CS 573: Algorithms, Fall 2013

Approximation Algorithms using Linear Programming

Lecture 20 November 5, 2013

Sariel (UIUC)	CS573	1	Fall 2013	1 / 42

Weighted vertex of	cover				
min such that	$\sum_{v\inV}c_{v},$ $x_{v}\in\{$	[0,1}			(1)
 NP-Hard. relax the integer pr allow x_v get values ∈ [0, 1]. x_v ∈ {0, 1} replac 0 ≤ x_v ≤ 1. The resulting LP is 	$x_u \ge 1$ min s.t.	$orall \mathbf{vu} \in$ $\sum_{\mathbf{v} \in \mathbf{V}} \mathbf{c}_{\mathbf{v}} \mathbf{x}_{\mathbf{v}},$ $0 \leq \mathbf{x}_{\mathbf{v}}$ $\mathbf{x}_{\mathbf{v}} \leq 1$ $\mathbf{x}_{\mathbf{v}} + \mathbf{x}_{\mathbf{u}} \geq 1$	$orall \mathbf{v} \in \mathbf{V},$ $orall \mathbf{v} \in \mathbf{V},$		
Sariel (UIUC)	CS5	73	4	Fall 2013	4 / 42

Cost of solution Cost of **S**: $\mathsf{c}_{\mathsf{S}} = \sum_{\mathsf{v} \in \mathsf{S}} \mathsf{c}_{\mathsf{v}} = \sum_{\mathsf{v} \in \mathsf{S}} 1 \cdot \mathsf{c}_{\mathsf{v}} \leq \sum_{\mathsf{v} \in \mathsf{S}} 2\widehat{x_{\mathsf{v}}} \cdot \mathsf{c}_{\mathsf{v}} \leq 2\sum_{\mathsf{v} \in \mathsf{V}} \widehat{x_{\mathsf{v}}} \mathsf{c}_{\mathsf{v}} = 2\widehat{\alpha} \leq 2\alpha',$ since $\widehat{x_v} > 1/2$ as $v \in S$. α' is cost of the optimal solution \implies Theorem The **Weighted Vertex Cover** problem can be **2**-approximated by solving a single LP. Assuming computing the LP takes polynomial time, the resulting approximation algorithm takes polynomial time. Sariel (UIUC

Fall 2013

How to round?

Set Cover – IP & LP

$$\begin{array}{ll} \min & \alpha = \sum_{U \in \mathcal{F}} x_U, \\ \text{s.t.} & x_U \in \{0, 1\} & \forall U \in \mathcal{F}, \\ & \sum_{U \in \mathcal{F}, s \in U} x_U \geq 1 & \forall s \in S. \end{array}$$

Next, we relax this IP into the following LP.

min	lpha	$=\sum_{U\in\mathcal{F}}x_U$,				
	0	$\leq x_U \leq 1$	L		$\forall \boldsymbol{U} \in \mathfrak{F}$,	
		$\sum_{\sigma \in \mathcal{T}} x_U$	\geq 1		$orall s \in S$	•	
	U	∈ Ŧ,s ∈ U					
Sariel (UIUC)		CS573		11		Fall 2013	11 / 42

Revisiting Set Cover

- **O** Purpose: See new technique for an approximation algorithm.
- Not better than greedy algorithm already seen O(log n) approximation.

Set Cover

Sariel (UIUC

Instance: (S, \mathcal{F}) **S** - a set of **n** elements \mathcal{F} - a family of subsets of **S**, s.t. $\bigcup_{X \in \mathcal{F}} X = S$. **Question**: The set $\mathcal{X} \subseteq F$ such that \mathcal{X} contains as few sets as possible, and \mathcal{X} covers **S**.

Fall 2013

10 / 42

Set Cover – IP & I P **1** LP solution: $\forall U \in \mathcal{F}, \widehat{x_U}$, and $\hat{\alpha}$. **2** Opt IP solution: $\forall U \in \mathcal{F}, x'_{II}$, and α' . **3** Use LP solution to guide in rounding process. • If $\widehat{x_{II}}$ is close to 1 then pick **U** to cover. **5** If $\widehat{x_{ij}}$ close to **0** do not. **o** Idea: Pick $U \in \mathcal{F}$ by randomly choosing it with **probability** $\widehat{x_{U}}$. \odot Resulting family of sets \mathcal{G} . **8** Z_{s} : indicator variable. **1** if $S \in \mathcal{G}$. **(**) Cost of \mathcal{G} is $\sum_{\boldsymbol{S} \in \mathcal{F}} \boldsymbol{Z}_{\boldsymbol{S}}$, and the expected cost is $\mathbf{E}\left[\text{cost of } \mathcal{G}\right] = \mathbf{E}\left[\sum_{s \in \mathcal{F}} \mathbf{Z}_{s}\right] = \sum_{s \in \mathcal{F}} \mathbf{E}\left[\mathbf{Z}_{s}\right] =$ $\sum_{\boldsymbol{S}\in\mathcal{F}} \Pr[\boldsymbol{S}\in\mathcal{G}] = \sum_{\boldsymbol{S}\in\mathcal{F}} \widehat{\boldsymbol{x}_{\boldsymbol{S}}} = \widehat{\alpha} \leq \alpha'.$ 0 In expectation, \Im is not too expensive. **Q** Bigus problumos: \mathcal{G} might fail to cover some element $s \in S$. Sariel (UIUC) Fall 2013 12 / 42

