CS 573: Algorithms, Fall 2013

Approximation Algorithms using Linear Programming

Lecture 20 November 5, 2013

Weighted vertex cover

 $G = (V, E)$. Each vertex $v \in V$: cost c_v . Compute a vertex cover of minimum cost.

¹ verte[x cover: subset of vertices](#page-0-0) **V** so each edge is covered.

² **NP-Hard**

- ³ ...unweighted **Vertex Cover** problem.
- **4** ... write as an integer program (IP):
- $\bullet \forall v \in V: x_v = 1 \iff v$ in the vertex cover.
- **6** \forall **vu** \in **E**: covered. \implies $x_v \vee x_u$ **true.** \implies $x_v + x_u > 1$.

Sariel (UIUC) **CS573** 3 Fall 2013 3 / 42

⁷ minimize total cost: **min** P **^v∈^V xvcv**.

Weighted vertex cover

0 $\leq x_{\nu} \leq 1$. The resulting LP is

Sariel (UIUC) **CS573** 4 Fall 2013 4 / 42

Weighted vertex cover – rounding the LP

- **1** Optimal solution to this $LP: \widehat{\mathbf{x}_v}$ value of var \mathbf{X}_v , $\forall v \in \mathbf{V}$.
- **2** optimal value of LP solution is $\hat{\alpha} = \sum_{\mathsf{v} \in \mathsf{V}} \mathsf{c}_\mathsf{v} \widehat{\mathsf{x}}_\mathsf{v}$.
- \bullet optimal integer solution: $\mathbf{x}'_{\mathbf{v}}$, $\forall \mathbf{v} \in \mathbf{V}$ and $\alpha'.$
- ⁴ **Any valid solution to IP is valid solution for LP!**
- $\hat{\alpha} \leq \alpha'.$

Integral solution not better than LP.

- **6** Got fractional solution (i.e., values of $\widehat{\mathbf{x}_v}$).
- **2** Fractional solution is better than the optimal cost.
- ⁸ Q: How to turn fractional solution into a (valid!) integer solution?

Cost of solution

Cost of **S**:

$$
c_S = \sum_{v \in S} c_v = \sum_{v \in S} 1 \cdot c_v \leq \sum_{v \in S} 2 \widehat{x_v} \cdot c_v \leq 2 \sum_{v \in V} \widehat{x_v} c_v = 2 \widehat{\alpha} \leq 2 \alpha',
$$

Sariel (UIUC) CS573 5 Fall 2013 5 / 42

since $\widehat{x_v} > 1/2$ as $v \in S$. α^\prime is cost of the optimal solution \implies

Theorem

The **Weighted Vertex Cover** problem can be **2**-approximated by solving a single LP. Assuming computing the LP takes polynomial time, the resulting approximation algorithm takes polynomial time.

How to round?

1 consider vertex **v** and fractional value $\widehat{\mathbf{x}_v}$. **2** If $\widehat{\mathbf{x}_v} = \mathbf{1}$ then include in solution! **3** If $\hat{\mathbf{x}}_v = \mathbf{0}$ then do **not** include in solution. $\hat{\mathbf{x}}_v = 0.9 \implies \text{LP}$ considers **v** as being 0.9 useful. **5** The LP puts its money where its belief is... \bullet ... $\hat{\alpha}$ value is a function of this "belief" generated by the LP. **• Big idea:** Trust LP values as guidance to usefulness of vertices. ■ Pick all vertices > threshold of usefulness according to LP. **9** $S = \{v \mid \widehat{x_v} \ge 1/2\}$. **10 Claim: S** a valid vertex cover, and cost is low. \bigcirc Indeed, edge cover as: \forall **vu** \in **E** have $\widehat{x_v} + \widehat{x_v} > 1$ *.* $\widehat{\mathbf{x}_v}, \widehat{\mathbf{x}_u} \in (0,1)$ $\Rightarrow \hat{x}_y > 1/2$ or $\hat{x}_y > 1/2$. \implies **v** \in **S** or **u** \in **S** (or both). =**⇒ S** covers all the edges of **G**.

Sariel (UIUC) CS573 6 Fall 2013 6 / 42

The lessons we can take away Or not - boring, boring, boring.

- ¹ Weighted vertex cover is simple, but resulting approximation algorithm is non-trivial.
- ² Not aware of any other **2**-approximation algorithm does not use LP. (For the weighted case!)
- ³ Solving a **relaxation** of an optimization problem into a LP provides us with insight.
- 4 But... have to be creative in the rounding.

Sariel (UIUC) **CS573** 8 **Fall 2013** 8 / 42

Set Cover – IP & LP

min
$$
\alpha = \sum_{U \in \mathcal{F}} x_U
$$
,
\ns.t. $x_U \in \{0, 1\}$ $\forall U \in \mathcal{F}$,
\n $\sum_{U \in \mathcal{F}, s \in U} x_U \ge 1$ $\forall s \in S$.

