CS 573: Algorithms, Fall 2013

Network Flow V - Min-cost flow

Lecture 16 October 22, 2013

Part I

Minimum Average Cost Cycle

Minimum Average Cost Cycle

- **Q** $\mathbf{G} = (\mathbf{V}, \mathbf{E})$: a *digraph*, *n* vertices, *m* edges.
- **2** $\omega: \mathbf{E} \to {\rm I\!R}$ weight on the edges.
- **3** directed cycle: closed walk $C = (v_0, v_1, \dots, v_t)$, where $v_t = v_0$ and $(v_i \rightarrow v_{i+1}) \in E$, for $i = 0, \dots, t-1$.
- average cost of a directed cycle is $\operatorname{AvgCost}(\mathsf{C}) = \omega(C) / t = (\sum_{e \in C} \omega(e)) / t.$
- **(5)** $d_k(v)$: min length of walk with exactly k edges, ending at v
- $\begin{tabular}{ll} \bullet & d_0(v)=0 \mbox{ and } & d_{k+1}(v)=\\ & \min_{e=(u\rightarrow v)\in E} \Bigl(d_k(u)+\omega(e) \Bigr) \,. \end{tabular}$
- Compute $d_i(v)$, for $\forall i, \forall v \in V$. In O(nm) time using dynamic programming.

Computing the Min-Average Cost cycle

Cost of *minimum average cost cycle* is $MinAvgCostCycle(\mathbf{G}) = \min_{\mathbf{C} \text{ is a cycle in } \mathbf{G}} AvgCost(\mathbf{C})$

Theorem

The minimum average cost of a directed cycle in **G** is equal to

$$lpha = \min_{v \in V} \max_{k=0}^{n-1} rac{d_n(v) - d_k(v)}{n-k}.$$

Namely, $\alpha = MinAvgCostCycle(G)$.

Computing the Min-Average Cost cycle

Cost of *minimum average cost cycle* is $MinAvgCostCycle(\mathbf{G}) = \min_{\mathbf{C} \text{ is a cycle in } \mathbf{G}} AvgCost(\mathbf{C})$

Theorem

The minimum average cost of a directed cycle in ${\sf G}$ is equal to

$$lpha = \min_{v \in V} \max_{k=0}^{n-1} rac{d_n(v) - d_k(v)}{n-k}.$$

Namely, $\alpha = MinAvgCostCycle(G)$.

Proof

Proof

- Adding r to weight of every edge increases the average cost of a cycle AvgCost(C) by r.
- **2** α also increases by r.
- Solution \mathbf{O} Assume price of min. average cost cycle = \mathbf{O} .
- In all cycles have non-negative (average) cost.
- Prove: MinAvgCostCycle(G) = 0 $\implies \alpha = 0$. (Implies theorem by shifting prices by r).

Proof continued MinAvgCostCycle(G) = 0 $\implies \alpha \ge 0$

$$\textbf{0} \ \alpha = \min_{u \in V} \beta(u) \text{, where } \beta(u) = \max_{k=0}^{n-1} \frac{d_n(u) - d_k(u)}{n-k} .$$

- ② Assume lpha realized by vertex v; lpha=eta(v).
- ④ $oldsymbol{P}_n$: $oldsymbol{n}$ edges walk ending at $oldsymbol{v}$, of length $oldsymbol{d}_n(oldsymbol{v}).$
- ④ P_n must contain a cycle.
- **(**) Break P_n : a cycle π (length n k) and path σ (length k).

$${igsin 0} \ \ d_n(v) = \omega(P_n) = \omega(\pi) + \omega(\sigma) \geq \omega(\sigma) \geq d_k(v),$$

•
$$\alpha = \min_{u \in V} \beta(u)$$
, where $\beta(u) = \max_{k=0}^{n-1} \frac{d_n(u) - d_k(u)}{n-k}$.

- 2 Assume α realized by vertex v; $\alpha = \beta(v)$.
- ③ $oldsymbol{P}_n$: $oldsymbol{n}$ edges walk ending at $oldsymbol{v}$, of length $oldsymbol{d}_n(oldsymbol{v})$.
- P_n must contain a cycle.
- ${f 0}$ Break ${m P}_n$: a cycle ${m \pi}$ (length ${m n}-{m k})$ and path ${m \sigma}$ (length ${m k})$.
- ${old o} \ \ d_n(v) = \omega(P_n) = \omega(\pi) + \omega(\sigma) \geq \omega(\sigma) \geq d_k(v),$

$$\bullet \ \alpha = \min_{u \in V} \beta(u), \text{ where } \beta(u) = \max_{k=0}^{n-1} \frac{d_n(u) - d_k(u)}{n-k} .$$

- 2 Assume α realized by vertex v; $\alpha = \beta(v)$.
- **3** P_n : *n* edges walk ending at *v*, of length $d_n(v)$.
- P_n must contain a cycle.
- ${old 0}$ Break ${old P}_n$: a cycle π (length n-k) and path σ (length k).
- ${old o} \ \ d_n(v) = \omega(P_n) = \omega(\pi) + \omega(\sigma) \geq \omega(\sigma) \geq d_k(v),$

•
$$\alpha = \min_{u \in V} \beta(u)$$
, where $\beta(u) = \max_{k=0}^{n-1} \frac{d_n(u) - d_k(u)}{n-k}$.

- 2 Assume α realized by vertex v; $\alpha = \beta(v)$.
- **3** P_n : *n* edges walk ending at *v*, of length $d_n(v)$.
- P_n must contain a cycle.
- ${old 0}$ Break ${old P}_n$: a cycle π (length n-k) and path σ (length k).

Proof continued

$$\textbf{0} \ \ \alpha = \min_{u \in V} \beta(u) \text{, where } \beta(u) = \max_{k=0}^{n-1} \frac{d_n(u) - d_k(u)}{n-k}.$$

- 2 Assume α realized by vertex v; $\alpha = \beta(v)$.
- **3** P_n : *n* edges walk ending at *v*, of length $d_n(v)$.
- P_n must contain a cycle.
- ${f 0}$ Break P_n : a cycle π (length n-k) and path σ (length k).

 ${old 0} \ \ d_n(v) = \omega({old P}_n) = \omega(\pi) + \omega(\sigma) \geq \omega(\sigma) \geq d_k(v),$

Proof continued MinAvgCostCycle(G) = 0 $\implies \alpha \ge 0$

Proof continued

- $\bullet \ \alpha = \min_{u \in \, V} \beta(u) \text{, where } \beta(u) = \max_{k=0}^{n-1} \frac{d_n(u) d_k(u)}{n-k}.$
- 3 Assume α realized by vertex v; $\alpha = \beta(v)$.
- **③** P_n : n edges walk ending at v, of length $d_n(v)$.
- P_n must contain a cycle.
- **§** Break P_n : a cycle π (length n-k) and path σ (length k).

${ig 0} \ \ d_n(v) = \omega(P_n) = \omega(\pi) + \omega(\sigma) \geq \omega(\sigma) \geq d_k(v),$

Proof continued MinAvgCostCycle(G) = 0 $\implies \alpha \ge 0$

- $\bullet \ \alpha = \min_{u \in V} \beta(u) \text{, where } \beta(u) = \max_{k=0}^{n-1} \frac{d_n(u) d_k(u)}{n-k}.$
- 3 Assume α realized by vertex v; $\alpha = \beta(v)$.
- **③** P_n : n edges walk ending at v, of length $d_n(v)$.
- P_n must contain a cycle.
- **§** Break P_n : a cycle π (length n-k) and path σ (length k).

$$egin{array}{lll} egin{array}{lll} egin{array}{llll} egin{array}{lll} egin{array}{lll} egin{arr$$

Proof continued Continue proving: MinAvgCostCycle(G) = $0 \implies \alpha \ge 0$

 $\begin{array}{l} \bullet \hspace{0.1cm} \boldsymbol{\omega}(\pi) \geq 0 \text{: since } \pi \text{ is cycle } + \text{ by assumption } \forall \text{ cycle cost } \geq 0. \\ \bullet \hspace{0.1cm} \boldsymbol{\otimes} \hspace{0.1cm} \Rightarrow \hspace{0.1cm} d_n(v) - d_k(v) \geq 0. \text{ As such, } \frac{d_n(v) - d_k(v)}{n-k} \geq 0. \text{ Let} \\ \hspace{0.1cm} \boldsymbol{\beta}(v) = \max_{j=0}^{n-1} \frac{d_n(v) - d_j(v)}{n-j} \geq \frac{d_n(v) - d_k(v)}{n-k} \geq 0. \end{array}$

Now, α = β(v) ≥ 0, by the choice of v.
QED for this direction.

