} c' = & \left(\ellee uee v
ight)\wedge\left(\ellee uee
eg v
ight) \ & \wedge\left(\ellee
eq uee v
ight)\wedge\left(\ellee
eq uee
eq v
ight). \end{array}$$

Observe: c' satisfiable $\iff c$ is satisfiable

SAT <_P 3SAT

A clause with a single literal

Reduction Ideas

Challenge: Some clauses in φ # liters \neq 3.

 \forall clauses with $\neq 3$ literals: construct set logically equivalent clauses.

lacksquare Clause with one literal: $c=\ell$ clause with a single literal. u,v be new variables. Consider

$$\begin{split} c' = & \left(\ell \vee u \vee v\right) \wedge \left(\ell \vee u \vee \neg v\right) \\ & \wedge \left(\ell \vee \neg u \vee v\right) \wedge \left(\ell \vee \neg u \vee \neg v\right). \end{split}$$

Observe: c' satisfiable $\iff c$ is satisfiable

SAT <_P 3SAT

A clause with a single literal

Reduction Ideas

Challenge: Some clauses in φ # liters \neq 3.

 \forall clauses with \neq 3 literals: construct set logically equivalent clauses.

lacksquare Clause with one literal: $c=\ell$ clause with a single literal. u,v be new variables. Consider

$$egin{array}{ll} c' = & \left(\ellee uee v
ight)\wedge\left(\ellee uee
eg v
ight) \ & \wedge\left(\ellee
eq uee v
ight)\wedge\left(\ellee
eq uee
eq v
ight). \end{array}$$

Observe: c' satisfiable $\iff c$ is satisfiable

SAT < P 3SAT

A clause with two literals

Reduction Ideas: 2 and more literals

• Case clause with 2 literals: Let $c=\ell_1\vee\ell_2$. Let u be a new variable. Consider

$$c' = ig(\ell_1 ee \ell_2 ee uig) \, \wedge \, ig(\ell_1 ee \ell_2 ee
eg uig)$$
 .

c is satisfiable $\iff c'$ is satisfiable

Breaking a clause

Lemma

For any boolean formulas $oldsymbol{X}$ and $oldsymbol{Y}$ and $oldsymbol{z}$ a new boolean variable. Then

$$X \lor Y$$
 is satisfiable

if and only if, z can be assigned a value such that

$$ig(Xee zig)\wedgeig(Yee
eg zig)$$
 is satisfiable

(with the same assignment to the variables appearing in X and Y).

$SAT \leq_{P} 3SAT$ (contd)

Clauses with more than 3 literals

Let $c=\ell_1\vee\cdots\vee\ell_k$. Let $u_1,\ldots u_{k-3}$ be new variables. Consider

$$egin{aligned} c' &= ig(\ell_1 ee \ell_2 ee u_1ig) \, \wedge \, ig(\ell_3 ee
eg u_1 ee u_2ig) \ & \wedge \, ig(\ell_4 ee
eg u_2 ee u_3ig) \, \wedge \ & \cdots \wedge ig(\ell_{k-2} ee
eg u_{k-4} ee u_{k-3}ig) \, \wedge \, ig(\ell_{k-1} ee \ell_k ee
eg u_{k-3}ig) \,. \end{aligned}$$

Claim

c is satisfiable $\iff c'$ is satisfiable.

Another way to see it — reduce size clause by one & repeat :

$$c' = ig(\ell_1 ee \ell_2 \ldots ee \ell_{k-2} ee u_{k-3}ig) \wedge ig(\ell_{k-1} ee \ell_k ee
eg u_{k-3}ig)$$

$SAT \leq_P 3SAT \text{ (contd)}$

Clauses with more than 3 literals

Let $c=\ell_1\vee\cdots\vee\ell_k$. Let $u_1,\ldots u_{k-3}$ be new variables. Consider

$$egin{aligned} c' &= ig(\ell_1 ee \ell_2 ee u_1ig) \, \wedge \, ig(\ell_3 ee
eg u_1 ee u_2ig) \ & \wedge \, ig(\ell_4 ee
eg u_2 ee u_3ig) \, \wedge \ & \cdots \wedge ig(\ell_{k-2} ee
eg u_{k-4} ee u_{k-3}ig) \, \wedge \, ig(\ell_{k-1} ee \ell_k ee
eg u_{k-3}ig) \,. \end{aligned}$$

Claim

c is satisfiable $\iff c'$ is satisfiable.

Another way to see it — reduce size clause by one & repeat

$$c' = ig(\ell_1 ee \ell_2 \ldots ee \ell_{k-2} ee u_{k-3}ig) \wedge ig(\ell_{k-1} ee \ell_k ee
eg u_{k-3}ig)$$

$SAT \leq_{ m P} 3SAT$ (contd)

Clauses with more than 3 literals

Let $c=\ell_1\vee\cdots\vee\ell_k$. Let $u_1,\ldots u_{k-3}$ be new variables. Consider

$$egin{aligned} c' &= ig(\ell_1 ee \ell_2 ee u_1ig) \, \wedge \, ig(\ell_3 ee
eg u_1 ee u_2ig) \ & \wedge \, ig(\ell_4 ee
eg u_2 ee u_3ig) \, \wedge \ & \cdots \wedge ig(\ell_{k-2} ee
eg u_{k-4} ee u_{k-3}ig) \, \wedge \, ig(\ell_{k-1} ee \ell_k ee
eg u_{k-3}ig) \,. \end{aligned}$$

Claim

c is satisfiable $\iff c'$ is satisfiable.