Next, we re[lax this IP into the following](#page-2-0) LP.

Revisiting **Set Cover**

- **1** Purpose: See new technique for an approximation algorithm.
- ² Not better than greedy algorithm already seen **O**(**log n**) approximation.

Set Cover

Instance: (S, \mathcal{F}) **S** - a set of **n** elements \mathcal{F} - a family of subsets of \mathcal{S} , s.t. $\bigcup_{\mathcal{X} \in \mathcal{F}} \mathcal{X} = \mathcal{S}$. **Question:** The set $X \subseteq F$ such that X contains as few sets as possible, and **X** covers **S***.*

Sariel (UIUC) CS573 10 Fall 2013 10 / 42

Set Cover – IP & LP

- **1** LP solution: $\forall U \in \mathcal{F}$, \widehat{x}_U , and $\widehat{\alpha}$.
- \bullet Opt IP solution: ∀ $\bm{U} \in \mathcal{F}$, $\bm{\mathsf{x}}_{{\bm{U}}}'$, and $\alpha'.$
- ³ Use LP solution to guide in rounding process.
- $\widehat{\mathbf{A}}$ If $\widehat{\mathbf{x}_U}$ is close to **1** then pick *U* to cover.
- \bullet If $\widehat{x_{\mu}}$ close to 0 do not.
- **E** Idea: Pick $U \in \mathcal{F}$ by randomly choosing it with **probability** \widehat{x}_U .
- **¹** Resulting family of sets G.
- **8** Z_s : indicator variable. **1** if $S \in \mathcal{G}$.
- ⁹ Cost of G is P **^S∈**^F **ZS**, and the expected cost is $\mathbf{E}[\text{cost of } \mathcal{G}] = \mathbf{E}[\sum_{\mathcal{S} \in \mathcal{F}} \mathcal{Z}_{\mathcal{S}}] = \sum_{\mathcal{S} \in \mathcal{F}} \mathbf{E}[\mathcal{Z}_{\mathcal{S}}] =$ $\sum_{\mathcal{S}\in\mathcal{F}}\textsf{Pr}\big[\mathcal{S}\in\mathcal{G}\big] = \sum_{\mathcal{S}\in\mathcal{F}}\widehat{\mathcal{X}}_{\mathcal{S}} = \widehat{\alpha} \leq \alpha'.$
- \bullet In expectation, \circ is not too expensive.
- **11** Bigus problumos: G might fail to cover some element $s \in S$.

Sariel (UIUC) CS573 11 Fall 2013 11 / 42

Set Cover – Rounding continued

1 Solution: Repeat rounding stage $m = 10$ $\lceil \lg n \rceil = O(\log n)$ times.

2 $n = |S|$.

- ³ G**ⁱ** : random cover computed in **i**th iteration.
- **1** $\mathcal{H} = \cup_i \mathcal{G}_i$. Return \mathcal{H} as the required cover.

Cost of solution

- \bullet Have: $\mathsf{E}\big[\text{cost of } \mathrm{G}_i\big] \leq \alpha'.$
- ² =**⇒** Each iteration expected cost of cover **≤** cost of optimal solution (i.e., α').
- ³ Expected cost of the solution is

$$
\mathbf{c}_{\mathcal{H}} \leq \sum_i \mathbf{c}_{B_i} \leq m\alpha^I = O\big(\alpha^I \log n\big).
$$

The set H covers **S**

¹ For an element **s ∈ S**, we have that

$$
\sum_{U \in \mathcal{F}, s \in U} \widehat{x_U} \ge 1, \tag{2}
$$

² probability **s** not covered by G**ⁱ** (**i**th iteration set). $\Pr[s \text{ not covered by } G_i]$ $\mathbf{P} = \mathsf{Pr} \left[\text{ no } \mathcal{U} \in \mathcal{F}, \text{ s.t. } \mathcal{s} \in \mathcal{U} \text{ picked into } \mathcal{G}_i \right].$ $I = \prod_{\bm{U} \in \mathcal{F}, \bm{s} \in \bm{U}} \mathsf{Pr}\big[\bm{U}$ was not picked into $\mathcal{G}_{\bm{i}}\big]$ $=$ Π $\prod_{\mathcal{U}\in\mathcal{F},s\in\mathcal{U}}(\mathbb{1}-\widehat{\mathsf{x}_{\mathcal{U}}})\,\leq\,\prod_{\mathcal{U}\in\mathcal{F},s}% \mathcal{U}_{s}(\widehat{\mathcal{U}}_{s})\,\,$ $\iint_{U \in \mathcal{F}, s \in U} \exp(-\widehat{x_U})$ $\mathbf{P} = \exp\left(-\sum_{\mathbf{U}\in\mathcal{F},\mathbf{s}\in\mathbf{U}}\widehat{\mathbf{x}_{\mathbf{U}}}\right) \leq \exp(-1) \leq \frac{1}{2}, \leq \frac{1}{2}$ **3** probability \boldsymbol{s} is not covered in all \boldsymbol{m} iterations \leq $(\frac{1}{2})$ **2** $\int_{0}^{m} < \frac{1}{n^{10}},$ \bullet ...since $m = O(\log n)$. ⁵ probability one of **n** elements of **S** is not covered by H is $\leq n(1/n^{10}) = 1/n^9$. Sariel (UIUC) CS573 14 Fall 2013 14 / 42