Proof continued Continue proving: MinAvgCostCycle(G) = $0 \implies \alpha \ge 0$

 $\begin{aligned} & \boldsymbol{\omega}(\pi) \geq 0: \text{ since } \pi \text{ is cycle } + \text{ by assumption } \forall \text{ cycle cost } \geq 0. \\ & \Rightarrow \quad d_n(v) - d_k(v) \geq 0. \text{ As such, } \frac{d_n(v) - d_k(v)}{n-k} \geq 0. \text{ Let} \\ & \beta(v) = \max_{j=0}^{n-1} \frac{d_n(v) - d_j(v)}{n-j} \geq \frac{d_n(v) - d_k(v)}{n-k} \geq 0. \end{aligned}$

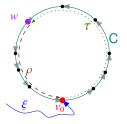
Now, $\alpha = \beta(v) \ge 0$, by the choice of v. QED for this direction. Proof continued Continue proving: MinAvgCostCycle(G) = $0 \implies \alpha \ge 0$

 $\begin{array}{l} \bullet \ \omega(\pi) \geq 0: \ \text{since } \pi \ \text{is cycle } + \ \text{by assumption } \forall \ \text{cycle cost} \geq 0. \\ \\ \bullet \ \implies \ d_n(v) - d_k(v) \geq 0. \ \text{As such, } \frac{d_n(v) - d_k(v)}{n-k} \geq 0. \ \text{Let} \\ \\ \beta(v) = \max_{j=0}^{n-1} \frac{d_n(v) - d_j(v)}{n-j} \geq \frac{d_n(v) - d_k(v)}{n-k} \geq 0. \end{array}$

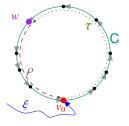
Now, $\alpha = \beta(v) \ge 0$, by the choice of v. QED for this direction.

• $C = (v_0, v_1, \dots, v_t)$: directed cycle of weight 0.

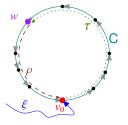
- $\min_{j=0}^{\infty} d_j(v_0)$ realized by index r < n.
 (Otherwise remove non-negative cycles.)
- ${}^{\textcircled{o}}$ ${m \xi}={}^{\textcircled{o}}$ walk of length r ending at v_0 .
- $w \in C$ = walk n r edges on C from v_0 .
- ${igsin 0} \,\, au$ is this walk (i.e., | au|=n-r).
- $\textcircled{0} \hspace{0.1in} d_n(w) \leq \omega \bigl(\xi \mid \mid \tau \bigr) = d_r(v_0) + \omega(\tau) \,,$
- $\bigcirc \rho$: walk on **C** from w back to v_0 .
- (i) $\tau \mid\mid
 ho$ goes around C several times.
- $\omega(\tau \mid\mid
 ho) = 0$, as $\omega(\mathsf{C}) = 0$.



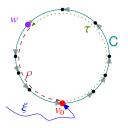
- $C = (v_0, v_1, \dots, v_t)$: directed cycle of weight 0.
- $\min_{j=0}^{\infty} d_j(v_0)$ realized by index r < n.
 (Otherwise remove non-negative cycles.)
- ξ = walk of length r ending at v_0 .
- $w \in C =$ walk n r edges on C from v_0 .
- ${igsin 0} \,\, au$ is this walk (i.e., | au|=n-r).
- $\textcircled{ } \quad \textcircled{ } \quad d_n(w) \leq \omega \big(\xi \mid \mid \tau \big) = d_r(v_0) + \omega(\tau) \, ,$
- $\bigcirc \rho$: walk on **C** from w back to v_0 .
- () $\tau \mid\mid
 ho$ goes around **C** several times.
- $\omega(\tau \mid\mid
 ho) = 0$, as $\omega(\mathbf{C}) = 0$.



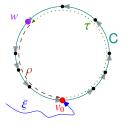
- $C = (v_0, v_1, \dots, v_t)$: directed cycle of weight 0.
- $\min_{j=0}^{\infty} d_j(v_0)$ realized by index r < n.
 (Otherwise remove non-negative cycles.)
- $\xi =$ walk of length r ending at v_0 .
- $w \in C$ = walk n r edges on C from v_0 .
- ${igsin 0} \,\, au$ is this walk (i.e., | au|=n-r)).
- $\textcircled{0} \hspace{0.1in} d_n(w) \leq \omega \big(\xi \mid \mid \tau \big) = d_r(v_0) + \omega(\tau) \,,$
- $\bigcirc \rho$: walk on **C** from w back to v_0 .
- (a) $\tau \mid\mid \rho$ goes around **C** several times.
- $\omega(\tau \mid\mid
 ho) = 0$, as $\omega(\mathbf{C}) = 0$.



- $C = (v_0, v_1, \dots, v_t)$: directed cycle of weight 0.
- $\min_{j=0}^{\infty} d_j(v_0)$ realized by index r < n.
 (Otherwise remove non-negative cycles.)
- $\xi =$ walk of length r ending at v_0 .
- $w \in C$ = walk n r edges on C from v_0 .
- \circ au is this walk (i.e., | au| = n r).
- $\textcircled{0} \hspace{0.1in} d_n(w) \leq \omega \big(\xi \mid \mid \tau \big) = d_r(v_0) + \omega(\tau) \,,$
- $\bigcirc \rho$: walk on **C** from w back to v_0 .
- (a) $\tau \mid\mid \rho$ goes around **C** several times.
- $\omega(\tau \mid\mid
 ho) = 0$, as $\omega(\mathbf{C}) = 0$.



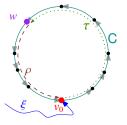
- $C = (v_0, v_1, \dots, v_t)$: directed cycle of weight 0.
- $\min_{j=0}^{\infty} d_j(v_0)$ realized by index r < n.
 (Otherwise remove non-negative cycles.)
- $\xi =$ walk of length r ending at v_0 .
- $w \in C$ = walk n r edges on C from v_0 .
- au is this walk (i.e., | au| = n r).
- $\textcircled{ } \quad \textcircled{ } \quad d_n(w) \leq \omega \big(\xi \mid \mid \tau \big) = d_r(v_0) + \omega(\tau) \, ,$
- $\bigcirc \rho$: walk on **C** from w back to v_0 .
- (a) $\tau \mid\mid \rho$ goes around **C** several times.
- $\omega(\tau \mid\mid
 ho) = 0$, as $\omega(\mathbf{C}) = 0$.