Another way to see it — reduce size clause by one & repeat :

$$c' = ig(\ell_1 ee \ell_2 \ldots ee \ell_{k-2} ee u_{k-3}ig) \wedge ig(\ell_{k-1} ee \ell_k ee
eg u_{k-3}ig)$$
 .

Example

$$arphi = igl(
eg x_1 ee
eg x_4 igr) \wedge igl(x_1 ee
eg x_2 ee
eg x_3 igr) \ \wedge igl(
eg x_2 ee
eg x_3 ee x_4 ee x_1 igr) \wedge igl(x_1 igr) \,.$$

$$egin{aligned} \psi &= (\lnot x_1 \lor \lnot x_4 \lor z) \land (\lnot x_1 \lor \lnot x_4 \lor \lnot z) \ \land & (x_1 \lor \lnot x_2 \lor \lnot x_3) \ \land & (\lnot x_2 \lor \lnot x_3 \lor y_1) \land (x_4 \lor x_1 \lor \lnot y_1) \ \land & (x_1 \lor u \lor v) \land (x_1 \lor u \lor \lnot v) \ \land & (x_1 \lor \lnot u \lor v) \land (x_1 \lor \lnot u \lor \lnot v) \,. \end{aligned}$$

Example

$$arphi = igl(
eg x_1 ee
eg x_4 igr) \wedge igl(x_1 ee
eg x_2 ee
eg x_3 igr) \ \wedge igl(
eg x_2 ee
eg x_3 ee x_4 ee x_1 igr) \wedge igl(x_1 igr) \,.$$

$$\psi = (\neg x_1 \lor \neg x_4 \lor z) \land (\neg x_1 \lor \neg x_4 \lor \neg z) \ \land (x_1 \lor \neg x_2 \lor \neg x_3) \ \land (\neg x_2 \lor \neg x_3 \lor y_1) \land (x_4 \lor x_1 \lor \neg y_1 \ \land (x_1 \lor u \lor v) \land (x_1 \lor u \lor \neg v) \ \land (x_1 \lor \neg u \lor v) \land (x_1 \lor \neg u \lor \neg v).$$

Example

$$arphi = igl(
eg x_1 ee
eg x_4 igr) \wedge igl(x_1 ee
eg x_2 ee
eg x_3 igr) \ \wedge igl(
eg x_2 ee
eg x_3 ee x_4 ee x_1 igr) \wedge igl(x_1 igr) \,.$$

$$egin{aligned} \psi &= (\lnot x_1 \lor \lnot x_4 \lor z) \ \land \ (x_1 \lor \lnot x_2 \lor \lnot x_3) \ \land \ (\lnot x_2 \lor \lnot x_3 \lor y_1) \ \land \ (x_4 \lor x_1 \lor \lnot y_1) \ \land \ (x_1 \lor u \lor v) \land (x_1 \lor u \lor \lnot v) \ \land \ (x_1 \lor \lnot u \lor v) \land (x_1 \lor \lnot u \lor \lnot v) \ \end{aligned}$$

Example

$$arphi = igl(
eg x_1 ee
eg x_4 igr) \wedge igl(x_1 ee
eg x_2 ee
eg x_3 igr) \ \wedge igl(
eg x_2 ee
eg x_3 ee x_4 ee x_1 igr) \wedge igl(x_1 igr) \,.$$

$$egin{aligned} \psi &= (\lnot x_1 \lor \lnot x_4 \lor z) \ \land \ (x_1 \lor \lnot x_2 \lor \lnot x_3) \ &\land \ (\lnot x_2 \lor \lnot x_3 \lor y_1) \ \land \ (x_4 \lor x_1 \lor \lnot y_1) \ \land \ (x_1 \lor u \lor v) \land (x_1 \lor u \lor \lnot v) \ \land \ (x_1 \lor \lnot u \lor v) \land (x_1 \lor \lnot u \lor \lnot v) \,. \end{aligned}$$

Overall Reduction Algorithm

Reduction from SAT to 3SAT

Correctness (informal)

 φ is satisfiable $\iff \psi$ satisfiable

.. $\forall c \in \varphi$: new 3 CNF formula c' is equivalent to c

Overall Reduction Algorithm

Reduction from SAT to 3SAT

Correctness (informal)

```
arphi is satisfiable \iff \psi satisfiable ... \forall c \in arphi: new 3CNF formula c' is equivalent to c.
```

- 2SAT can be solved in poly time! (specifically, linear time!)
- No poly time reduction from SAT (or 3SAT) to 2SAT.
- If \exists reduction \Longrightarrow **SAT**, **3SAT** solvable in polynomial time.

Why the reduction from **3SAT** to **2SAT** fails?

 $(x \lor y \lor z)$: clause.

convert to collection of $2\mathrm{CNF}$ clauses. Introduce a fake variable lpha, and rewrite this as

$$(x \lor y \lor \alpha) \land (\neg \alpha \lor z)$$
 (bad! clause with 3 vars)

or $(xee lpha) \wedge (
eg lpha ee y ee z)$ (bad! clause with 3 vars).

- 2SAT can be solved in poly time! (specifically, linear time!)
- No poly time reduction from SAT (or 3SAT) to 2SAT.
- If \exists reduction \Longrightarrow **SAT**, **3SAT** solvable in polynomial time.

Why the reduction from **3SAT** to **2SAT** fails?

