
Chapter 24

Approximate Max Cut

CS 573: Algorithms, Fall 2013
November 19, 2013

24.1 Normal distribution
24.1.0.1 Normal distribution – proof

τ 2 =
(∫ ∞

x=−∞
exp

(
−x2

2

)
dx
)2

=
∫

(x,y)∈IR2
exp

(
−x2 + y2

2

)
dxdy Change of vars: x = r cosα,

y = r sinα

=
∫ 2π

α=0

∫ ∞

r=0
exp

(
−r2

2

) ∣∣∣∣∣det
(
∂r cosα
∂r

∂r cosα
∂α

∂r sinα
∂r

∂r sinα
∂α

)∣∣∣∣∣ dr dα

=
∫ 2π

α=0

∫ ∞

r=0
exp

(
−r2

2

) ∣∣∣∣∣det
(

cosα −r sinα
sinα r cosα

)∣∣∣∣∣ dr dα

=
∫ 2π

α=0

∫ ∞

r=0
exp

(
−r2

2

)
r dr dα

=
∫ 2π

α=0

[
− exp

(
−r2

2

)]∞

r=0
dα =

∫ 2π

α=0
1 dα = 2π

24.1.0.2 Multidimensional normal distribution

(A) A random variable X has normal distribution if Pr[X = x] = 1√
2π exp(−x2/2).

(B) X ∼ N(0, 1).
(C) A vector x = (x1, . . . , xn) has d-dimensional normal distributed (i.e., v ∼ Nn(0, 1) if v1, . . . , vnÑ(0, 1)
(D) Consider a vector v ∈ IRn, such that ∥v∥ = 1. Let x ∼ Nn(0, 1). Then z = ⟨v,x⟩ has normal

distribution!

1



24.2 Approximate Max Cut

24.2.1 The movie so far...
24.2.1.1 Summary: It sucks.

(A) Seen: Examples of using rounding techniques for approximation.
(B) So far: Relaxed optimization problem is LP.
(C) But... We know how to solve convex programming.
(D) Convex programming ≫ LP.
(E) Convex programming can be solved in polynomial time.
(F) Solving convex programming is outside scope: assume doable in polynomial time.
(G) Today’s lecture:

(A) Revisit MAX CUT.
(B) Show how to relax it into semi-definite programming problem.
(C) Solve relaxation.
(D) Show how to round the relaxed problem.

24.2.2 Problem Statement: MAX CUT
24.2.2.1 Since this is a theory class, we will define our problem.

(A) G = (V,E): undirected graph.
(B) ∀ij ∈ E: nonnegative weights ωij.
(C) MAX CUT (maximum cut problem): Compute set S ⊆ V maximizing weight of edges in cut(

S, S
)
.

(D) ij /∈ E =⇒ ωij = O.
(E) weight of cut: w

(
S, S

)
=

∑
i∈S, j∈S

ωij.

(F) Known: problem is NP-Complete.
Hard to approximate within a certain constant.

24.2.3 Max cut as integer program
24.2.3.1 because what can go wrong?

(A) Vertices: V = {1, . . . , n}.
(B) ωij: non-negative weights on edges.
(C) max cut w(S, S) is computed by the integer quadratic program:

(Q) max 1
2
∑
i<j

ωij(1 − yiyj)

subject to: yi ∈ {−1, 1} ∀i ∈ V.

(D) Set: S =
{
i
∣∣∣ yi = 1

}
.

(E) ω
(
S, S

)
= 1

2
∑
i<j ωij(1 − yiyj).

2



24.2.4 Relaxing −1, 1...
24.2.4.1 Because 1 and −1 are just vectors.

(A) Solving quadratic integer programming is of course NP-Hard.
(B) Want a relaxation...
(C) 1 and −1 are just roots of unity.
(D) FFT: All roots of unity are a circle.
(E) In higher dimensions: All unit vectors are points on unit sphere.
(F) yi are just unit vectors.
(G) yi ∗ yj is replaced by dot product ⟨yi, yj⟩.

24.2.5 Quick reminder about dot products
24.2.5.1 Because not everybody remembers what they did in kindergarten

(A) x = (x1, . . . , xd), y = (y1, . . . , yd).
(B) ⟨x,y⟩ = ∑d

i=1 xiyi.
(C) For a vector v ∈ IRd: ∥v∥2 = ⟨v,v⟩.
(D) ⟨x,y⟩ = ∥x∥ ∥y∥ cosα.

α: Angle between x and y.

x

y

α

(E) x⊥y: ⟨x,y⟩ = 0.
(F) x = y and ∥x∥ = ∥y∥ = 1: ⟨x,y⟩ = 1.
(G) x = −y and ∥x∥ = ∥y∥ = 1: ⟨x,y⟩ = −1.

24.2.6 Relaxing −1, 1...
24.2.6.1 Because 1 and −1 are just vectors.

(A) max cut w(S, S) as integer quadratic program:

(Q) max 1
2
∑
i<j

ωij(1 − yiyj)

subject to: yi ∈ {−1, 1} ∀i ∈ V.