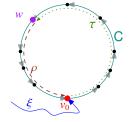
- $C = (v_0, v_1, \dots, v_t)$: directed cycle of weight 0.
- $\min_{j=0}^{\infty} d_j(v_0)$ realized by index r < n.
 (Otherwise remove non-negative cycles.)

$${f 3}\,\,m{\xi}={f w}$$
alk of length r ending at $v_0.$

- $w \in C$ = walk n r edges on C from v_0 .
- au is this walk (i.e., | au| = n r).
- $\hbox{ {\small 0 } } d_n(w) \leq \omega \bigl(\xi \mid \mid \tau \bigr) = d_r(v_0) + \omega(\tau) \, ,$
- ρ : walk on **C** from w back to v_0 .
- **(a)** $\tau \parallel \rho$ goes around **C** several times.
- $\ \, {\bf 0} \ \, \omega(\tau \mid\mid \rho)=0 \text{, as } \omega(\mathsf{C})=0.$



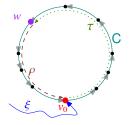
- For any k: extend k edges shortest path ending at w to a path to v₀ (concatenating ρ)
- $egin{aligned} & @ d_k(w)+\omega(
 ho)\geq d_{k+|
 ho|}(v_0)\geq d_r(v_0)\geq \ d_n(w)-\omega(au)\,, \end{aligned}$ $egin{aligned} & @ & @ one \ & (\pi \mid\mid
 ho)=\omega(
 ho)+\omega(\pi)\ & \geq ig(d_n(w)-\omega(au)-d_k(w)ig)+\omega(au) \end{aligned}$



- For any k: extend k edges shortest path ending at w to a path to v₀ (concatenating ρ)
- $\verb"O" d_k(w) + \omega(\rho) \geq d_{k+|\rho|}(v_0) \geq d_r(v_0) \geq \\ d_n(w) \omega(\tau) \,,$
- $\textcircled{0} \ \omega(\rho) \geq d_n(w) \omega(\tau) d_k(w).$
- $egin{aligned} & 0 = \omega(au \mid\mid
 ho) = \omega(
 ho) + \omega(au) \ & \geq ig(d_n(w) \omega(au) d_k(w) ig) + \omega(au) \ & = d_n(w) d_k(w) \end{aligned}$

 $\ \, {\mathfrak o} \ \, \alpha = \min_{v \in V({\mathsf G})} \beta(v) \leq \beta(w) \leq 0$

 $0 \implies \alpha = 0.$



- For any k: extend k edges shortest path ending at w to a path to v₀ (concatenating ρ)
- $\textcircled{ } \quad \textbf{a} \quad \textbf{d}_k(w) + \omega(\rho) \geq d_{k+|\rho|}(v_0) \geq d_r(v_0) \geq \\ \quad d_n(w) \omega(\tau) \,, \end{aligned}$

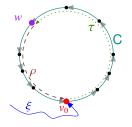
$${\small \bigcirc} \ \omega(\rho) \geq d_n(w) - \omega(\tau) - d_k(w).$$

 $egin{aligned} & egin{aligned} & egin\\ & egin{aligned} & egin{aligned} & egin{aligne$

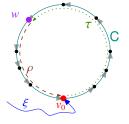
$${old o} \implies eta(w) = \max_{k=0}^{n-1} rac{d_n(w) - d_k(w)}{n-k} \leq 0$$

$$\ \, {\mathfrak o} \ \, \alpha = \min_{v \in V({\mathsf G})} \beta(v) \leq \beta(w) \leq 0$$

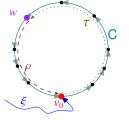
 $0 \implies \alpha = 0.$



- For any k: extend k edges shortest path ending at w to a path to v₀ (concatenating ρ)
- $\textcircled{ } \quad \textbf{a} \quad \textbf{d}_k(w) + \omega(\rho) \geq d_{k+|\rho|}(v_0) \geq d_r(v_0) \geq \\ \quad d_n(w) \omega(\tau) \,, \end{aligned}$
- ${\small \small \bigcirc} \ \omega(\rho) \geq d_n(w) \omega(\tau) d_k(w).$
- $egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$
- $egin{array}{lll} egin{array}{lll} egin{array}{llll} egin{array}{lll} egin{array}{lll} egin{arr$
- $\alpha = \min_{v \in V(\mathsf{G})} \beta(v) \le \beta(w) \le 0$



- For any k: extend k edges shortest path ending at w to a path to v₀ (concatenating ρ)
- $\verb"O" d_k(w) + \omega(\rho) \geq d_{k+|\rho|}(v_0) \geq d_r(v_0) \geq \\ d_n(w) \omega(\tau) \,,$
- ${\small \small \bigcirc} \ \omega(\rho) \geq d_n(w) \omega(\tau) d_k(w).$
- $\begin{array}{l} \bullet \quad 0 = \omega(\tau \mid\mid \rho) = \omega(\rho) + \omega(\tau) \\ \geq \left(d_n(w) \omega(\tau) d_k(w) \right) + \omega(\tau) \\ = d_n(w) d_k(w) \end{array}$
- ${old o} \implies eta(w) = \max_{k=0}^{n-1} rac{d_n(w)-d_k(w)}{n-k} \leq 0.$
- $lpha = \min_{v \in V(\mathsf{G})} eta(v) \leq eta(w) \leq 0$



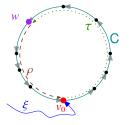
- For any k: extend k edges shortest path ending at w to a path to v₀ (concatenating ρ)
- $\begin{tabular}{ll} \bullet & d_k(w)+\omega(\rho)\geq d_{k+|\rho|}(v_0)\geq d_r(v_0)\geq \\ & d_n(w)-\omega(\tau)\,, \end{tabular} \end{tabular}$

$${\small \bigcirc} \ \omega(\rho) \geq d_n(w) - \omega(\tau) - d_k(w).$$

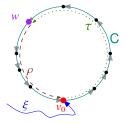
 $egin{aligned} & 0 = \omega(au \mid\mid
ho) = \omega(
ho) + \omega(au) \ & \geq ig(d_n(w) - \omega(au) - d_k(w) ig) + \omega(au) \ & = d_n(w) - d_k(w) \end{aligned}$

$$\mathfrak{s} \implies eta(w) = \max_{k=0}^{n-1} rac{d_n(w) - d_k(w)}{n-k} \leq 0$$

$${ig 0} \ lpha = \min_{v \in V({\sf G})} eta(v) \leq eta(w) \leq 0$$



- For any k: extend k edges shortest path ending at w to a path to v₀ (concatenating ρ)
- $\verb"O" d_k(w) + \omega(\rho) \geq d_{k+|\rho|}(v_0) \geq d_r(v_0) \geq \\ d_n(w) \omega(\tau) \,,$
- ${\small \textcircled{\ }} \omega(\rho) \geq d_n(w) \omega(\tau) d_k(w).$
- $egin{aligned} & 0 = \omega(au \mid\mid
 ho) = \omega(
 ho) + \omega(au) \ & \geq ig(d_n(w) \omega(au) d_k(w) ig) + \omega(au) \ & = d_n(w) d_k(w) \end{aligned}$
- $\hspace{0.1in} \bullet \hspace{0.1in} \Longrightarrow \hspace{0.1in} \beta(w) = \max_{k=0}^{n-1} \tfrac{d_n(w)-d_k(w)}{n-k} \leq 0.$
- $lpha = \min_{v \in V(\mathsf{G})} eta(v) \leq eta(w) \leq 0$



 $0 \implies \alpha = 0.$

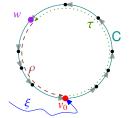
- For any k: extend k edges shortest path ending at w to a path to v₀ (concatenating ρ)
- $\verb"O" d_k(w) + \omega(\rho) \geq d_{k+|\rho|}(v_0) \geq d_r(v_0) \geq \\ d_n(w) \omega(\tau) \,,$

$$\textcircled{0} \ \omega(\rho) \geq d_n(w) - \omega(\tau) - d_k(w).$$

$$egin{aligned} & 0 = \omega(au \mid\mid
ho) = \omega(
ho) + \omega(au) \ & \geq ig(d_n(w) - \omega(au) - d_k(w) ig) + \omega(au) \ & = d_n(w) - d_k(w) \end{aligned}$$

$$oldsymbol{im} \implies eta(w) = \max_{k=0}^{n-1} rac{d_n(w)-d_k(w)}{n-k} \leq 0.$$

•
$$\alpha = \min_{v \in V(\mathsf{G})} \beta(v) \le \beta(w) \le 0$$



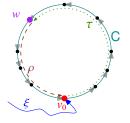
- For any k: extend k edges shortest path ending at w to a path to v₀ (concatenating ρ)
- $\verb"O" d_k(w) + \omega(\rho) \geq d_{k+|\rho|}(v_0) \geq d_r(v_0) \geq \\ d_n(w) \omega(\tau) \,,$

$$\textcircled{0} \ \omega(\rho) \geq d_n(w) - \omega(\tau) - d_k(w).$$

$$egin{aligned} & 0 = \omega(au \mid\mid
ho) = \omega(
ho) + \omega(au) \ & \geq ig(d_n(w) - \omega(au) - d_k(w) ig) + \omega(au) \ & = d_n(w) - d_k(w) \end{aligned}$$

$${old S} \implies eta(w) = \max_{k=0}^{n-1} rac{d_n(w)-d_k(w)}{n-k} \leq 0.$$

$$\ \, {\mathfrak o} \ \, \alpha = \min_{v \in V({\mathsf G})} \beta(v) \leq \beta(w) \leq 0$$



QED

Computing α :

- $\forall k, \forall v \ d_k(v)$: longest path with k edges ending at v. Computed in O(nm) time.
- $a = \min_{v \in V} \max_{k=0}^{n-1} \frac{d_n(v) d_k(v)}{n-k}.$
- (i) Compute α in $O(n^2)$ after $d_i(\cdot)$ computed.

