Chapter 24

Approximate Max Cut

CS 573: Algorithms, Fall 2013 November 19, 2013

24.1 Normal distribution

24.1.0.1 Normal distribution – proof

$$\tau^{2} = \left(\int_{x=-\infty}^{\infty} \exp\left(-\frac{x^{2}}{2}\right) \mathrm{d}x\right)^{2}$$

$$= \int_{(x,y)\in\mathbb{R}^{2}} \exp\left(-\frac{x^{2}+y^{2}}{2}\right) \mathrm{d}x\mathrm{d}y \quad \text{Change of vars:} \begin{array}{l} x = r\cos\alpha, \\ y = r\sin\alpha \end{array}$$

$$= \int_{\alpha=0}^{2\pi} \int_{r=0}^{\infty} \exp\left(-\frac{r^{2}}{2}\right) \left| \det\left(\frac{\frac{\partial r\cos\alpha}{\partial r}}{\frac{\partial r\sin\alpha}{\partial r}} - \frac{\frac{\partial r\cos\alpha}{\partial \alpha}}{\frac{\partial r\sin\alpha}{\partial \alpha}}\right) \right| \mathrm{d}r \,\mathrm{d}\alpha$$

$$= \int_{\alpha=0}^{2\pi} \int_{r=0}^{\infty} \exp\left(-\frac{r^{2}}{2}\right) \left| \det\left(\frac{\cos\alpha - r\sin\alpha}{\sin\alpha - r\cos\alpha}\right) \right| \mathrm{d}r \,\mathrm{d}\alpha$$

$$= \int_{\alpha=0}^{2\pi} \int_{r=0}^{\infty} \exp\left(-\frac{r^{2}}{2}\right) r \,\mathrm{d}r \,\mathrm{d}\alpha$$

$$= \int_{\alpha=0}^{2\pi} \left[-\exp\left(-\frac{r^{2}}{2}\right) \right]_{r=0}^{\infty} \mathrm{d}\alpha = \int_{\alpha=0}^{2\pi} 1 \,\mathrm{d}\alpha = 2\pi$$

24.1.0.2 Multidimensional normal distribution

- (A) A random variable X has *normal distribution* if $\mathbf{Pr}[X=x] = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$.
- (B) $X \sim N(0, 1)$.
- (C) A vector $\mathbf{x} = (x_1, \dots, x_n)$ has d-dimensional normal distributed (i.e., $\mathbf{v} \sim N^n(0, 1)$ if $v_1, \dots, v_n \tilde{N}(0, 1)$
- (D) Consider a vector $\mathbf{v} \in \mathbb{R}^n$, such that $\|\mathbf{v}\| = 1$. Let $\mathbf{x} \sim N^n(0, 1)$. Then $z = \langle \mathbf{v}, \mathbf{x} \rangle$ has normal distribution!

24.2 Approximate Max Cut

24.2.1 The movie so far...

24.2.1.1 Summary: It sucks.

- (A) Seen: Examples of using rounding techniques for approximation.
- (B) So far: Relaxed optimization problem is LP.
- (C) But... We know how to solve *convex programming*.
- (D) Convex programming \gg LP.
- (E) Convex programming can be solved in polynomial time.
- (F) Solving convex programming is outside scope: assume doable in polynomial time.
- (G) Today's lecture:
 - (A) Revisit **MAX CUT**.
 - (B) Show how to relax it into semi-definite programming problem.
 - (C) Solve relaxation.
 - (D) Show how to round the relaxed problem.

24.2.2 Problem Statement: MAX CUT

24.2.2.1 Since this is a theory class, we will define our problem.

- (A) G = (V, E): undirected graph.
- (B) $\forall ij \in \mathsf{E}$: nonnegative weights ω_{ij} .
- (C) **MAX CUT** (*maximum cut problem*): Compute set $S \subseteq V$ maximizing weight of edges in cut (S, \overline{S}) .
- (D) $ij \notin E \implies \omega_{ij} = O.$

(E) **weight** of cut:
$$w(S, \overline{S}) = \sum_{i \in S, \ j \in \overline{S}} \omega_{ij}$$
.

(F) Known: problem is **NP-Complete**. Hard to approximate within a certain constant.

24.2.3 Max cut as integer program

24.2.3.1 because what can go wrong?

- (A) Vertices: $V = \{1, ..., n\}.$
- (B) ω_{ij} : non-negative weights on edges.
- (C) max cut $w(S, \overline{S})$ is computed by the integer quadratic program:

(Q)
$$\max \quad \frac{1}{2} \sum_{i < j} \omega_{ij} (1 - y_i y_j)$$

subject to: $y_i \in \{-1, 1\}$ $\forall i \in \mathsf{V}.$

(D) Set:
$$S = \left\{ i \mid y_i = 1 \right\}.$$

(E) $\omega\left(S, \overline{S}\right) = \frac{1}{2} \sum_{i < j} \omega_{ij} (1 - y_i y_j).$

24.2.4Relaxing -1, 1...