 $(x \lor y \lor z)$: clause.

convert to collection of $2\mathrm{CNF}$ clauses. Introduce a fake variable lpha, and rewrite this as

 $(x \lor y \lor \alpha) \land (\neg \alpha \lor z)$ (bad! clause with 3 vars) $(x \lor \alpha) \land (\neg \alpha \lor y \lor z)$ (bad! clause with 3 vars)

- 2SAT can be solved in poly time! (specifically, linear time!)
- No poly time reduction from SAT (or 3SAT) to 2SAT.
- If \exists reduction \Longrightarrow **SAT**, **3SAT** solvable in polynomial time.

Why the reduction from **3SAT** to **2SAT** fails?

 $(x \lor y \lor z)$: clause.

convert to collection of $2\mathrm{CNF}$ clauses. Introduce a fake variable α , and rewrite this as

 $(x \vee y \vee \alpha) \wedge (\neg \alpha \vee z)$

(bad! clause with 3 vars)

 $(x \lor \alpha) \land (\neg \alpha \lor y \lor z)$

(bad! clause with 3 vars)

- 2SAT can be solved in poly time! (specifically, linear time!)
- No poly time reduction from SAT (or 3SAT) to 2SAT.
- If \exists reduction \Longrightarrow **SAT**, **3SAT** solvable in polynomial time.

Why the reduction from **3SAT** to **2SAT** fails?

 $(x \lor y \lor z)$: clause.

convert to collection of $2\mathrm{CNF}$ clauses. Introduce a fake variable α , and rewrite this as

$$(x \lor y \lor \alpha) \land (\neg \alpha \lor z)$$
 (bad! clause with 3 vars) or $(x \lor \alpha) \land (\neg \alpha \lor y \lor z)$ (bad! clause with 3 vars).

- 2SAT can be solved in poly time! (specifically, linear time!)
- No poly time reduction from SAT (or 3SAT) to 2SAT.
- If \exists reduction \Longrightarrow **SAT**, **3SAT** solvable in polynomial time.

Why the reduction from **3SAT** to **2SAT** fails?

 $(x \lor y \lor z)$: clause.

convert to collection of $2\mathrm{CNF}$ clauses. Introduce a fake variable α , and rewrite this as

$$(x \lor y \lor \alpha) \land (\neg \alpha \lor z)$$
 (bad! clause with 3 vars) or $(x \lor \alpha) \land (\neg \alpha \lor y \lor z)$ (bad! clause with 3 vars).

(In animal farm language: **2SAT** good, **3SAT** bad.)

A challenging exercise: Given a **2SAT** formula show to compute its satisfying assignment...

(Hint: Create a graph with two vertices for each variable (for a variable x there would be two vertices with labels x=0 and x=1). For ever $2\mathrm{CNF}$ clause add two directed edges in the graph. The edges are implication edges: They state that if you decide to assign a certain value to a variable, then you must assign a certain value to some other variable.

Now compute the strong connected components in this graph, and continue from there...)

Independent Set

Independent Set

Instance: A graph G, integer k.

Question: Is there an independent set in G of size k?

$\overline{\mathsf{3SAT}} \leq_{\mathrm{P}} \mathsf{Independent} \mathsf{Set}$

The reduction $3SAT <_P$ Independent Set

Input: Given a 3 CNF formula φ

Goal: Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable.

 G_{arphi} should be constructable in time polynomial in size of arphi

- Importance of reduction: Although 3SAT is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.
- Notice: Handle only 3CNF formulas (fails for other kinds of boolean formulas).

$3SAT \leq_P Independent Set$

The reduction $3SAT <_P$ Independent Set

Input: Given a 3 CNF formula φ

Goal: Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable. G_{φ} should be constructable in time polynomial in size of φ

- Importance of reduction: Although 3SAT is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.
- Notice: Handle only 3CNF formulas (fails for other kinds of boolean formulas).

$3SAT \leq_P Independent Set$

The reduction **3SAT** $\leq_{\mathbf{P}}$ **Independent Set**

Input: Given a $3\mathrm{CNF}$ formula φ

Goal: Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable. G_{φ} should be constructable in time polynomial in size of φ

- Importance of reduction: Although 3SAT is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.
- Notice: Handle only 3CNF formulas (fails for other kinds of boolean formulas).

$3SAT \leq_P Independent Set$

The reduction **3SAT** $\leq_{\mathbf{P}}$ **Independent Set**

Input: Given a 3 CNF formula φ

Goal: Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable. G_{φ} should be constructable in time polynomial in size of φ

- Importance of reduction: Although 3SAT is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.
- Notice: Handle only 3CNF formulas (fails for other kinds of boolean formulas).

There are two ways to think about **3SAT**

- Assign 0/1 (false/true) to vars \implies formula evaluates to true.
 - Each clause evaluates to true.
- Pick literal from each clause & find assignment s.t. all true.

There are two ways to think about **3SAT**

Assign 0/1 (false/true) to vars \implies formula evaluates to true.

Each clause evaluates to true.

 Pick literal from each clause & find assignment s.t. all true.

There are two ways to think about **3SAT**

Assign 0/1 (false/true) to vars \implies formula evaluates to true.

Each clause evaluates to true.

Pick literal from each clause & find assignment s.t. all true.

There are two ways to think about **3SAT**

- Assign 0/1 (false/true) to vars \implies formula evaluates to true.
 - Each clause evaluates to true.
- Pick literal from each clause & find assignment s.t. all true.
 - ... Fail if two literals picked are in *conflict*,

There are two ways to think about **3SAT**

• Assign 0/1 (false/true) to vars \implies formula evaluates to true.