Computing α :

- $\forall k, \forall v \ d_k(v)$: longest path with k edges ending at v. Computed in O(nm) time.
- $a = \min_{v \in V} \max_{k=0}^{n-1} \frac{d_n(v) d_k(v)}{n-k}.$
- (i) Compute α in $O(n^2)$ after $d_i(\cdot)$ computed.

Computing α :

- $\forall k, \forall v \ d_k(v)$: longest path with k edges ending at v. Computed in O(nm) time.
- $a = \min_{v \in V} \max_{k=0}^{n-1} \frac{d_n(v) d_k(v)}{n-k}.$
- Sompute α in $O(n^2)$ after $d_i(\cdot)$ computed.

Finding min average cost cycle...

- Proved: Minimum avg cost of cycle in **G** is = $\alpha = \min_{v \in V} \max_{k=0}^{n-1} \frac{d_n(v) d_k(v)}{n-k}$.
- 2 Compute v that realizes α .
- (i) Add $-\alpha$ to all the edges in the graph.
- Looking for cycle of weight 0.
- **(5)** Recompute $d_i(\cdot)$ to agree with the new weights of the edges.
- \odot For v above: $0 = lpha = \max_{k=0}^{n-1} rac{d_n(v) d_k(v)}{n-k}$
- $@ \implies orall k \in \{0,\ldots,n-1\} \;\; rac{d_n(v)-d_k(v)}{n-k} \leq 0$
- $\textcircled{0} \implies \forall k \in \{0,\ldots,n-1\} \quad d_n(v) d_k(v) \leq 0.$
- $\circledast \implies \forall i \qquad d_n(v) \leq d_i(v) \text{, for all } i.$

Finding min average cost cycle...

- Proved: Minimum avg cost of cycle in **G** is = $\alpha = \min_{v \in V} \max_{k=0}^{n-1} \frac{d_n(v) d_k(v)}{n-k}$.
- 2 Compute v that realizes α .
- \bigcirc Add -lpha to all the edges in the graph.
- Looking for cycle of weight 0.
- **(5)** Recompute $d_i(\cdot)$ to agree with the new weights of the edges.
- \odot For v above: $0 = lpha = \max_{k=0}^{n-1} rac{d_n(v) d_k(v)}{n-k}$
- $@ \implies orall k \in \{0,\ldots,n-1\} \;\; rac{d_n(v)-d_k(v)}{n-k} \leq 0$
- $\textcircled{0} \implies orall k \in \{0,\ldots,n-1\} \hspace{0.2cm} d_n(v) d_k(v) \leq 0.$
- $\textcircled{9} \implies \forall i \qquad d_n(v) \leq d_i(v) \text{, for all } i.$

- Proved: Minimum avg cost of cycle in **G** is = $\alpha = \min_{v \in V} \max_{k=0}^{n-1} \frac{d_n(v) d_k(v)}{n-k}$.
- 2 Compute v that realizes α .
- **③** Add $-\alpha$ to all the edges in the graph.
- Looking for cycle of weight 0.
- 0 Recompute $d_i(\cdot)$ to agree with the new weights of the edges.
- For v above: $0 = lpha = \max_{k=0}^{n-1} rac{d_n(v) d_k(v)}{n-k}$
- $@ \implies orall k \in \{0,\ldots,n-1\} \;\; rac{d_n(v)-d_k(v)}{n-k} \leq 0$
- $\textcircled{0} \implies orall k \in \{0,\ldots,n-1\} \hspace{0.2cm} d_n(v) d_k(v) \leq 0.$
- $\textcircled{O} \implies orall i \quad d_n(v) \leq d_i(v)$, for all i.

- Proved: Minimum avg cost of cycle in **G** is = $\alpha = \min_{v \in V} \max_{k=0}^{n-1} \frac{d_n(v) d_k(v)}{n-k}$.
- 2 Compute v that realizes α .
- **③** Add $-\alpha$ to all the edges in the graph.
- Looking for cycle of weight 0.
- 0 Recompute $d_i(\cdot)$ to agree with the new weights of the edges.
- For v above: $0 = lpha = \max_{k=0}^{n-1} rac{d_n(v) d_k(v)}{n-k}$
- $@ \implies orall k \in \{0,\ldots,n-1\} \;\; rac{d_n(v)-d_k(v)}{n-k} \leq 0$
- $\textcircled{0} \implies orall k \in \{0,\ldots,n-1\} \hspace{0.2cm} d_n(v) d_k(v) \leq 0.$
- $\textcircled{O} \implies orall i \quad d_n(v) \leq d_i(v)$, for all i.

- Proved: Minimum avg cost of cycle in **G** is = $\alpha = \min_{v \in V} \max_{k=0}^{n-1} \frac{d_n(v) d_k(v)}{n-k}$.
- 2 Compute v that realizes α .
- **③** Add $-\alpha$ to all the edges in the graph.
- Looking for cycle of weight 0.
- Solution Recompute $d_i(\cdot)$ to agree with the new weights of the edges.
- 6 For v above: $0 = lpha = \max_{k=0}^{n-1} rac{d_n(v) d_k(v)}{n-k}$
- $\bigcirc \implies orall k \in \{0,\ldots,n-1\} \ \ rac{d_n(v)-d_k(v)}{n-k} \leq 0$
- $\textcircled{0} \implies orall k \in \{0,\ldots,n-1\} \hspace{0.2cm} d_n(v) d_k(v) \leq 0.$
- $\circledast \implies \forall i \qquad d_n(v) \leq d_i(v) \text{, for all } i.$

- Proved: Minimum avg cost of cycle in **G** is = $\alpha = \min_{v \in V} \max_{k=0}^{n-1} \frac{d_n(v) d_k(v)}{n-k}$.
- 2 Compute v that realizes α .
- **③** Add $-\alpha$ to all the edges in the graph.
- Looking for cycle of weight 0.
- Solution Recompute $d_i(\cdot)$ to agree with the new weights of the edges.
- **6** For v above: $0 = lpha = \max_{k=0}^{n-1} rac{d_n(v) d_k(v)}{n-k}$
- $\bigcirc \implies orall k \in \{0,\ldots,n-1\} \quad rac{d_n(v)-d_k(v)}{n-k} \leq 0$
- $\odot \implies orall k \in \{0,\ldots,n-1\} \quad d_n(v) d_k(v) \leq 0.$
- $\circledast \implies \forall i \qquad d_n(v) \leq d_i(v) \text{, for all } i.$