24.2.4.1Because 1 and -1 are just vectors.

- (A) Solving quadratic integer programming is of course **NP-Hard**.
- (B) Want a relaxation...
- (C) 1 and -1 are just roots of unity.
- (D) FFT: All roots of unity are a circle.
- (E) In higher dimensions: All unit vectors are points on unit sphere.
- (F) y_i are just unit vectors.
- (G) $y_i * y_j$ is replaced by dot product $\langle y_i, y_j \rangle$.

24.2.5Quick reminder about dot products

24.2.5.1Because not everybody remembers what they did in kindergarten

(A) $\mathbf{x} = (x_1, \dots, x_d), \, \mathbf{y} = (y_1, \dots, y_d).$

- (B) $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{d} x_i y_i.$ (C) For a vector $\mathbf{v} \in \mathbb{R}^d$: $\|\mathbf{v}\|^2 = \langle \mathbf{v}, \mathbf{v} \rangle.$
- (D) $\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x}\| \|\mathbf{y}\| \cos \alpha$. α : Angle between **x** and **y**.

(E) $\mathbf{x} \perp \mathbf{y}$: $\langle \mathbf{x}, \mathbf{y} \rangle = 0$. (F) $\mathbf{x} = \mathbf{y}$ and $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$: $\langle \mathbf{x}, \mathbf{y} \rangle = 1$. (G) $\mathbf{x} = -\mathbf{y}$ and $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$: $\langle \mathbf{x}, \mathbf{y} \rangle = -1$.

24.2.6Relaxing -1, 1...

24.2.6.1Because 1 and -1 are just vectors.

(A) max cut $w(S, \overline{S})$ as integer quadratic program:

(Q)
$$\max \quad \frac{1}{2} \sum_{i < j} \omega_{ij} (1 - y_i y_j)$$

subject to: $y_i \in \{-1, 1\}$ $\forall i \in \mathsf{V}.$

(B) Relaxed semi-definite programming version:

(P)
$$\max \quad \gamma = \frac{1}{2} \sum_{i < j} \omega_{ij} \left(1 - \langle v_i, v_j \rangle \right)$$

subject to: $v_i \in \mathbb{S}^{(n)} \quad \forall i \in V,$

 $\mathbb{S}^{(n)}$: *n* dimensional unit sphere in \mathbb{R}^{n+1} .

24.2.6.2 Discussion...

(A) semi-definite programming: special case of convex programming.

- (B) Can be solved in polynomial time.
- (C) Solve within a factor of $(1 + \varepsilon)$ of optimal, for any $\varepsilon > 0$, in polynomial time.
- (D) Intuition: vectors of one side of the cut, and vertices on the other sides, would have faraway vectors.

24.2.6.3 Approximation algorithm

- (A) Given instance, compute SDP (P).
- (B) Compute optimal solution for (P).
- (C) generate a random vector \vec{r} on the unit sphere $\mathbb{S}^{(n)}$.
- (D) induces hyperplane $h \equiv \langle \vec{r}, \mathbf{x} \rangle = 0$
- (E) assign all vectors on one side of h to S, and rest to \overline{S} .

$$S = \left\{ v_i \mid \langle v_i, \vec{r} \rangle \ge 0 \right\}.$$

24.2.7 Analysis

24.2.7.1 Analysis...

Intuition: with good probability, vectors in the solution of (P) that have large angle between them would be separated by cut.

Lemma 24.2.1. $\Pr\left[\operatorname{sign}(\langle v_i, \vec{r} \rangle) \neq \operatorname{sign}(\langle v_j, \vec{r} \rangle)\right] = \frac{1}{\pi} \operatorname{arccos}(\langle v_i, v_j \rangle) = \frac{\tau}{\pi}.$

24.2.7.2 Proof...

- (A) Think v_i, v_j and \vec{r} as being in the plane.
- (B) ... reasonable assumption!
 - (A) g: plane spanned by v_i and v_j .
 - (B) Only care about signs of $\langle v_i, \vec{r} \rangle$ and $\langle v_j, \vec{r} \rangle$
 - (C) can be decided by projecting \vec{r} on g... and normalizing it to have length 1.
 - (D) Sphere is symmetric \implies sampling \vec{r} from $\mathbb{S}^{(n)}$ projecting it down to g, and then normalizing it