Each clause evaluates to true.

Pick literal from each clause & find assignment s.t. all true.

... Fail if two literals picked are in *conflict*, e.g. you pick x_i and $\neg x_i$

There are two ways to think about **3SAT**

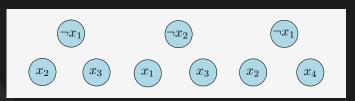
Assign 0/1 (false/true) to vars \implies formula evaluates to true.

Each clause evaluates to true.

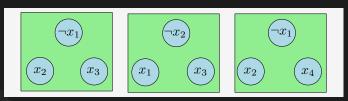
Pick literal from each clause & find assignment s.t. all true.

... Fail if two literals picked are in *conflict*, e.g. you pick x_i and $\neg x_i$

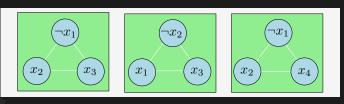
- \bigcirc G_{\circ} will have one vertex for each literal in a clause
 - Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- igcap Take k to be the number of clauses



- \bigcirc G_{ω} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Connect 2 vertices if they label complementary literals;
 this ensures that the literals corresponding to the independent set do not have a conflict
- $\, igcap \,$ Take k to be the number of clauses



- \bigcirc G_{\circ} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
 - Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- lacksquare Take $m{k}$ to be the number of clauses



- igcirc G_{ω} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
 - Take k to be the number of clauses

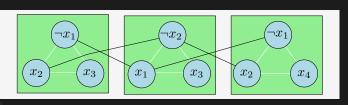


Figure:
$$\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$$

- $igspace G_{\omega}$ will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- lacksquare Take $m{k}$ to be the number of clauses

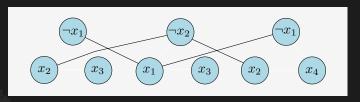


Figure: $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

Correctness

Proposition

arphi is satisfiable \iff G_{arphi} has an independent set of size k : number of clauses in arphi.

Proof.

- \Rightarrow a: truth assignment satisfying arphi
 - Pick one of the vertices, corresponding to true literals under a, from each triangle. This is an independent set of the appropriate size

Correctness

Proposition

arphi is satisfiable $\iff G_arphi$ has an independent set of size k : number of clauses in arphi .

Proof.

- \Rightarrow a: truth assignment satisfying arphi
 - Pick one of the vertices, corresponding to true literals under a, from each triangle. This is an independent set of the appropriate size

Correctness (contd)

Proposition

arphi is satisfiable $\iff G_{arphi}$ has an independent set of size k (= number of clauses in arphi).

Proof.

 $\Leftarrow S$: independent set in G_{arphi} of size k

- lacksquare must contain exactly one vertex from each clause
- lacksquare S cannot contain vertices labeled by conflicting clauses
- Thus, it is possible to obtain a truth assignment that makes in the literals in ${\cal S}$ true; such an assignment satisfies one literal in every clause

Lemma

- Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO ir a reduction.
- To prove $X \leq_P Y$: show a reduction FROM X TO Y ... show \exists algorithm for Y implies an algorithm for X.

Lemma

- Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.
- To prove $X \leq_P Y$: show a reduction FROM X TO Y ... show \exists algorithm for Y implies an algorithm for X.

Lemma

- Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.
- To prove $X ≤_P Y$: show a reduction FROM X TO Y... show ∃ algorithm for Y implies an algorithm for X.

Lemma

- Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.
- To prove X ≤_P Y: show a reduction FROM X TO Y ... show ∃ algorithm for Y implies an algorithm for X.

Part II

Definition of NP

Recap ...

Problems

- Clique
- Independent Set
- Vertex Cover

- Set Cover
- SAT
- 3SAT

Problems

- Clique
- Independent Set
- Vertex Cover

- Set Cover
- SAT
- 3SAT

Relationship

Independent Set \leq_P Clique

Problems

- Clique
 - Independent Set
- Vertex Cover

- Set Cover
- SAT
- 3SAT

Relationship

Independent Set \leq_P Clique

Problems

- Clique
- Independent Set
- Vertex Cover

- Set Cover
- SAT
- 3SAT

Relationship

Independent Set \leq_P Clique \leq_P Independent Set

Problems

Clique

- Set Cover

Independent Set

SAT

Vertex Cover

3SAT

Relationship

Independent Set \approx_P Clique

Problems

Clique

Set Cover

Independent Set

SAT

Vertex Cover

3SAT

Relationship

Independent Set \approx_P Clique

Independent Set \leq_P Vertex Cover

Problems

Clique

Set Cover

Independent Set

SAT

Vertex Cover

3SAT

Relationship

Independent Set $\approx_P Clique$

Independent Set \leq_P Vertex Cover \leq_P Independent Set

Problems

- Clique
- Independent Set
- Vertex Cover

- Set Cover
- SAT
- 3SAT

Relationship

Independent Set \approx_P Clique Independent Set \approx_P Vertex Cover

Problems

- Clique
 - Independent Set
- Vertex Cover

- Set Cover
- SAT
- 3SAT

Relationship

Vertex Cover \approx_P Independent Set \approx_P Clique

Problems

Clique

Set Cover

Independent Set

SAT

Vertex Cover

3SAT

Relationship

Vertex Cover \approx_P Independent Set \approx_P Clique 3SAT \leq_P SAT

Problems

Clique

Set Cover

Independent Set

SAT

Vertex Cover

3SAT

Relationship

Vertex Cover \approx_P Independent Set \approx_P Clique 3SAT \leq_P SAT \leq_P 3SAT