Cost of solution

- Have: $\mathbf{E}[\operatorname{cost} \operatorname{of} \mathfrak{G}_i] \leq \alpha'$.
- Simple Each iteration expected cost of cover \leq cost of optimal solution (i.e., α').
- Sected cost of the solution is

$$\mathsf{c}_{\mathfrak{H}} \leq \sum_{i} \mathsf{c}_{B_{i}} \leq m \alpha' = O(\alpha' \log n).$$

The set $\mathcal H$ covers $\mathsf S$

• For an element $s \in S$, we have that

$$\sum_{e \in \mathcal{F}, s \in U} \widehat{x_U} \ge 1, \tag{2}$$

Probability *s* not covered by \mathcal{G}_i (*i*th iteration set).
Pr[*s* not covered by \mathcal{G}_i]
= Pr[no $U \in \mathcal{F}$, s.t. $s \in U$ picked into \mathcal{G}_i]
= $\prod_{U \in \mathcal{F}, s \in U} \Pr[U$ was not picked into \mathcal{G}_i]
= $\prod_{U \in \mathcal{F}, s \in U} (1 - \widehat{x_U}) \leq \prod_{U \in \mathcal{F}, s \in U} \exp(-\widehat{x_U})$ = $\exp(-\sum_{U \in \mathcal{F}, s \in U} \widehat{x_U}) \leq \exp(-1) \leq \frac{1}{2}, \leq \frac{1}{2}$ If probability *s* is not covered in all *m* iterations $\leq \left(\frac{1}{2}\right)^m < \frac{1}{n^{10}}$,
...since $m = O(\log n)$.
For probability one of *n* elements of *S* is not covered by \mathcal{H} is $\leq n(1/n^{10}) = 1/n^9$.
Sariel (UIUC)
Evaluation:
Evaluation:
State: (Vistic Constrained on the set of the set of

The result

Theorem

By solving an LP one can get an $O(\log n)$ -approximation to set cover by a randomized algorithm. The algorithm succeeds with high probability.

Sariel (UIUC)

CS573

16 / 42

Minimizing congestion

- **G**: graph. *n* vertices.
- π_i, σ_i paths with the same endpoints $\mathbf{v}_i, \mathbf{u}_i \in V(\mathbf{G})$, for $i = 1, \dots, t$.
- **3** Rule I: Send one unit of flow from \mathbf{v}_i to \mathbf{u}_i .
- **(4)** Rule II: Choose whether to use π_i or σ_i .
- **•** Target: No edge in **G** is being used too much.

Definition

Given a set X of paths in a graph G, the *congestion* of X is the maximum number of paths in X that use the same edge.

Minimizing congestion min W s.t. $x_i \ge 0$ $i=1,\ldots,t,$ $x_i \leq 1$ $i=1,\ldots,t,$ $\sum_{\mathbf{e}\in\pi_i} x_i + \sum_{\mathbf{e}\in\sigma_i} (1-x_i) \leq \mathbf{w} \qquad \forall \mathbf{e}\in \mathbf{E}.$ 2) \hat{x}_i : value of x_i in the optimal LP solution. **3** $\widehat{\boldsymbol{w}}$: value of \boldsymbol{w} in LP solution. • Optimal congestion must be bigger than $\widehat{\boldsymbol{w}}$. **5** X_i : random variable one with probability \hat{x}_i , and zero otherwise. • If $X_i = 1$ then use π to route from \mathbf{v}_i to \mathbf{u}_i . • Otherwise use σ_i . Sariel (UIUC) Fall 2013 20 / 42

19

Fall 2013

19 / 42

Minimizing congestion

O Congestion of e is

$$Y_{e} = \sum_{e \in \pi_{i}} X_{i} + \sum_{e \in \sigma_{i}} (1 - X_{i}).$$

And in expectation

$$\alpha_{e} = \mathsf{E}[Y_{e}] = \mathsf{E}\left[\sum_{e \in \pi_{i}} X_{i} + \sum_{e \in \sigma_{i}} (1 - X_{i})\right]$$
$$= \sum_{e \in \pi_{i}} \mathsf{E}[X_{i}] + \sum_{e \in \sigma_{i}} \mathsf{E}[(1 - X_{i})]$$
$$= \sum_{e \in \pi_{i}} \hat{x}_{i} + \sum_{e \in \sigma_{i}} (1 - \hat{x}_{i}) \leq \widehat{w}.$$