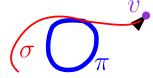
- Proved: Minimum avg cost of cycle in **G** is = $\alpha = \min_{v \in V} \max_{k=0}^{n-1} \frac{d_n(v) d_k(v)}{n-k}$.
- 2 Compute v that realizes α .
- **③** Add $-\alpha$ to all the edges in the graph.
- Looking for cycle of weight 0.
- Solution Recompute $d_i(\cdot)$ to agree with the new weights of the edges.
- For v above: $0 = lpha = \max_{k=0}^{n-1} rac{d_n(v) d_k(v)}{n-k}$
- $oldsymbol{0} \implies orall k \in \{0,\ldots,n-1\} \quad rac{d_n(v)-d_k(v)}{n-k} \leq 0$
- $\textcircled{0} \implies orall k \in \{0,\ldots,n-1\} \hspace{0.2cm} d_n(v) d_k(v) \leq 0.$
- $\circledast \implies \forall i \qquad d_n(v) \leq d_i(v) \text{, for all } i.$

- Proved: Minimum avg cost of cycle in **G** is = $\alpha = \min_{v \in V} \max_{k=0}^{n-1} \frac{d_n(v) d_k(v)}{n-k}$.
- 2 Compute v that realizes α .
- **(a)** Add $-\alpha$ to all the edges in the graph.
- Looking for cycle of weight 0.
- Solution Recompute $d_i(\cdot)$ to agree with the new weights of the edges.
- **6** For v above: $0 = lpha = \max_{k=0}^{n-1} rac{d_n(v) d_k(v)}{n-k}$
- $oldsymbol{0} \implies orall k \in \{0,\ldots,n-1\} \quad rac{d_n(v)-d_k(v)}{n-k} \leq 0$
- $\textcircled{ 0 } \implies \forall k \in \{0,\ldots,n-1\} \quad d_n(v) d_k(v) \leq 0.$
- $\textcircled{O} \implies orall oldsymbol{i} \quad d_n(v) \leq d_i(v)$, for all $oldsymbol{i}.$

- Proved: Minimum avg cost of cycle in **G** is = $\alpha = \min_{v \in V} \max_{k=0}^{n-1} \frac{d_n(v) d_k(v)}{n-k}$.
- 2 Compute v that realizes α .
- **(a)** Add $-\alpha$ to all the edges in the graph.
- Looking for cycle of weight 0.
- Solution Recompute $d_i(\cdot)$ to agree with the new weights of the edges.
- **6** For v above: $0 = lpha = \max_{k=0}^{n-1} rac{d_n(v) d_k(v)}{n-k}$
- $egin{array}{ll} egin{array}{ll} & \longrightarrow & orall k \in \{0,\ldots,n-1\} & rac{d_n(v)-d_k(v)}{n-k} \leq 0 \end{array}$
- $\textcircled{ 0 } \implies \forall k \in \{0,\ldots,n-1\} \quad d_n(v) d_k(v) \leq 0.$
- $\textcircled{0} \implies \forall i \qquad d_n(v) \leq d_i(v) \text{, for all } i.$

- Repeat proof of theorem...
- ② P_n : path with n edges realizing $d_n(v)$.
- $\ \, {\boldsymbol S} \ \, P_n = \sigma || \pi$

- $\ \, \bullet \ \, \omega(\pi) \geq 0$
- ullet $\omega(\sigma) \geq d_k(v)$
- $egin{array}{lll} & oldsymbol{\omega}(\pi) = d_n(v) oldsymbol{\omega}(\sigma) \leq \ d_n(v) d_k(v) \leq 0 \end{array}$



- π is a cycle and $\omega(\pi) = 0$. Done!
- Note the reweighting is not really necessary.

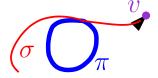
- Repeat proof of theorem...
- P_n : path with n edges realizing $d_n(v)$.

- ${ig 0} \,\,\, \omega(\pi) \geq 0$
- ullet $\omega(\sigma) \geq d_k(v)$
- $egin{array}{lll} & egin{array}{lll} & egin{array}{lll} & eta_n(v) = d_n(v) \omega(\sigma) \leq \ & d_n(v) d_k(v) \leq 0 \end{array}$

- $\bigcirc \pi$ is a cycle and $\omega(\pi) = 0$. Done!
- Note the reweighting is not really necessary.

- Repeat proof of theorem...
- P_n : path with n edges realizing $d_n(v)$.
- $\ \, {\boldsymbol S} \ \, P_n = \sigma || \pi$

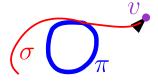
- $\ \, \bullet \ \, \omega(\pi) \geq 0$
- $\omega(\sigma) \geq d_k(v)$
- $egin{array}{lll} & egin{array}{lll} & egin{array}{lll} & eta_n(v) = d_n(v) \omega(\sigma) \leq \ & d_n(v) d_k(v) \leq 0 \end{array}$



- π is a cycle and $\omega(\pi) = 0$. Done!
- Note the reweighting is not really necessary.

- Repeat proof of theorem...
- P_n: path with n edges realizing d_n(v).
- $P_n = \sigma || \pi$

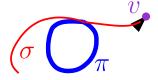
- $\textcircled{\ }\omega(\pi)\geq 0$
- $\omega(\sigma) \geq d_k(v)$
- $egin{array}{lll} & egin{array}{lll} & egin{array}{lll} & eta_n(v) = d_n(v) \omega(\sigma) \leq \ & d_n(v) d_k(v) \leq 0 \end{array}$



- π is a cycle and $\omega(\pi) = 0$. Done!
- Note the reweighting is not really necessary.

- Repeat proof of theorem...
- P_n : path with n edges realizing $d_n(v)$.
- $P_n = \sigma || \pi$

- ${\scriptstyle \textcircled{0}} \ \omega(\pi) \geq 0$
- ${\color{black} \bullet} \hspace{0.1 cm} \omega(\sigma) \geq d_k(v)$
- $egin{array}{lll} & egin{array}{lll} & egin{array}{lll} & eta_n(v) = d_n(v) \omega(\sigma) \leq \ & d_n(v) d_k(v) \leq 0 \end{array}$



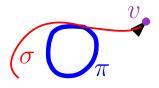
- π is a cycle and $\omega(\pi) = 0$. Done!
- Note the reweighting is not really necessary.

- Repeat proof of theorem...
- P_n: path with n edges realizing d_n(v).
- $P_n = \sigma || \pi$

 σ : a path of length k, π is a cycle.

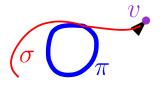
- $\textcircled{\ }\omega(\pi)\geq 0$
- $\textcircled{\ }\omega(\sigma)\geq d_k(v)$
- $egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} \omega(\pi) &= d_n(v) \omega(\sigma) \leq 0 \ d_n(v) d_k(v) \leq 0 \end{array} \end{array}$

Note - the reweighting is not really necessary.



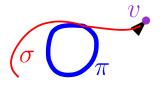
- Repeat proof of theorem...
- P_n: path with n edges realizing d_n(v).
- $P_n = \sigma || \pi$

- $\textcircled{\ }\omega(\pi)\geq 0$
- ${\color{black} \bullet} \hspace{0.1 cm} \omega(\sigma) \geq d_k(v)$
- $egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} \omega(\pi) &= d_n(v) \omega(\sigma) \leq 0 \ d_n(v) d_k(v) \leq 0 \end{array}$
- π is a cycle and $\omega(\pi) = 0$. Done!
- Note the reweighting is not really necessary.



- Repeat proof of theorem...
- P_n: path with n edges realizing d_n(v).
- $P_n = \sigma || \pi$

- $\textcircled{\ }\omega(\pi)\geq 0$
- $\textcircled{\ }\omega(\sigma)\geq d_k(v)$
- $egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} \omega(\pi) &= d_n(v) \omega(\sigma) \leq 0 \ d_n(v) d_k(v) \leq 0 \end{array} \end{array}$
- π is a cycle and $\omega(\pi) = 0$. Done!
- Note the reweighting is not really necessary.



Corollary

A direct graph **G** with *n* vertices and *m* edges, and a weight function $\omega(\cdot)$ on the edges, one can compute the cycle with minimum average cost in O(nm) time.

Part II

Potentials

Shortest path with negative weights...

- Dijkstra algorithm works only for graphs with non-negative weights.
- If negative weights, then one can use the Bellman-Ford algorithm.
- Sellman-Ford is slow... O(mn).
- Show how to use Dijkstra algorithm for some cases.
- **6** $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ with weight $w(\cdot)$ on edges.
- $\mathbf{d}_{\omega}(s, t)$: length of shortest path.
- Weights might be negative!