Problems

Clique

Set Cover

Independent Set

SAT

Vertex Cover

3SAT

Relationship

Vertex Cover \approx_P Independent Set \approx_P Clique 3SAT \approx_P SAT

Problems

Clique

- Set Cover

Independent Set

SAT

Vertex Cover

3SAT

Relationship

Vertex Cover \approx_P Independent Set \approx_P Clique 3SAT \approx_P SAT 3SAT $<_P$ Independent Set

Problems and Algorithms: Formal Approach

Decision Problems

- lacktriangle Problem Instance: Binary string s, with size |s|
- Problem: Set X of strings s.t. answer is "yes": members of X are YES instances of X.
 Strings not in X are NO instances of X.

Definition

- igcup algorithm for problem X if alg(s)= "yes" \iff $s\in X.$
- **alg** have polynomial running time $\exists p(\cdot)$ polynomial s.t. $\forall s, \ \mathsf{alg}(s)$ terminates in at most $O\Big(p\big(|s|\big)\Big)$ steps.

Problems and Algorithms: Formal Approach

Decision Problems

- lacktriangle Problem Instance: Binary string s, with size |s|
- Problem: Set X of strings s.t. answer is "yes": members of X are YES instances of X.
 Strings not in X are NO instances of X.

Definition

- lack alg: algorithm for problem X if $alg(s) = "yes" \iff s \in X$.
- igtiis alg have polynomial running time $\exists p(\cdot)$ polynomial s.t. $\forall s, \ \mathsf{alg}(s)$ terminates in at most $O\Big(pig(|s|\,ig)\Big)$ steps.

Polynomial Time

Definition

Polynomial time (denoted by **P**): class of all (decision) problems that have an algorithm that solves it in polynomial time.

Polynomial Time

Definition

Polynomial time (denoted by **P**): class of all (decision) problems that have an algorithm that solves it in polynomial time.

Example

Problems in **P** include

- $^{f 2}$ Is there a flow of value $\geq k$ in network G?
- Is there an assignment to variables to satisfy given linear constraints?

Efficiency hypothesis.

A problem X has an efficient algorithm

 $\iff X \in \mathbf{P}$, that is X has a polynomial time algorithm.

- Justifications
 - Robustness of definition to variations in machines.
 - A sound theoretical definition.
 - Most known polynomial time algorithms for "natural" problems have small polynomial running times.

Efficiency hypothesis.

A problem X has an efficient algorithm

 $\iff X \in \mathbf{P}$, that is X has a polynomial time algorithm.

- Justifications:
 - Robustness of definition to variations in machines.
 - A sound theoretical definition
 - Most known polynomial time algorithms for "natural" problems have small polynomial running times.

Efficiency hypothesis.

A problem X has an efficient algorithm

 $\iff X \in \mathbf{P}$, that is X has a polynomial time algorithm.

- Justifications:
 - Robustness of definition to variations in machines.
 - A sound theoretical definition.
 - Most known polynomial time algorithms for "natural" problems have small polynomial running times.

Efficiency hypothesis.

A problem X has an efficient algorithm

 $\iff X \in \mathsf{P}$, that is X has a polynomial time algorithm.

- Justifications:
 - Robustness of definition to variations in machines.
 - A sound theoretical definition.
 - Most known polynomial time algorithms for "natural" problems have small polynomial running times.

...with no known polynomial time algorithms

- Independent Set
- Vertex Cover
- Set Cover
- SAT
- 3SAT
- undecidable problems are way harder (no algorithm at all!)
- ...but many problems want to solve: similar to above.
 - Question: What is common to above problems?

...with no known polynomial time algorithms

- Independent Set
- Vertex Cover
- Set Cover
- SAT
- 3SAT
- undecidable problems are way harder (no algorithm at all!)
 - ...but many problems want to solve: similar to above.
 - Question: What is common to above problems?

...with no known polynomial time algorithms

- Independent Set
- Vertex Cover
- Set Cover
- SAT
- 3SAT
- undecidable problems are way harder (no algorithm at all!)
- ...but many problems want to solve: similar to above.
 - Question: What is common to above problems?

...with no known polynomial time algorithms

- Independent Set
- Vertex Cover
- Set Cover
- SAT
- 3SAT
- undecidable problems are way harder (no algorithm at all!)
- ...but many problems want to solve: similar to above.
- Question: What is common to above problems?

Above problems have the property:

Checkability

For any YES instance I_X of X:

- (A) there is a proof (or certificate) C.
- (B) Length of certificate $|C| \leq \operatorname{poly}(|I_X|)$
- (C) Given C, I_x : efficiently check that I_X is YES instance.
- Examples
 - ullet SAT formula arphi: proof is a satisfying assignment.
 - Independent Set in graph G and k: Certificate: a subset S of vertices.

Above problems have the property:

Checkability

For any YES instance I_X of X:

- (A) there is a proof (or certificate) C.
- (B) Length of certificate $|C| \leq \text{poly}(|I_X|)$.
- (C) Given C, I_x : efficiently check that I_X is YES instance.
- Examples
 - ullet SAT formula arphi: proof is a satisfying assignment.
 - Independent Set in graph G and k:

Above problems have the property:

Checkability

For any YES instance I_X of X:

- (A) there is a proof (or certificate) C.
- (B) Length of certificate $|C| \leq \text{poly}(|I_X|)$.
- (C) Given C, I_x : efficiently check that I_X is YES instance.

