CS 573: Algorithms, Fall 2013

Approximation Algorithms
using Linear Programming

Lecture 20
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Weighted vertex cover

Weighted vertex cover

problem

G = (V,E).
Each vertex v € V: cost c,.
Compute a vertex cover of minimum cost.

@ vertex cover: subset of vertices V so each edge is covered.

@ NP-Hard

© ...unweighted Vertex Cover problem.

© ... write as an integer program (IP):

@ VW eV: x, =1 <= vin the vertex cover.

Q@ Yvu € E: covered. — x, V x, true. — x, + x, > 1.

@ minimize total cost: min}_, cy X,C,.
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Weighted vertex cover
min > Xy,
veVv
such that x, € {0,1} Vv eV (1)
X, +x,>1 Vvu € E.
@ ... NP-Hard.
@ relax the integer program. | ™" z;/c"x"’
ve
° ae”‘i‘(’)v ’i] get values st 0<x, W eV,
, 1].
x <1 Yv € V
Q x, € {0, 1} replaced by - ’
0<x <1 The x+tx =1 VweE
resulting LP is
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Weighted vertex cover — rounding the LP

© Optimal solution to this LP: X, value of var X,, Vv € V.
@ optimal value of LP solution is & = Y, cv CuXy.
© optimal integer solution: x!, Vv € V and o'
@ Any valid solution to IP is valid solution for LP!
Q@ a<dal
Integral solution not better than LP.
@ Got fractional solution (i.e., values of X,).
@ Fractional solution is better than the optimal cost.

@ Q: How to turn fractional solution into a (valid!) integer
solution?

Q Called rounding.
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Cost of solution

Cost of S:
cs=> =3 1¢<>2x%-¢<2) xc =2a <24,
ves ves veS vev

sincex, > 1/2asv e S.

o' is cost of the optimal solution =—>

Theorem

The Weighted Vertex Cover problem can be 2-approximated by

solving a single LLP. Assuming computing the LLP takes polynomial
time, the resulting approximation algorithm takes polynomial time.

Sariel (UIUC) CS573 7 Fall 2013 7/ 42

How to round?

© consider vertex v and fractional value Xx,.
If X, = 1 then include in solution!

If x, = 0 then do nOtnot include in solution.

if x, = 0.9 = LP considers v as being 0.9 useful.

The LP puts its money where its belief is...

...« value is a function of this “belief” generated by the LP.
Big idea: Trust LLP values as guidance to usefulness of vertices.
Pick all vertices > threshold of usefulness according to LLP.
s={v|x >1/2}.

Claim: S a valid vertex cover, and cost is low.

Indeed, edge cover as: VYvu € E have x, + x, > 1.

%or %a € (0,1)

= X, >1/2o0rx, >1/2.

=> v & Soru€ S (or both).

== S covers all the edges of G.
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The lessons we can take away

@ Weighted vertex cover is simple, but resulting approximation
algorithm is non-trivial.

© Not aware of any other 2-approximation algorithm does not use
LP. (For the weighted case!)

© Solving a relaxation of an optimization problem into a LP
provides us with insight.

@ But... have to be creative in the rounding.

Sariel (UIUC) CS573 8 Fall 2013 8/ 42




Part |l

Revisiting Set Cover
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Revisiting

© Purpose: See new technique for an approximation algorithm.

@ Not better than greedy algorithm already seen O(log n)
approximation.

Set Cover

Instance: (S,F)

S - a set of n elements

F - a family of subsets of S, s.t. Uxer X = S.

Question: The set X C F such that X contains as few sets
as possible, and X’ covers S.
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~IP&LP

min o= ) xy,
ues
s.t. xy € {0,1} YU € F,
E: Xy 2:1 Vs € S.
UeF,scl

Next, we relax this IP into the following LLP.

min o= ) xy,
ues
0< x, <1 VU € 7,
E: Xy 2:1 Vs € S.
UeF,scl
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~IP&LP

@ LP solution: YU € F, xy, and a.

@ Opt IP solution: VU € F, x/,, and o'

Use LLP solution to guide in rounding process.

If xy is close to 1 then pick U to cover.

If xy close to 0 do not.

Idea: Pick U € F by randomly choosing it with probability xy.
Resulting family of sets G.

Zs: indicator variable. 1if § € G.

Cost of G is Y sc5 Zs, and the expected cost is
E|cost of §| = E[Tser Zs] = Lses E|Zs] =
YsesPrlS €G] = Usesxs = a < o,

@ In expectation, G is not too expensive.

00000O0O0

@ Bigus problumos: G might fail to cover some element s € S.
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— Rounding continued

© Solution: Repeat rounding stage m = 10 [Ig n]| = O(log n)
times.

@ n=|S|

© §;: random cover computed in ith iteration.