Potential

A *potential* $p(\cdot)$ is a function that assigns a real value to each vertex of **G**, such that if $e = (u \rightarrow v) \in \mathbf{G}$ then $w(e) \ge p(v) - p(u)$.

Lemma

 $\exists p(\cdot) \text{ potential for } \mathsf{G} \iff \mathsf{G} \text{ has no negative cycles (for } w(\cdot)).$

Proof.

 \Rightarrow : Assume $\exists p(\cdot)$ potential. For any cycle **C**:

$$w(\mathsf{C}) = \sum_{(u
ightarrow v) \in \mathsf{E}(\mathsf{C})} w(e) \geq \sum_{(u
ightarrow v) \in E(\mathsf{C})} (p(v) - p(u)) = 0.$$

 \Leftarrow : Assume no negative cycle. p(v): shortest walk that ends at v. Claim: p(v) is a potential.

Lemma

 $\exists p(\cdot) \text{ potential for } \mathsf{G} \iff \mathsf{G} \text{ has no negative cycles (for } w(\cdot)).$

Proof.

 \Rightarrow : Assume $\exists p(\cdot)$ potential. For any cycle **C**:

$$w(\mathsf{C}) = \sum_{(u
ightarrow v) \in \mathsf{E}(\mathsf{C})} w(e) \geq \sum_{(u
ightarrow v) \in E(\mathsf{C})} (p(v) - p(u)) = 0.$$

 \Leftarrow : Assume no negative cycle. p(v): shortest walk that ends at v. Claim: p(v) is a potential.

Lemma

 $\exists p(\cdot) \text{ potential for } \mathsf{G} \iff \mathsf{G} \text{ has no negative cycles (for } w(\cdot)).$

Proof.

 \Rightarrow : Assume $\exists p(\cdot)$ potential. For any cycle **C**:

$$w(\mathsf{C}) = \sum_{(u
ightarrow v) \in \mathsf{E}(\mathsf{C})} w(e) \geq \sum_{(u
ightarrow v) \in E(\mathsf{C})} (p(v) - p(u)) = 0.$$

 $\Leftarrow: \text{Assume no negative cycle. } p(v): \text{ shortest walk that ends at } v.$ Claim: p(v) is a potential.

Lemma

 $\exists p(\cdot) \text{ potential for } \mathsf{G} \iff \mathsf{G} \text{ has no negative cycles (for } w(\cdot)).$

Proof.

 \Rightarrow : Assume $\exists p(\cdot)$ potential. For any cycle **C**:

$$w(\mathsf{C}) = \sum_{(u
ightarrow v) \in \mathsf{E}(\mathsf{C})} w(e) \geq \sum_{(u
ightarrow v) \in E(\mathsf{C})} (p(v) - p(u)) = 0.$$

 $\Leftarrow: \text{Assume no negative cycle. } p(v): \text{ shortest walk that ends at } v.$ Claim: p(v) is a potential.

Lemma

 $\exists p(\cdot) \text{ potential for } \mathsf{G} \iff \mathsf{G} \text{ has no negative cycles (for } w(\cdot)).$

Proof.

 \Rightarrow : Assume $\exists p(\cdot)$ potential. For any cycle **C**:

$$w(\mathsf{C}) = \sum_{(u
ightarrow v) \in \mathsf{E}(\mathsf{C})} w(e) \geq \sum_{(u
ightarrow v) \in E(\mathsf{C})} (p(v) - p(u)) = 0.$$

 $\Leftarrow: \text{Assume no negative cycle. } p(v): \text{ shortest walk that ends at } v.$ Claim: p(v) is a potential.

Lemma

 $\exists p(\cdot) \text{ potential for } \mathsf{G} \iff \mathsf{G} \text{ has no negative cycles (for } w(\cdot)).$

Proof.

 \Rightarrow : Assume $\exists p(\cdot)$ potential. For any cycle **C**:

$$w(\mathsf{C}) = \sum_{(u
ightarrow v) \in \mathsf{E}(\mathsf{C})} w(e) \geq \sum_{(u
ightarrow v) \in E(\mathsf{C})} (p(v) - p(u)) = 0.$$

 $\Leftarrow: \text{Assume no negative cycle. } p(v): \text{ shortest walk that ends at } v.$ Claim: p(v) is a potential.

• No negative cycles:
$$p(v)$$
 is well defined.
• $\forall (u \rightarrow v) \in \mathsf{E}(\mathsf{G})$: $p(v) \leq p(u) + w(u \rightarrow v)$
• $p(v) - p(u) \leq w(u \rightarrow v)$, as required.

Lemma

$$\begin{array}{l} p(\cdot): \mbox{ potential. } \forall e = (u \rightarrow v) \in \mathsf{E}(\mathsf{G}): \\ \ell(e) = w(e) - p(v) + p(u) \\ (A) \ \ell(\cdot) \ \mbox{ is non-negative for all edges.} \\ (B) \ \forall s, t \in \mathsf{V}(\mathsf{G}): \ \mbox{ shortest path } \pi \ \mbox{ of } \mathrm{d}_{\ell}(s,t) \ \mbox{ also s.p. } \mathrm{d}_{\omega}(s,t). \end{array}$$

$$\begin{array}{l} \text{Proof of (A):} \ w(e) \geq p(v) - p(u) \implies \\ w(e) - p(v) + p(u) \geq 0. \end{array}$$

$$\begin{array}{l} \text{Proof of (B):} \ \forall \ s - t \ \text{path} \ \pi \ \text{in } \mathbf{G}: \\ \ell(\pi) = \sum_{e = (u \rightarrow v) \in \pi} (w(e) - p(v) + p(u)) = \\ w(\pi) + p(s) - p(t), \\ \implies d_{\ell}(s,t) = d_{\omega}(s,t) + p(s) - p(t). \end{array}$$

Lemma

$$\begin{array}{l} p(\cdot): \mbox{ potential. } \forall e = (u \rightarrow v) \in \mathsf{E}(\mathsf{G}): \\ \ell(e) = w(e) - p(v) + p(u) \\ (A) \ \ell(\cdot) \ \mbox{ is non-negative for all edges.} \\ (B) \ \forall s, t \in \mathsf{V}(\mathsf{G}): \ \mbox{ shortest path } \pi \ \mbox{ of } \mathrm{d}_{\ell}(s,t) \ \mbox{ also s.p. } \mathrm{d}_{\omega}(s,t). \end{array}$$

$$\begin{array}{l} \text{Proof of (A):} \ w(e) \geq p(v) - p(u) \implies \\ w(e) - p(v) + p(u) \geq 0. \end{array}$$

$$\begin{array}{l} \text{Proof of (B):} \ \forall \ s - t \ \text{path} \ \pi \ \text{in } \mathbf{G}: \\ \ell(\pi) = \sum_{e = (u \rightarrow v) \in \pi} (w(e) - p(v) + p(u)) = \\ w(\pi) + p(s) - p(t), \\ \implies \mathbf{d}_{\ell}(s, t) = \mathbf{d}_{\omega}(s, t) + p(s) - p(t). \end{array}$$

Lemma

$$\begin{array}{l} p(\cdot): \mbox{ potential. } \forall e = (u \rightarrow v) \in \mathsf{E}(\mathsf{G}): \\ \ell(e) = w(e) - p(v) + p(u) \\ (A) \ \ell(\cdot) \ \mbox{ is non-negative for all edges.} \\ (B) \ \forall s, t \in \mathsf{V}(\mathsf{G}): \ \mbox{ shortest path } \pi \ \mbox{ of } \mathrm{d}_{\ell}(s,t) \ \mbox{ also s.p. } \mathrm{d}_{\omega}(s,t). \end{array}$$

$$\begin{array}{l} \text{Proof of (A): } w(e) \geq p(v) - p(u) \implies \\ w(e) - p(v) + p(u) \geq 0. \end{array}$$

$$\begin{array}{l} \text{Proof of (B): } \forall \ s - t \ \text{path } \pi \ \text{in } \mathbf{G}: \\ \ell(\pi) = \sum_{e = (u \rightarrow v) \in \pi} (w(e) - p(v) + p(u)) = \\ w(\pi) + p(s) - p(t), \\ \implies d_{\ell}(s, t) = d_{\omega}(s, t) + p(s) - p(t). \end{array}$$

Lemma (iii)

Lemma

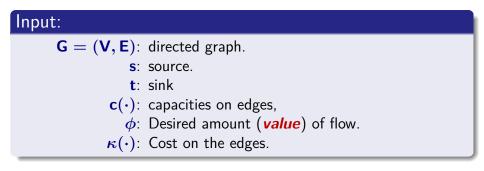
G: graph. $p(\cdot)$: potential. Compute the shortest path from s to all vertices of **G** in $O(n \log n + m)$ time, where **G** has n vertices and m edges

- Use Dijkstra algorithm on the distances defined by $\ell(\cdot)$.
- The shortest paths are preserved under this distance by Lemma (ii), and this distance function is always positive.