Examples

- lacksquare SAT formula $oldsymbol{arphi}$: proof is a satisfying assignment.
- Independent Set in graph G and k:
 Continuous a subset S of vertices

Above problems have the property:

Checkability

For any YES instance I_X of X:

- (A) there is a proof (or certificate) C.
- (B) Length of certificate $|C| \leq \text{poly}(|I_X|)$.
- (C) Given C, I_x : efficiently check that I_X is YES instance.
- Examples:
 - **SAT** formula φ : proof is a satisfying assignment.
 - Independent Set in graph G and k: Certificate: a subset S of vertices.

Above problems have the property:

Checkability

For any YES instance I_X of X:

- (A) there is a proof (or certificate) C.
- (B) Length of certificate $|C| \leq \text{poly}(|I_X|)$.
- (C) Given C, I_x : efficiently check that I_X is YES instance.
- Examples:
 - lacksquare SAT formula $oldsymbol{arphi}$: proof is a satisfying assignment.
 - Independent Set in graph G and k:

Certificate: a subset S of vertices

Above problems have the property:

Checkability

For any YES instance I_X of X:

- (A) there is a proof (or certificate) C.
- (B) Length of certificate $|C| \leq \text{poly}(|I_X|)$.
- (C) Given C, I_x : efficiently check that I_X is YES instance.
- Examples:
 - **SAT** formula φ : proof is a satisfying assignment.
 - Independent Set in graph *G* and *k*: Certificate: a subset *S* of vertices.

Certifiers

Definition

Algorithm $C(\cdot, \cdot)$ is *certifier* for problem $X: \forall s \in X$ there $\exists t$ such that C(s, t) = "YES", and conversely, if for some s and t, C(s, t) = "yes" then $s \in X$.

t is the certificate or proof for s.

Certifiers

Definition

Algorithm $C(\cdot, \cdot)$ is *certifier* for problem $X: \forall s \in X$ there $\exists t \text{ such that } C(s, t) = \text{"YES"}$, and conversely, if for some s and t, $C(s, t) = \text{"yes" then } s \in X$. t is the certificate or proof for s.

Certifiers

Definition

Algorithm $C(\cdot, \cdot)$ is *certifier* for problem $X: \forall s \in X$ there $\exists t$ such that C(s, t) = "YES", and conversely, if for some s and t, C(s, t) = "yes" then $s \in X$.

t is the certificate or proof for s.

Definition (Efficient Certifier.)

Certifier C is *efficient certifier* for X if there is a polynomial $p(\cdot)$ s.t. for every string s:

- $\star\ s\in X$ if and only if
- \star there is a string t:
 - $|t| \leq p(|s|),$
 - C(s,t) = "yes",
 - lacksquare and C runs in polynomial time.

Example: Independent Set

- Problem: Does G = (V, E) have an independent set of size $\geq k$?
 - \bigcirc Certificate: Set $S \subseteq V$.
 - Certifier: Check $|S| \ge k$ and no pair of vertices in S is connected by an edge.

Example: Vertex Cover

- Problem: Does G have a vertex cover of size < k?
 - \bigcirc Certificate: $S \subseteq V$.
 - Certifier: Check $|S| \leq k$ and that for every edge at least one endpoint is in S.

Example: **SAT**

- Problem: Does formula φ have a satisfying truth assignment?
 - Certificate: Assignment a of 0/1 values to each variable.
 - ullet Certifier: Check each clause under a and say "yes" if all clauses are true.

Example: Composites

Composite

Instance: A number s.

Question: Is the number s a composite?

Problem: Composite.

• Certificate: A factor $t \leq s$ such that $t \neq 1$ and $t \neq s$.

lacksquare Certifier: Check that t divides s.

Nondeterministic Polynomial Time

Definition

Nondeterministic Polynomial Time (denoted by **NP**) is the class of all problems that have efficient certifiers.

Nondeterministic Polynomial Time

Definition

Nondeterministic Polynomial Time (denoted by **NP**) is the class of all problems that have efficient certifiers.

Example

Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, and Composite are all examples of problems in NP.

- lacksquare A certifier is an algorithm C(I,c) with two inputs:
 - I: instance.
 - c: proof/certificate that the instance is indeed a YES instance of the given problem.
 - Think about $oldsymbol{C}$ as algorithm for original problem, if:
 - Given I, the algorithm guess (non-deterministically, and who knows how) the certificate c.
 - The algorithm now verifies the certificate c for the instance I.
 - Usually ${\sf NP}$ is described using Turing machines (gag).

- lacksquare A certifier is an algorithm C(I,c) with two inputs:
 - I: instance.
 - c: proof/certificate that the instance is indeed a YES instance of the given problem.
- lacksquare Think about C as algorithm for original problem, if:
 - Given I, the algorithm guess (non-deterministically, and who knows how) the certificate c.
 - The algorithm now verifies the certificate c for the instance I.
 - Usually NP is described using Turing machines (gag).

- lacksquare A certifier is an algorithm C(I,c) with two inputs:
 - I: instance.
 - c: proof/certificate that the instance is indeed a YES instance of the given problem.
- lacksquare Think about C as algorithm for original problem, if:
 - Given I, the algorithm guess (non-deterministically, and who knows how) the certificate c.
 - The algorithm now verifies the certificate c for the instance I.
 - Usually **NP** is described using Turing machines (gag).