 \equiv choosing uniformly a vector from the unit circle in g

$$\tau = \arccos\left(\langle v_i, v_j \rangle\right)$$

24.2.7.4 Proof...

- (A) Think v_i, v_j and \vec{r} as being in the plane.
- (B) $\operatorname{sign}(\langle v_i, \vec{r} \rangle) \neq \operatorname{sign}(\langle v_j, \vec{r} \rangle)$ happens only if \vec{r} falls in the double wedge formed by the lines perpendicular to v_i and v_j .
- (C) angle of double wedge = angle τ between v_i and v_j .
- (D) v_i and v_j are unit vectors: $\langle v_i, v_j \rangle = \cos(\tau)$. $\tau = \angle v_i v_j$.
- (E) Thus,

$$\mathbf{Pr}\left[\operatorname{sign}(\langle v_i, \vec{r} \rangle) \neq \operatorname{sign}(\langle v_j, \vec{r} \rangle)\right] = \frac{2\tau}{2\pi}$$
$$= \frac{1}{\pi} \cdot \operatorname{arccos}(\langle v_i, v_j \rangle),$$

as claimed.

24.2.7.5Theorem

Theorem 24.2.2. Let W be the random variable which is the weight of the cut generated by the algorithm. We have

$$\mathbf{E}[W] = \frac{1}{\pi} \sum_{i < j} \omega_{ij} \arccos(\langle v_i, v_j \rangle).$$

24.2.7.6 Proof

- (A) X_{ij} : indicator variable = 1 \iff edge ij is in the cut.
- (B) $\mathbf{E}[X_{ij}] = \mathbf{Pr}\left[\operatorname{sign}(\langle v_i, \vec{r} \rangle) \neq \operatorname{sign}(\langle v_j, \vec{r} \rangle)\right]$ $= \frac{1}{\pi} \arccos(\langle v_i, v_j \rangle), \text{ by lemma.}$ (C) $W = \sum_{i < j} \omega_{ij} X_{ij}, \text{ and by linearity of expectation...}$

$$\mathbf{E}[W] = \sum_{i < j} \omega_{ij} \mathbf{E}[X_{ij}] = \frac{1}{\pi} \sum_{i < j} \omega_{ij} \arccos\left(\langle v_i, v_j \rangle\right)$$

24.2.7.7 Lemma

Lemma 24.2.3. For $-1 \le y \le 1$, we have $\frac{\arccos(y)}{\pi} \ge \alpha \cdot \frac{1}{2}(1-y)$, where $\alpha = \min_{0 \le \psi \le \pi} \frac{2}{\pi} \frac{\psi}{1-\cos(\psi)}$.

Proof: Set $y = \cos(\psi)$. The inequality now becomes $\frac{\psi}{\pi} \ge \alpha \frac{1}{2}(1 - \cos\psi)$. Reorganizing, the inequality becomes $\frac{2}{\pi} \frac{\psi}{1 - \cos\psi} \ge \alpha$, which trivially holds by the definition of α .

24.2.7.8 Lemma

Lemma 24.2.4. $\alpha > 0.87856$.

Proof: Using simple calculus, one can see that α achieves its value for $\psi = 2.331122...$, the nonzero root of $\cos \psi + \psi \sin \psi = 1$.

24.2.7.9 Result

Theorem 24.2.5. The above algorithm computes in expectation a cut with total weight $\alpha \cdot \text{Opt} \geq 0.87856\text{Opt}$, where Opt is the weight of the maximal cut.

Proof: Consider the optimal solution to (P), and lets its value be $\gamma \geq Opt$. By lemma:

$$\mathbf{E}[W] = \frac{1}{\pi} \sum_{i < j} \omega_{ij} \arccos(\langle v_i, v_j \rangle)$$
$$\geq \sum_{i < j} \omega_{ij} \alpha \frac{1}{2} (1 - \langle v_i, v_j \rangle) = \alpha \gamma \ge \alpha \cdot \text{Opt.} \quad \blacksquare$$

24.3 Semi-definite programming

24.3.0.10 SDP: Semi-definite programming

- (A) $x_{ij} = \langle v_i, v_j \rangle$.
- (B) $M: n \times n$ matrix with x_{ij} as entries.
- (C) $x_{ii} = 1$, for $i = 1, \ldots, n$.
- (D) V: matrix having vectors v_1, \ldots, v_n as its columns.
- (E) $M = V^T V$.
- (F) $\forall v \in \mathbb{R}^n$: $v^T M v = v^T A^T A v = (Av)^T (Av) \ge 0$.
- (G) M is **positive semidefinite** (PSD).
- (H) Fact: Any PSD matrix P can be written as $P = B^T B$.
- (I) Furthermore, given such a matrix P of size $n \times n$, we can compute B such that $P = B^T B$ in $O(n^3)$ time.
- (J) Known as *Cholesky decomposition*.