Part III

Minimum cost flow

Min cost flow



Definition - cost of flow

cost of flow f: $cost(f) = \sum_{e \in E} \kappa(e) * f(e)$.

Min-cost flow

minimum-cost s-t flow problem: compute the flow f of min cost that has value ϕ .

min-cost circulation problem

Instead of ϕ we have lower-bound $\ell(\cdot)$ on edges. (All flow that enters must leave.)

Claim

If we can solve min-cost circulation \implies can solve min-cost flow.

Min-cost flow

minimum-cost s-t flow problem: compute the flow f of min cost that has value ϕ .

min-cost circulation problem

Instead of ϕ we have lower-bound $\ell(\cdot)$ on edges. (All flow that enters must leave.)

Claim

If we can solve min-cost circulation \implies can solve min-cost flow.

Min-cost flow

minimum-cost s-t flow problem: compute the flow f of min cost that has value ϕ .

min-cost circulation problem

Instead of ϕ we have lower-bound $\ell(\cdot)$ on edges. (All flow that enters must leave.)

Claim

If we can solve min-cost circulation \implies can solve min-cost flow.

Min-cost flow

minimum-cost s-t flow problem: compute the flow f of min cost that has value ϕ .

min-cost circulation problem

Instead of ϕ we have lower-bound $\ell(\cdot)$ on edges. (All flow that enters must leave.)

Claim

If we can solve min-cost circulation \implies can solve min-cost flow.

Residual graph...

The *residual graph* of **f** is the graph $G_f = (V, E_f)$ where

$$E_{\mathsf{f}} = \left\{ e = (u \to v) \in V \times V \middle| \begin{array}{c} \mathsf{f}(e) < \mathsf{c}(e) \\ \text{or } \mathsf{f}(e^{-1}) > \ell(e^{-1}) \end{array} \right\}.$$

where
$$e^{-1} = (v
ightarrow u)$$
 if $e = (u
ightarrow v)$.

Assumption

$$orall u, v \quad (u o v) \in \mathsf{E}(\mathsf{G}) \implies (v o u) \notin \mathsf{E}(\mathsf{G}).$$

Cost function is anti-symmetric:

 $orall \left(oldsymbol{u}
ightarrow oldsymbol{v}
ight) \in E_{ ext{f}} \qquad oldsymbol{\kappa} \left((oldsymbol{u}
ightarrow oldsymbol{v}
ight) = -oldsymbol{\kappa} \left((oldsymbol{v}
ightarrow oldsymbol{u}
ight)
ight).$

Residual graph...

The *residual graph* of **f** is the graph $G_f = (V, E_f)$ where

$$E_{\mathsf{f}} = \left\{ e = (u \to v) \in V \times V \middle| \begin{array}{c} \mathsf{f}(e) < \mathsf{c}(e) \\ \text{or } \mathsf{f}(e^{-1}) > \ell(e^{-1}) \end{array} \right\}.$$

where $e^{-1} = (v
ightarrow u)$ if e = (u
ightarrow v).

Assumption

$$\forall u, v \quad (u o v) \in \mathsf{E}(\mathsf{G}) \implies (v o u) \notin \mathsf{E}(\mathsf{G}).$$

Cost function is anti-symmetric:

 $orall \left(oldsymbol{u}
ightarrow oldsymbol{v}
ight) \in E_{ ext{f}} \qquad oldsymbol{\kappa} \left(\left(oldsymbol{u}
ightarrow oldsymbol{v}
ight)
ight) = -oldsymbol{\kappa} \left(\left(oldsymbol{v}
ightarrow oldsymbol{u}
ight)
ight) .$

Residual graph...

The *residual graph* of **f** is the graph $G_f = (V, E_f)$ where

$$E_{\mathsf{f}} = \left\{ e = (u \to v) \in V \times V \middle| \begin{array}{c} \mathsf{f}(e) < \mathsf{c}(e) \\ \text{or } \mathsf{f}(e^{-1}) > \ell(e^{-1}) \end{array} \right\}.$$

where $e^{-1} = (v
ightarrow u)$ if e = (u
ightarrow v).

Assumption

$$\forall u, v \quad (u o v) \in \mathsf{E}(\mathsf{G}) \implies (v o u) \notin \mathsf{E}(\mathsf{G}).$$

Cost function is anti-symmetric:

 $orall \left(u
ightarrow v
ight) \in E_{ ext{f}} \qquad \kappa \left(\left(u
ightarrow v
ight)
ight) = -\kappa \left(\left(v
ightarrow u
ight)
ight).$

Some definitions

Definition

Cycle sign Directed cycle C in G_f .

$$e = (u \to v) \in \mathsf{E}(\mathsf{G}): \ \chi_C(e) = \begin{cases} 1 & e \in C \\ -1 & e^{-1} = (v \to u) \in C \\ 0 & \text{otherwise}; \end{cases}$$

Pay 1 if e is in C and -1 if we travel e in the "wrong" direction.

Definition

Cycle cost The *cost* of a directed cycle C in G_f is

$$\kappa(\mathsf{C}) = \sum_{e \in \mathsf{C}} \kappa(e)$$
 .

Some definitions

Definition

Cycle sign Directed cycle C in G_f .

$$e = (u \to v) \in \mathsf{E}(\mathsf{G}): \ \chi_C(e) = \begin{cases} 1 & e \in C \\ -1 & e^{-1} = (v \to u) \in C \\ 0 & \text{otherwise;} \end{cases}$$

Pay 1 if e is in C and -1 if we travel e in the "wrong" direction.

Definition

Cycle cost The *cost* of a directed cycle C in G_f is

$$\kappa(\mathsf{C}) = \sum_{e \in \mathsf{C}} \kappa(e)$$
 .

- Circulation comply with capacity and lower-bounds constraints is valid.
- I flow function that only comply with conservation property is a weak circulation.
- Weak circulation might violate capacity and lower bounds.
- Weak circulation might not be a valid circulation.

- Circulation comply with capacity and lower-bounds constraints is valid.
- I flow function that only comply with conservation property is a weak circulation.
- Weak circulation might violate capacity and lower bounds.
- Weak circulation might not be a valid circulation.

- Circulation comply with capacity and lower-bounds constraints is valid.
- Iflow function that only comply with conservation property is a weak circulation.
- Weak circulation might violate capacity and lower bounds.
- Weak circulation might not be a valid circulation.

- Circulation comply with capacity and lower-bounds constraints is valid.
- Iflow function that only comply with conservation property is a weak circulation.
- Weak circulation might violate capacity and lower bounds.
- Weak circulation might not be a valid circulation.

Lemma

f, g: two valid circulations in G = (V, E). Let h = g - f. (A) h is a weak circulation, (B) if $h(u \rightarrow v) > 0$ then $(u \rightarrow v) \in G_f$.