- lacksquare A certifier is an algorithm C(I,c) with two inputs:
 - I: instance.
 - c: proof/certificate that the instance is indeed a YES instance of the given problem.
- lacksquare Think about C as algorithm for original problem, if:
 - Given I, the algorithm guess (non-deterministically, and who knows how) the certificate c.
 - The algorithm now verifies the certificate c for the instance I.
- $lue{}$ Usually $lue{\mathsf{NP}}$ is described using Turing machines (gag).

Asymmetry in Definition of NP

- Only YES instances have a short proof/certificate. NO instances need not have a short certificate.
- For example...
 - Example
 - **SAT** formula φ . No easy way to prove that φ is NOT satisfiable!
- More on this and co-NP later on.

Asymmetry in Definition of NP

- Only YES instances have a short proof/certificate. NO instances need not have a short certificate.
- For example...

Example

SAT formula φ . No easy way to prove that φ is NOT satisfiable!

More on this and co-NP later on.

Asymmetry in Definition of NP

- Only YES instances have a short proof/certificate. NO instances need not have a short certificate.
- For example...

Example

SAT formula φ . No easy way to prove that φ is NOT satisfiable!

More on this and co-NP later on.

Proposition

 $P \subset NP$.

For a problem in P no need for a certificate!

Proof.

Consider problem $X \in \mathsf{P}$ with algorithm alg . Need to demonstrate that X has an efficient certifier:

- Certifier C (input s, t): runs alg(s) and returns its answer.
- lacksquare C runs in polynomial time.
- lacktriangledown If $s \in X$, then for every t, C(s,t) = "YES".
- lacktriangledown If $s \not\in X$, then for every t, C(s,t) = "NO".

Proposition

 $P \subset NP$.

For a problem in **P** no need for a certificate!

Proof.

Consider problem $X \in \mathsf{P}$ with algorithm alg . Need to demonstrate that X has an efficient certifier:

- Certifier C (input s, t): runs $\mathbf{alg}(s)$ and returns its answer.
- C runs in polynomial time.
- lacktriangledown If $s \in X$, then for every t, C(s,t) = "YES".
- lacktriangledown If $s \not\in X$, then for every t, $C(s,t) = "\mathrm{NO}"$.

Proposition

 $P \subset NP$.

For a problem in **P** no need for a certificate!

Proof.

Consider problem $X \in \mathbf{P}$ with algorithm alg. Need to demonstrate that X has an efficient certifier:

- Certifier C (input s, t): runs alg(s) and returns its answer.
- C runs in polynomial time.
- lacksquare If $s\in X$, then for every t, $C(s,t)= ext{"YES"}.$
- \bigcirc If $s
 ot \in X$, then for every t, $C(s,t) = ext{"NO"}.$

Proposition

 $P \subset NP$.

For a problem in **P** no need for a certificate!

Proof.

Consider problem $X \in \mathbf{P}$ with algorithm alg. Need to demonstrate that X has an efficient certifier:

- Certifier C (input s, t): runs $\operatorname{alg}(s)$ and returns its answer.
- lacksquare C runs in polynomial time.
- $ilde{f D}$ If $s\in X$, then for every t, $C(s,t)= ext{"YES"}.$
-) If $s
 ot \in X$, then for every t, $C(s,t) = ext{"NO"}.$

P versus NP

Proposition

 $P \subset NP$.

For a problem in **P** no need for a certificate!

Proof.

Consider problem $X \in \mathbf{P}$ with algorithm alg. Need to demonstrate that X has an efficient certifier:

- Certifier C (input s, t): runs alg(s) and returns its answer.
- C runs in polynomial time.
- \bigcirc If $s \in X$, then for every t, C(s,t) = "YES".
 - \bigcirc If $s
 ot \in X$, then for every t, $C(s,t) = ext{"NO"}$

P versus NP

Proposition

 $P \subset NP$.

For a problem in **P** no need for a certificate!

Proof.

Consider problem $X \in \mathbf{P}$ with algorithm alg. Need to demonstrate that X has an efficient certifier:

- Certifier C (input s, t): runs alg(s) and returns its answer.
- C runs in polynomial time.
- \bigcirc If $s \in X$, then for every t, C(s,t) = "YES".
- lacksquare If $s \not\in X$, then for every t, C(s,t) = "NO".

Exponential Time

Definition

Exponential Time (denoted **EXP**) is the collection of all problems that have an algorithm which on input s runs in exponential time, i.e., $O(2^{\text{poly}(|s|)})$.

Example: $O(2^n)$, $O(2^{n \log n})$, $O(2^{n^3})$, ...

Exponential Time

Definition

Exponential Time (denoted **EXP**) is the collection of all problems that have an algorithm which on input s runs in exponential time, i.e., $O(2^{\text{poly}(|s|)})$.

Example: $O(2^n)$, $O(2^{n\log n})$, $O(2^{n^3})$, \dots

NP versus EXP

Proposition

 $NP \subset EXP$.

Proof.

Let $X \in \mathsf{NP}$ with certifier C. Need to design an exponential time algorithm for X.

- For every t, with $|t| \leq p(|s|)$ run C(s,t); answer "yes" if any one of these calls returns "yes".
- lacksquare The above algorithm correctly solves X (exercise).
- Algorithm runs in $O(q(|s|+|p(s)|)2^{p(|s|)})$, where q is the running time of C.