24.3.0.11 SDP: Semi-definite programming

- (A) If **PSD** $P = B^T B$ has a diagonal of 1
- (B) \implies *B* has columns which are unit vectors.
- (C) If solve SDP (P), get back semi-definite matrix...
- (D) ... recover the vectors realizing the solution (i.e., compute B)
- (E) Now, do the rounding.
- (F) SDP (P) can be restated as

(SD)
$$\max \quad \frac{1}{2} \sum_{i < j} \omega_{ij} (1 - x_{ij})$$

subject to:
$$x_{ii} = 1 \quad \text{for } i = 1, \dots, n$$
$$\left(x_{ij} \right)_{i=1,\dots,n, j=1,\dots,n} \text{ is a PSD matrix.}$$

24.3.0.12 SDP: Semi-definite programming

(A) SDP is

(SD)
$$\max \quad \frac{1}{2} \sum_{i < j} \omega_{ij} (1 - x_{ij})$$

subject to:
$$x_{ii} = 1 \quad \text{for } i = 1, \dots, n$$
$$\left(x_{ij} \right)_{i=1,\dots,n, j=1,\dots,n} \text{ is a PSD matrix}$$

- (B) find optimal value of a linear function...
- (C) ... over a set which is the intersection of:
 - (A) linear constraints, and
 - (B) set of positive semi-definite matrices.

24.3.0.13 Lemma

Lemma 24.3.1. Let \mathcal{U} be the set of $n \times n$ positive semidefinite matrices. The set \mathcal{U} is convex.

Proof: Consider $A, B \in \mathcal{U}$, and observe that for any $t \in [0, 1]$, and vector $v \in \mathbb{R}^n$, we have:

$$v^{T}(tA + (1-t)B)v = v^{T}(tAv + (1-t)Bv)$$

= $tv^{T}Av + (1-t)v^{T}Bv \ge 0 + 0 \ge 0,$

since A and B are positive semidefinite.

24.3.0.14 More on positive semidefinite matrices

- (A) **PSD** matrices corresponds to ellipsoids.
- (B) $x^T A x = 1$: the set of vectors solve this equation is an ellipsoid.
- (C) Eigenvalues of a PSD are all non-negative real numbers.
- (D) Given matrix: can in polynomial time decide if it is PSD.
- (E) ... by computing the eigenvalues of the matrix.
- (F) \implies SDP: optimize a linear function over a convex domain.
- (G) SDP can be solved using interior point method, or the ellipsoid method.
- (H) See Boyd and Vandenberghe [2004], Grötschel et al. [1993] for more details.
- (I) Membership oracle: ability to decide in polynomial time, given a solution, whether its feasible or not.

24.4 Bibliographical Notes

24.4.0.15 Bibliographical Notes

- (A) Approx. algorithm presented by Goemans and Williamson Goemans and Williamson [1995].
- (B) Håstad Håstad [2001] showed that MAX CUT can not be approximated within a factor of $16/17 \approx 0.941176$.
- (C) Khot et al. [2004] showed a hardness result that matches the constant of Goemans and Williamson (i.e., one can not approximate it better than α , unless $\mathbf{P} = \mathbf{NP}$).

24.4.0.16 Bibliographical Notes

- (A) Relies on two conjectures: "Unique Games Conjecture" and "Majority is Stablest".
- (B) "Majority is Stablest" conjecture was proved by Mossel et al. [2005].
- (C) Not clear if the "Unique Games Conjecture" is true, see the discussion in Khot et al. [2004].
- (D) Goemans and Williamson work spurred wide research on using **SDP** for approximation algorithms.

Bibliography

- S. Boyd and L. Vandenberghe. *Convex Optimization*. Cambridge, 2004. URL http://www.stanford.edu/~boyd/cvxbook/.
- M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach., 42(6):1115–1145, November 1995.
- M. Grötschel, L. Lovász, and A. Schrijver. *Geometric Algorithms and Combinatorial Optimization*, volume 2 of *Algorithms and Combinatorics*. Springer-Verlag, Berlin Heidelberg, 2nd edition, 1993.
- J. Håstad. Some optimal inapproximability results. J. Assoc. Comput. Mach., 48(4):798–859, 2001. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/502090.502098.
- S. Khot, G. Kindler, E. Mossel, and R. O'Donnell. Optimal inapproximability results for max cut and other 2-variable csps. In *Proc. 45th Annu. IEEE Sympos. Found. Comput. Sci.* (FOCS), pages 146–154, 2004. To appear in SICOMP.
- E. Mossel, R. O'Donnell, and K. Oleszkiewicz. Noise stability of functions with low influences invariance and optimality. In *Proc. 46th Annu. IEEE Sympos. Found. Comput. Sci.* (FOCS), pages 21–30, 2005.