(B) Relaxed semi-definite programming version:

(P) max γ =1
2
∑
i<j

ωij (1 − ⟨vi, vj⟩)

subject to: vi ∈ S(n) ∀i ∈ V,

S(n): n dimensional unit sphere in IRn+1.

24.2.6.2 Discussion...

(A) semi-definite programming: special case of convex programming.

3



(B) Can be solved in polynomial time.
(C) Solve within a factor of (1 + ε) of optimal, for any ε > 0, in polynomial time.
(D) Intuition: vectors of one side of the cut, and vertices on the other sides, would have faraway vectors.

24.2.6.3 Approximation algorithm

(A) Given instance, compute SDP (P).
(B) Compute optimal solution for (P).
(C) generate a random vector r⃗ on the unit sphere S(n).
(D) induces hyperplane h ≡ ⟨r⃗,x⟩ = 0
(E) assign all vectors on one side of h to S, and rest to S.

S =
{
vi
∣∣∣ ⟨vi, r⃗ ⟩ ≥ 0

}
.

24.2.7 Analysis
24.2.7.1 Analysis...

Intuition: with good probability, vectors in the solution of (P) that have large angle between them would
be separated by cut.

Lemma 24.2.1. Pr
[
sign

(
⟨vi, r⃗ ⟩

)
̸= sign(⟨vj, r⃗ ⟩)

]
= 1
π

arccos
(
⟨vi, vj⟩

)
= τ

π
.

24.2.7.2 Proof...

(A) Think vi, vj and r⃗ as being in the plane.
(B) ... reasonable assumption!

(A) g: plane spanned by vi and vj.
(B) Only care about signs of ⟨vi, r⃗⟩ and ⟨vj, r⃗⟩
(C) can be decided by projecting r⃗ on g... and normalizing it to have length 1.
(D) Sphere is symmetric =⇒ sampling r⃗ from S(n) projecting it down to g, and then normalizing

it
≡ choosing uniformly a vector from the unit circle in g

4



24.2.7.3 Proof via figure...

vj vj vj+

−

vi vi

+

−

vj

vi

vj

vi ++
vj

vi ++

−−

vj

vi ++

−−

+−
−+

vj

vi

+−
−+
~r

vj

vi

+−
−+

τ

τ = arccos
(
⟨vi, vj⟩

)
24.2.7.4 Proof...

(A) Think vi, vj and r⃗ as being in the plane.
(B) sign(⟨vi, r⃗ ⟩) ̸= sign(⟨vj, r⃗ ⟩) happens only if r⃗ falls in the double wedge formed by the lines perpen-

dicular to vi and vj.
(C) angle of double wedge = angle τ between vi and vj.
(D) vi and vj are unit vectors: ⟨vi, vj⟩ = cos(τ).

τ = ∠vivj.
(E) Thus,

Pr
[
sign(⟨vi, r⃗ ⟩) ̸= sign(⟨vj, r⃗ ⟩)

]
= 2τ

2π
= 1
π

· arccos(⟨vi, vj⟩) ,

as claimed.

24.2.7.5 Theorem

Theorem 24.2.2. Let W be the random variable which is the weight of the cut generated by the algo-
rithm. We have

E[W ] = 1
π

∑
i<j

ωij arccos(⟨vi, vj⟩) .

24.2.7.6 Proof

(A) Xij: indicator variable = 1 ⇐⇒ edge ij is in the cut.
(B) E[Xij] = Pr

[
sign(⟨vi, r⃗ ⟩) ̸= sign(⟨vj, r⃗ ⟩)

]
= 1

π
arccos

(
⟨vi, vj⟩

)
, by lemma.

(C) W = ∑
i<j ωijXij, and by linearity of expectation...

E[W ] =
∑
i<j

ωij E[Xij] = 1
π

∑
i<j

ωij arccos
(
⟨vi, vj⟩

)
.

5



24.2.7.7 Lemma

Lemma 24.2.3. For −1 ≤ y ≤ 1, we have arccos(y)
π

≥ α · 1
2

(1 − y), where α = min
0≤ψ≤π

2
π

ψ

1 − cos(ψ)
.

Proof : Set y = cos(ψ). The inequality now becomes ψ
π

≥ α 1
2(1 − cosψ). Reorganizing, the inequality

becomes 2
π

ψ
1−cosψ ≥ α, which trivially holds by the definition of α.

24.2.7.8 Lemma

Lemma 24.2.4. α > 0.87856.

Proof : Using simple calculus, one can see that α achieves its value for ψ = 2.331122..., the nonzero root
of cosψ + ψ sinψ = 1.

24.2.7.9 Result

Theorem 24.2.5. The above algorithm computes in expectation a cut with total weight α · Opt ≥
0.87856Opt, where Opt is the weight of the maximal cut.

Proof : Consider the optimal solution to (P ), and lets its value be γ ≥ Opt. By lemma:

E[W ] = 1
π

∑
i<j

ωij arccos(⟨vi, vj⟩)

≥
∑
i<j

ωijα
1
2

(1 − ⟨vi, vj⟩) = αγ ≥ α · Opt.