Examples

- SAT: try all possible truth assignment to variables.
- Independent Set: try all possible subsets of vertices.
- Vertex Cover: try all possible subsets of vertices.

Is NP efficiently solvable?

We know $P \subseteq NP \subseteq EXP$.

Is **NP** efficiently solvable?

We know $P \subseteq NP \subseteq EXP$.

Big Question

Is there are problem in NP that does not belong to P? Is P = NP?

- Many important optimization problems can be solved efficiently.
- ullet The RSA cryptosystem can be broken.
- No security on the web.
- No e-commerce . . .
- Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

- Many important optimization problems can be solved efficiently.
- lacksquare The ${
 m RSA}$ cryptosystem can be broken.
- No security on the web.
- No e-commerce . . .
- Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

- Many important optimization problems can be solved efficiently.
- lacksquare The ${
 m RSA}$ cryptosystem can be broken.
- No security on the web.
- No e-commerce . . .
- Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

- Many important optimization problems can be solved efficiently.
- lacksquare The ${
 m RSA}$ cryptosystem can be broken.
- No security on the web.
- No e-commerce . . .
- Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

- Many important optimization problems can be solved efficiently.
- lacksquare The ${
 m RSA}$ cryptosystem can be broken.
- No security on the web.
- No e-commerce . . .
- Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

P versus NP

Status

Relationship between \mathbf{P} and \mathbf{NP} remains one of the most important open problems in mathematics/computer science.

Consensus: Most people feel/believe $P \neq NP$.

Resolving **P** versus **NP** is a Clay Millennium Prize Problem. You can win a million dollars in addition to a Turing award and major fame!

Part III

Not for lecture: Converting any boolean formula into CNF

The dark art of formula conversion into CNF

Consider an arbitrary boolean formula ϕ defined over k variables. To keep the discussion concrete, consider the formula $\phi \equiv x_k = x_i \wedge x_j$. We would like to convert this formula into an equivalent CNF formula.

Step 1

Build a truth table for the boolean formula.

			value of		
x_k	x_i	x_{j}	$\mid x_k = x_i \wedge x_j \mid$		
0	0	0	1		
0	0	1	1		
0	1	0	1		
0	1	1	0		
1	0	0	0		
1	0	1	0		
1	1	0	0		
1	1	1	1		

Step 1.5 - understand what a single CNF clause represents

Given an assignment, say, $x_k=0$, $x_i=0$ and $x_j=1$, consider the CNF clause $x_k\vee x_i\vee \overline{x_j}$ (you negate a variable if it is assigned one). Its truth table is

x_k	x_i	x_{j}	$\overline{x_k ee x_i ee \overline{x_j}}$ Observe that a single clau	ıse
0	0	0	1 assigns zero to one row, a	ind
0	0	1	0 one everywhere else.	An
0	1	0	1 conjunction of several su	ıch
0	1	1	1 clauses, as such, would	
1	0	0	$_{ m 1}$ $_{ m s}$ ult in a formula that is 0	
1	0	1	$rac{1}{1}$ all the rows that correspor	
1	1	0	1 to these clauses, and one of	ev-
1	1	1	1 erywhere else.	

Step 2

Write down CNF clause for every row in the table that is zero.

x_k	x_i	x_{j}	$x_k = x_i \wedge x_j \mid$	CNF clause
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	0	$x_k ee \overline{x_i} ee \overline{x_j}$
1	0	0	0	$\overline{ x_k \lor x_i \lor x_j }$
1	0	1	0	$\overline{x_k} ee x_i ee \overline{x_j}$
1	1	0	0	$\overline{x_k \vee \overline{x_i} \vee x_j}$
1	1	1	1	

The conjunction (i.e., and) of all these clauses is clearly equivalent to the original formula. In this case $\psi \equiv (x_k \vee \overline{x_i} \vee \overline{x_j}) \wedge (\overline{x_k} \vee x_i \vee x_j) \wedge (\overline{x_k} \vee x_i \vee \overline{x_j}) \wedge (\overline{x_k} \vee \overline{x_i} \vee x_i)$

Step 3 - simplify if you want to

Using that $(x \lor y) \land (x \lor \overline{y}) = x$, we have that:

- $(\overline{x_k}ee x_iee x_j)\wedge (\overline{x_k}ee x_iee \overline{x_j})$ is equivalent to $(\overline{x_k}ee x_i).$
- $(\overline{x_k} \lor x_i \lor x_j) \land (\overline{x_k} \lor \overline{x_i} \lor x_j)$ is equivalent to $(\overline{x_k} \lor x_j)$.

Using the above two observation, we have that our formula
$$\psi \equiv (x_k \vee \overline{x_i} \vee \overline{x_j}) \wedge (\overline{x_k} \vee x_i \vee x_j) \wedge (\overline{x_k} \vee x_i \vee \overline{x_j}) \wedge (\overline{x_k} \vee \overline{x_i} \vee x_j)$$
 is equivalent to $\psi \equiv (x_k \vee \overline{x_i} \vee \overline{x_j}) \wedge (\overline{x_k} \vee x_i) \wedge (\overline{x_k} \vee x_j)$.

Lemma

We conclude:

The formula $x_k = x_i \wedge x_j$ is equivalent to the CNF formula $\psi \equiv (x_k \vee \overline{x_i} \vee \overline{x_j}) \wedge (\overline{x_k} \vee x_i) \wedge (\overline{x_k} \vee x_j)$.