The result

Theorem

By solving an LP one can get an **O**(**log n**)-approximation to set cover by a randomized algorithm. The algorithm succeeds with high probability.

Minimizing congestion

- ¹ **G**: graph. **n** vertices.
- $\boldsymbol{\sigma}$ $\boldsymbol{\pi}_{i}$, $\boldsymbol{\sigma}_{i}$ paths with the same endpoints $\mathsf{v}_{i},\mathsf{u}_{i}\in\mathsf{V}(\mathsf{G})$, for $i = 1, \ldots, t$.
- ³ Rule I: Send one unit of flow from **vⁱ** to **uⁱ** .
- **4** Rule II: Choose whether to use π_i or σ_i .
- **•** Target: No edge in **G** [is being used too mu](#page-4-0)ch.

Definition

Given a set **X** of paths in a graph **G**, the **congestion** of **X** is the maximum number of paths in **X** that use the same edge.

Minimizing congestion

$$
\bullet \, \mathsf{IP} \implies \mathsf{LP}:
$$

min w

s.t.
$$
x_i \ge 0
$$
 $i = 1, ..., t$,
\n $x_i \le 1$ $i = 1, ..., t$,
\n
$$
\sum_{e \in \pi_i} x_i + \sum_{e \in \sigma_i} (1 - x_i) \le w \qquad \forall e \in E.
$$

- **2** $\hat{\mathbf{x}}_i$: value of \mathbf{x}_i in the optimal LP solution.
- **3** \hat{w} : value of **w** in LP solution.
- **4** Optimal congestion must be bigger than $\widehat{\mathbf{w}}$.
- **3** X_i : random variable one with probability $\hat{x_i}$, and zero otherwise.

Sariel (UIUC) **CS573** 20 **Fall 2013** 20 / 42

- **6** If $X_i = 1$ then use π to route from v_i to u_i .
- **7** Otherwise use σ_i .

Minimizing congestion

¹ Congestion of **e** is

$$
Y_{\rm e} = \sum_{\rm e \in \pi_i} X_i + \sum_{\rm e \in \sigma_i} (1 - X_i).
$$

2 And in expectation

$$
\alpha_{\mathrm{e}} = \mathsf{E}\Big[\mathsf{Y}_{\mathrm{e}}\Big] = \mathsf{E}\Bigg[\sum_{\mathrm{e}\in\pi_{i}}\mathsf{X}_{i} + \sum_{\mathrm{e}\in\sigma_{i}}(1-\mathsf{X}_{i})\Bigg]
$$

= $\sum_{\mathrm{e}\in\pi_{i}}\mathsf{E}\Big[\mathsf{X}_{i}\Big] + \sum_{\mathrm{e}\in\sigma_{i}}\mathsf{E}\Big[(1-\mathsf{X}_{i})\Big]$
= $\sum_{\mathrm{e}\in\pi_{i}}\hat{x}_{i} + \sum_{\mathrm{e}\in\sigma_{i}}(1-\hat{x}_{i}) \leq \widehat{\mathsf{w}}.$

Sariel (UIUC) **CS573** 21 **Fall 2013** 21 / 42

Minimizing congestion - continued

¹ By Chernoff inequality:

$$
\Pr\left[\mathsf{Y}_{\mathrm{e}} \geq (1+\delta)\alpha_{\mathrm{e}}\right] \leq \exp\left(-\frac{\alpha_{\mathrm{e}}\delta^2}{4}\right) \leq \exp\left(-\frac{\widehat{\mathsf{w}}\delta^2}{4}\right).
$$
\nLet $\delta = \sqrt{\frac{400}{\widehat{\mathsf{w}}}} \ln t$. We have that

\n
$$
\Pr\left[\mathsf{Y}_{\mathrm{e}} \geq (1+\delta)\alpha_{\mathrm{e}}\right] \leq \exp\left(-\frac{\delta^2 \widehat{\mathsf{w}}}{4}\right) \leq \frac{1}{t^{100}},
$$
\nIf $t \geq n^{1/50}$ then all the edges in the graph do not have congestion larger than $(1+\delta)\widehat{\mathsf{w}}$.