24.3 Semi-definite programming
24.3.0.10 SDP: Semi-definite programming

(A) xij = ⟨vi, vj⟩.
(B) M : n× n matrix with xij as entries.
(C) xii = 1, for i = 1, . . . , n.
(D) V : matrix having vectors v1, . . . , vn as its columns.
(E) M = V TV .
(F) ∀v ∈ IRn: vTMv = vTATAv = (Av)T (Av) ≥ 0.
(G) M is positive semidefinite (PSD).
(H) Fact: Any PSD matrix P can be written as P = BTB.
(I) Furthermore, given such a matrix P of size n×n, we can compute B such that P = BTB in O(n3)

time.
(J) Known as Cholesky decomposition.

6



24.3.0.11 SDP: Semi-definite programming

(A) If PSD P = BTB has a diagonal of 1
(B) =⇒ B has columns which are unit vectors.
(C) If solve SDP (P), get back semi-definite matrix...
(D) ... recover the vectors realizing the solution (i.e., compute B)
(E) Now, do the rounding.
(F) SDP (P) can be restated as

(SD) max 1
2
∑
i<j

ωij(1 − xij)

subject to: xii = 1 for i = 1, . . . , n(
xij
)
i=1,...,n,j=1,...,n

is a PSD matrix.

24.3.0.12 SDP: Semi-definite programming

(A) SDP is

(SD) max 1
2
∑
i<j

ωij(1 − xij)

subject to: xii = 1 for i = 1, . . . , n(
xij
)
i=1,...,n,j=1,...,n

is a PSD matrix.

(B) find optimal value of a linear function...
(C) ... over a set which is the intersection of:

(A) linear constraints, and
(B) set of positive semi-definite matrices.

24.3.0.13 Lemma

Lemma 24.3.1. Let U be the set of n× n positive semidefinite matrices. The set U is convex.
Proof : Consider A,B ∈ U , and observe that for any t ∈ [0, 1], and vector v ∈ IRn, we have:

vT
(
tA+ (1 − t)B

)
v = vT

(
tAv + (1 − t)Bv

)
= tvTAv + (1 − t)vTBv ≥ 0 + 0 ≥ 0,

since A and B are positive semidefinite.

24.3.0.14 More on positive semidefinite matrices

(A) PSD matrices corresponds to ellipsoids.
(B) xTAx = 1: the set of vectors solve this equation is an ellipsoid.
(C) Eigenvalues of a PSD are all non-negative real numbers.
(D) Given matrix: can in polynomial time decide if it is PSD.
(E) ... by computing the eigenvalues of the matrix.
(F) =⇒ SDP: optimize a linear function over a convex domain.
(G) SDP can be solved using interior point method, or the ellipsoid method.
(H) See Boyd and Vandenberghe [2004], Grötschel et al. [1993] for more details.
(I) Membership oracle: ability to decide in polynomial time, given a solution, whether its feasible or

not.

7



24.4 Bibliographical Notes
24.4.0.15 Bibliographical Notes

(A) Approx. algorithm presented by Goemans and Williamson Goemans and Williamson [1995].
(B) H̊astad H̊astad [2001] showed that MAX CUT can not be approximated within a factor of 16/17 ≈

0.941176.
(C) Khot etal Khot et al. [2004] showed a hardness result that matches the constant of Goemans and

Williamson (i.e., one can not approximate it better than α, unless P = NP).

24.4.0.16 Bibliographical Notes

(A) Relies on two conjectures: “Unique Games Conjecture” and “Majority is Stablest”.
(B) “Majority is Stablest” conjecture was proved by Mossel etal Mossel et al. [2005].
(C) Not clear if the “Unique Games Conjecture” is true, see the discussion in Khot et al. [2004].
(D) Goemans and Williamson work spurred wide research on using SDP for approximation algorithms.

8



Bibliography

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge, 2004. URL http://www.stanford.
edu/˜boyd/cvxbook/.

M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach., 42(6):1115–1145,
November 1995.

M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization,
volume 2 of Algorithms and Combinatorics. Springer-Verlag, Berlin Heidelberg, 2nd edition, 1993.

J. H̊astad. Some optimal inapproximability results. J. Assoc. Comput. Mach., 48(4):798–859, 2001.
ISSN 0004-5411. doi: http://doi.acm.org/10.1145/502090.502098.

S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability results for max cut
and other 2-variable csps. In Proc. 45th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages
146–154, 2004. To appear in SICOMP.

E. Mossel, R. O’Donnell, and K. Oleszkiewicz. Noise stability of functions with low influences invariance
and optimality. In Proc. 46th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages 21–30, 2005.

9

http://www.stanford.edu/~boyd/cvxbook/
http://www.stanford.edu/~boyd/cvxbook/
http://www.acm.org/jacm/
http://www.acm.org/jacm/

	Normal distribution
	Approximate Max Cut
	Analysis
	Semi-definite programming
	Bibliographical Notes