Minimizing congestion - continued

• By Chernoff inequality:

2

3

$$\begin{split} &\mathsf{Pr}\big[\mathbf{Y}_{\mathsf{e}} \geq (1+\delta)\alpha_{\mathsf{e}}\big] \leq \exp\!\left(-\frac{\alpha_{\mathsf{e}}\delta^{2}}{4}\right) \leq \exp\!\left(-\frac{\widehat{w}\delta^{2}}{4}\right).\\ &\mathsf{Let}\ \delta = \sqrt{\frac{400}{\widehat{w}}\ln t}. \text{ We have that}\\ &\mathsf{Pr}\big[\mathbf{Y}_{\mathsf{e}} \geq (1+\delta)\alpha_{\mathsf{e}}\big] \leq \exp\!\left(-\frac{\delta^{2}\widehat{w}}{4}\right) \leq \frac{1}{t^{100}},\\ &\mathsf{lf}\ t \geq n^{1/50} \text{ then all the edges in the graph do not have}\\ &\mathsf{congestion larger than}\ (1+\delta)\widehat{w}. \end{split}$$

Minimizing congestion - continued

- **2** Y_e is just a sum of independent 0/1 random variables!
- Chernoff inequality tells us sum can not be too far from expectation!

Minimizing congestion - continued Got: For $\delta = \sqrt{\frac{400}{\widehat{w}} \ln t}$. We have $\Pr[\Upsilon_{e} \ge (1+\delta)\alpha_{e}] \le \exp\left(-\frac{\delta^{2}\widehat{w}}{4}\right) \le \frac{1}{t^{100}},$

Play with the numbers. If t = n, and $\widehat{w} \ge \sqrt{n}$. Then, the solution has congestion larger than the optimal solution by a factor of

$$1+\delta=1+\sqrt{\frac{20}{\widehat{w}}\ln t}\leq 1+\frac{\sqrt{20\ln n}}{n^{1/4}},$$

which is of course extremely close to $\mathbf{1}$, if \boldsymbol{n} is sufficiently large.

Sariel (UIUC)

Sariel (UIUC)

73 2

Fall 2013 24 / 42

Minimizing congestion: result

Theorem

Given a graph with **n** vertices, and **t** pairs of vertices, such that for every pair (s_i, t_i) there are two possible paths to connect s_i to t_i . Then one can choose for each pair which path to use, such that the most congested edge, would have at most $(1 + \delta)$ opt, where opt is the congestion of the optimal solution, and $\delta = \sqrt{\frac{20}{\widehat{w}} \ln t}$.

Sariel (UIUC)	CS573	25	Fall 2013	25 / 42

When the congestion is low

- Just proved that...
- **2** if the optimal congestion is O(1), then...
- Solution outputs a solution with congestion $O(\log t / \log \log t)$, and this holds with high probability.

When the congestion is low

• Assume $\widehat{\boldsymbol{w}}$ is a constant.

Sariel (UIUC)

- Output in the control of the second secon
- § set $\delta = c \ln t / \ln \ln t$, where c is a constant. For $\mu = \alpha_{\rm e}$, we have that

$$\Pr[Y_{e} \ge (1+\delta)\mu] \le \left(rac{e^{\delta}}{(1+\delta)^{1+\delta}}
ight)^{\mu}$$

= $\exp\left(\mu\left(\delta - (1+\delta)\ln(1+\delta)
ight)
ight)$
= $\exp\left(-\mu c'\ln t
ight) \le rac{1}{t^{O(1)}},$

where c' is a constant that depends on c and grows if c grows.

Fall 2013

26 / 42

Chernoff inequality

<section-header><text><text><text><equation-block><text>

Chernoff inequality

Theorem (Chernoff inequality)

For any $\delta > 0$,

$$\mathsf{Pr}ig[{f Y} > (1+\delta) \mu ig] < igg(rac{e^{\delta}}{(1+\delta)^{1+\delta}} igg)^{\mu} \, .$$

Or in a more simplified form, for any $\delta \leq 2e-1$,

$$\mathsf{Pr}ig[\mathbf{Y} > (1+\delta) \mu ig] < \expig(-\mu \delta^2/4ig) \,,$$

and

$$\mathsf{Pr}ig[\mathbf{Y} > (1+\delta) \mu ig] < 2^{-\mu(1+\delta)},$$

for $\delta \geq 2e-1$.

Sariel (UIUC)

Fall 2013 30 / 42