Q@ H = U;G;. Return I as the required cover.
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The set covers

@ For an element s € S, we have that
> xw>1, (2)
UeF,scU
@ probability s not covered by G; (ith iteration set).
Pr[s not covered by 9,-}

= P"{ nolU € TF, s.it. s € U picked into 9,-}
= [lueg,secu Pr[U was not picked into 9,-}

= I @-5)< Il exp(—%a)

UeF,scU UeF,scU
= exp(— 2 UeF,scU )/‘l\l) <exp(—1) < %7 < %
© probability s is not covered in all m iterations < (%)m < ﬁ,
Q ..since m = O(log n).
© probability one of n elements of S is not covered by H is
<n(1/n%) =1/n°
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Cost of solution
© Have: E{cost of 9,-} < al.

©@ — Each iteration expected cost of cover < cost of optimal
solution (i.e., a').

© Expected cost of the solution is

e <D cg < ma! = O(a’ log n) .
i
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The result

Theorem

By solving an LP one can get an O(log n)-approximation to set
cover by a randomized algorithm. The algorithm succeeds with high
probability.
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Minimizing congestion by example

Up]

- T 1
Part I - - L~
Minimigzing gongestion —
—
. . . S
02
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Minimizing congestion Minimizing congestion
© G: graph. n vertices. Q@ IP = LP:
@ ;, o; paths with the same endpoints v;, u; € V(G), for .
i=1,...,t min w
© Rule I: Send one unit of flow from v; to u;. s-t. x 20 i=1...,t
@ Rule II: Choose whether to use 7; or ;. x <1 i=1,....t
© Target: No edge in G is being used too much. e; X + e; 1-x)<w Ve € E.
Definition - . . ,
Given a set X of paths in a graph G, the congestion of X is the ® ﬁ value of x; in the optimal LP solution.
maximum number of paths in X that use the same edge. © w: value of w in LP solution.
@ Optimal congestion must be bigger than w.
© X;: random variable one with probability X;, and zero otherwise.
@ If X; = 1 then use & to route from v; to u;.
@ Otherwise use o;.
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Minimizing congestion
@ Congestion of e is

Yo=Y X+ 3 (1-X).

ecT; eco;

© And in expectation

E[Y X+ Y- X)

ecT; eco;

= > E[X]+ X E[(1 - X)]

ecT; ecoj

=Y s+Y (1-%)<w

ecT; eco;

a = E[Ye| =
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Minimizing congestion - continued
(%) Ye = Zeeﬂ-,- Xi + Zeécr,-(l - Xi)'
@ Y. is just a sum of independent 0/1 random variables!

© Chernoff inequality tells us sum can not be too far from
expectation!
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Minimizing congestion - continued

@ By Chernoff inequality:

Pr[Ye > 1+ é)ae} < exp(—

400
Q Let 6 = /— Int. We have that
w

8w 1
PI’{Ye 2 (1 + 5)044 S exp —T S m,

@ If t > n'/5 then all the edges in the graph do not have
congestion larger than (1 + d)w.
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Minimizing congestion - continued

400
Q@ Got: For d = {/— Int. We have
w

62w 1
Pr|Ye > (14 )| < exp ) < aw

@ Play with the numbers. If t = n, and w > y/n. Then, the
solution has congestion larger than the optimal solution by a

factor of
1+(5—1+\/—Int<1

which is of course extremely close to 1, if n is sufficiently large.

v20Inn

,,1/4 ’
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Minimizing congestion: result

Theorem

Given a graph with n vertices, and t pairs of vertices, such that for

every pair (s;, t;) there are two possible paths to connect s; to t;.

Then one can choose for each pair which path to use, such that the

most congested edge, would have at most (1 + d)opt, where opt is
. . . _ /20

the congestion of the optimal solution, and § = /= Int.
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When the congestion is low

@ Just proved that...
@ if the optimal congestion is O(1), then...

© algorithm outputs a solution with congestion
O(log t/ loglog t), and this holds with high probability.

When the congestion is low

@ Assume w is a constant.

@ Can get a better bound by using the Chernoff inequality in its
more general form.

@ set d = clInt/IniInt, where c is a constant. For u = a, we
have that

e

o)
_ exp<u(5 —(148)In(L+ 6)))

1
_ _ /
= exp( pc'In t) < To)”

where ¢’ is a constant that depends on ¢ and grows if ¢ grows.

Pr|Ye > (1+0)u) g(
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Part |V

Reminder about Chernoff inequality

Sariel (UIUC) CS573 28

Fall 2013 28 / 42




Chernoff inequality

Problem
Let Xi,...X, be n independent Bernoulli trials, where

Pr{xi = 1} = pi, Pr{X,- = 0} =1- Pi,
Y=ZX,-, and qu[Y].

We are interested in bounding the probability that Y > (1 + ) p.
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More Chernoff...

Theorem
Under the same assumptions as the theorem above, we have

Pr[v <(1- 5);,,] < exp(—;Lé;) .
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Chernoff inequality

Theorem (Chernoff inequality)
For any 6 > 0,

PrlY > (1+0)p| < (e—(s)u.

(1 + 9)t+o
Or in a more simplified form, for any § < 2e — 1,
Pr[Y > (14 5);4 < exp(—u52/4) ,
and
PrlY > (14 48)u] < 27+0+),

ford > 2e — 1.
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