Minimizing congestion - continued

- **1** $Y_e = \sum_{e \in \pi_i} X_i + \sum_{e \in \sigma_i} (1 X_i).$
- ² **Y^e** is just a sum of independent **0***/***1** random variables!
- ³ Chernoff inequality tells us sum can not be too far from expectation!

Minimizing congestion - continued

6 Got: For
$$
\delta = \sqrt{\frac{400}{\widehat{w}} \ln t}
$$
. We have

$$
\text{Pr}\!\left[\, \mathsf{Y}_{\mathrm{e}} \geq (1+\delta) \alpha_{\mathrm{e}} \right] \leq \exp\!\left(\!-\frac{\delta^2 \widehat{\boldsymbol{w}}}{4}\right) \leq \frac{1}{t^{100}},
$$

2 Play with the numbers. If $t = n$, and $\widehat{w} \ge$ **√ n**. Then, the solution has congestion larger than the optimal solution by a factor of

$$
1+\delta=1+\sqrt{\frac{20}{\widehat{w}}\ln t}\leq 1+\frac{\sqrt{20\ln n}}{n^{1/4}},
$$

which is of course extremely close to **1**, if **n** is sufficiently large.

Sariel (UIUC) **CS573** 24 **Fall 2013** 24 / 42

Minimizing congestion: result

Theorem

Given a graph with **n** vertices, and **t** pairs of vertices, such that for every pair (**si***,* **tⁱ**) there are two possible paths to connect **sⁱ** to **tⁱ** . Then one can choose for each pair which path to use, such that the most congested edge, would have at most $(1 + \delta)$ opt, where opt is the congestion of the optimal solution, and $\delta = \sqrt{\frac{20}{\omega}}$ $\frac{20}{\hat{w}}$ ln *t*.

When the congestion is low

- **1** Just proved that...
- ² if the optimal congestion is **O**(**1**), then...
- ³ algorithm outputs a solution with congestion **O**(**log t***/* **log log t**), and this holds with high probability.

When the congestion is low

- **1** Assume $\widehat{\mathbf{w}}$ is a constant.
- **2** Can get a better bound by using the Chernoff inequality in its more general form.
- **3** set $\delta = c \ln t / \ln \ln t$, where c is a constant. For $\mu = \alpha_e$, we have that

$$
\begin{aligned} \Pr\Big[Y_{\mathsf{e}} \geq (1+\delta)\mu\Big] &\leq \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \\ &= \exp\biggl(\mu\bigl(\delta - (1+\delta)\ln(1+\delta)\bigr)\biggr) \\ &= \exp\biggl(-\mu\mathsf{c}'\ln t\biggr) \leq \frac{1}{t^{O(1)}}, \end{aligned}
$$

where c' is a constant that depends on c and grows if c grows.

Sariel (UIUC) **CS573** 26 / 42 Fall 2013 26 / 42

Reminder about Chernoff inequality

Chernoff inequality

Problem Let X_1, \ldots, X_n be **n** independent Bernoulli trials, where $Pr[X_i = 1] = p_i,$ $Pr[X_i = 0] = 1 - p_i,$ $Y = \sum$ **i** X_i , and $\mu = \mathbf{E} \left[Y \right]$. We are interested in bounding the probability that $Y \geq (1 + \delta)\mu$. Sariel (UIUC) **CS573** 29 **Fall 2013** 29 / 42

More Chernoff...

Theorem Under the same assumptions as the theorem above, we have $\Pr\bigl[\mathbf{Y} < (1-\delta)\mu \bigr] \leq \exp\Bigl(-\mu\Bigr)$ δ^2 **2** \setminus *.* Sariel (UIUC) CS573 31 Fall 2013 31 / 42

Chernoff inequality

Theorem (Chernoff inequality)

For any $\delta > 0$,

$$
\Pr\!\left[\,\mathsf{Y}>(1+\delta)\mu\right] < \!\left(\frac{e^\delta}{(1+\delta)^{1+\delta}}\right)^\mu.
$$

Or in a more simplified form, for any $\delta \leq 2e - 1$,

$$
\Pr\!\left[\,\mathbf{Y}>(1+\delta)\mu\right]<\exp\!\left(-\mu\delta^2/4\right),
$$

and

$$
\Pr[\mathbf{Y} > (1+\delta)\mu] < 2^{-\mu(1+\delta)},
$$

for $\delta > 2e - 1$.

Sariel (UIUC) **CS573** 30 **Fall 2013** 30 / 42