Proof...

h is clearly a weak circulation (conservation of flow - verify).
If h(u → v) is negative, then h(v → u) = -h(u → v).
For e = (u → v), h(u → v) > 0:

(i) If e = (u → v) ∈ E, and f(e) < c(e) ⇒ e ∈ G_f
If f(e) = c(e) ⇒ h(e) = g(e) - f(e) ≤ 0.
Contradicts h(u → v) > 0.

Lemma

f, g: two valid circulations in G = (V, E). Let h = g - f. (A) h is a weak circulation, (B) if $h(u \rightarrow v) > 0$ then $(u \rightarrow v) \in G_f$.

Proof...

h is clearly a weak circulation (conservation of flow - verify).
If h(u → v) is negative, then h(v → u) = -h(u → v).
For e = (u → v), h(u → v) > 0:

(i) If e = (u → v) ∈ E, and f(e) < c(e) ⇒ e ∈ G_f.
If f(e) = c(e) ⇒ h(e) = g(e) - f(e) ≤ 0.
Contradicts h(u → v) > 0.

Lemma

f, g: two valid circulations in G = (V, E). Let h = g - f. (A) h is a weak circulation, (B) if $h(u \rightarrow v) > 0$ then $(u \rightarrow v) \in G_f$.

Proof...

h is clearly a weak circulation (conservation of flow - verify).
If h(u → v) is negative, then h(v → u) = -h(u → v).
For e = (u → v), h(u → v) > 0:

(i) If e = (u → v) ∈ E, and f(e) < c(e) ⇒ e ∈ G_f

If $\mathbf{f}(e) = \mathbf{c}(e) \implies \mathbf{h}(e) = \mathbf{g}(e) - \mathbf{f}(e) \le 0$. Contradicts $\mathbf{h}(u \rightarrow v) > 0$.

Lemma

f, g: two valid circulations in G = (V, E). Let h = g - f. (A) h is a weak circulation, (B) if $h(u \rightarrow v) > 0$ then $(u \rightarrow v) \in G_f$.

Proof...

h is clearly a weak circulation (conservation of flow - verify).
If h(u → v) is negative, then h(v → u) = -h(u → v).
For e = (u → v), h(u → v) > 0:

(i) If e = (u → v) ∈ E, and f(e) < c(e) ⇒ e ∈ G_f.
If f(e) = c(e) ⇒ h(e) = g(e) - f(e) ≤ 0.
Contradicts h(u → v) > 0.

Proof continued:

For $e = (u \rightarrow v)$, $\mathsf{h}(u \rightarrow v) > 0$, and $e = (u \rightarrow v) \notin \mathsf{E}$:

- ${\color{black} \bullet} \implies e^{-1} = (v \rightarrow u) \in {\color{black} \bullet}. \text{ Otherwise } {\color{black} \mathsf{h}}(u \rightarrow v) = 0.$
- $@ \ 0 > \mathsf{h} \, (e^{-1}) = \mathsf{g} \, (e^{-1}) \mathsf{f} \, (e^{-1}).$

$$\textbf{3} \implies \mathbf{f}\left(e^{-1}\right) > \mathbf{g}\left(e^{-1}\right) \geq \ell\left(e^{-1}\right).$$

- Flow by **f** on e^{-1} larger than lower bound.
- Solution Can return this flow in the other direction.

Proof continued:

For $e = (u \rightarrow v)$, $h(u \rightarrow v) > 0$, and $e = (u \rightarrow v) \notin E$: • $\Rightarrow e^{-1} = (v \rightarrow u) \in E$. Otherwise $h(u \rightarrow v) = 0$. • $0 > h(e^{-1}) = g(e^{-1}) - f(e^{-1})$. • $\Rightarrow f(e^{-1}) > g(e^{-1}) \ge \ell(e^{-1})$. • Flow by f on e^{-1} larger than lower bound.

Solution Can return this flow in the other direction.

Proof continued:

For e = (u
ightarrow v), $\mathsf{h}(u
ightarrow v) > 0$, and $e = (u
ightarrow v)
otin \mathsf{E}$:

- $\textbf{0} \implies e^{-1} = (v \rightarrow u) \in \textbf{E}. \text{ Otherwise } \textbf{h}(u \rightarrow v) = \textbf{0}.$
- **3** $0 > h(e^{-1}) = g(e^{-1}) f(e^{-1}).$
- $\exists \implies \mathbf{f}\left(e^{-1}\right) > \mathbf{g}\left(e^{-1}\right) \geq \ell\left(e^{-1}\right).$
- Flow by **f** on e^{-1} larger than lower bound.
- Solution Can return this flow in the other direction.
- $\mathbf{0} \implies e \in \mathbf{G}_{\mathbf{f}}.$

Proof continued:

For e = (u
ightarrow v), $\mathsf{h}(u
ightarrow v) > 0$, and $e = (u
ightarrow v)
otin \mathsf{E}$:

- $\blacksquare \implies e^{-1} = (v \rightarrow u) \in \mathsf{E}. \ \text{Otherwise } \mathsf{h}(u \rightarrow v) = 0.$
- **2** $0 > h(e^{-1}) = g(e^{-1}) f(e^{-1}).$
- $\exists \implies \mathbf{f}(e^{-1}) > \mathbf{g}(e^{-1}) \ge \ell(e^{-1}).$
- Flow by **f** on e^{-1} larger than lower bound.
- O Can return this flow in the other direction.
- $\mathbf{0} \implies e \in \mathbf{G}_{\mathbf{f}}.$

Proof continued:

For $e = (u \rightarrow v)$, $h(u \rightarrow v) > 0$, and $e = (u \rightarrow v) \notin E$:

- $\bullet \implies e^{-1} = (v \to u) \in \mathsf{E}. \text{ Otherwise } \mathsf{h}(u \to v) = 0.$
- **2** $0 > h(e^{-1}) = g(e^{-1}) f(e^{-1}).$

If I have by **f** on e^{-1} larger than lower bound.

On return this flow in the other direction.

Proof continued:

For e = (u
ightarrow v), $\mathsf{h}(u
ightarrow v) > 0$, and $e = (u
ightarrow v) \notin \mathsf{E}$:

- $\bigcirc \implies e^{-1} = (v \to u) \in \mathsf{E}. \text{ Otherwise } \mathsf{h}(u \to v) = 0.$
- **2** $0 > h(e^{-1}) = g(e^{-1}) f(e^{-1}).$

$$\textbf{3} \implies \mathbf{f}(e^{-1}) > \mathbf{g}(e^{-1}) \ge \ell(e^{-1}).$$

• Flow by **f** on e^{-1} larger than lower bound.

Can return this flow in the other direction.

Proof continued:

For e = (u
ightarrow v), $\mathsf{h}(u
ightarrow v) > 0$, and $e = (u
ightarrow v) \notin \mathsf{E}$:

- $\bigcirc \implies e^{-1} = (v \to u) \in \mathsf{E}. \ \text{Otherwise } \mathsf{h}(u \to v) = 0.$
- **2** $0 > h(e^{-1}) = g(e^{-1}) f(e^{-1}).$

$$\implies \mathbf{f}\left(e^{-1}\right) > \mathbf{g}\left(e^{-1}\right) \ge \ell\left(e^{-1}\right).$$

• Flow by **f** on e^{-1} larger than lower bound.

On return this flow in the other direction.

Proof continued:

For e = (u
ightarrow v), $\mathsf{h}(u
ightarrow v) > 0$, and $e = (u
ightarrow v) \notin \mathsf{E}$:

- $\bigcirc \implies e^{-1} = (v \to u) \in \mathsf{E}. \text{ Otherwise } \mathsf{h}(u \to v) = 0.$
- $2 \ 0 > h(e^{-1}) = g(e^{-1}) f(e^{-1}).$

$$\implies \mathbf{f}\left(e^{-1}\right) > \mathbf{g}\left(e^{-1}\right) \ge \ell\left(e^{-1}\right).$$

• Flow by **f** on e^{-1} larger than lower bound.

Oan return this flow in the other direction.

- A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by canceling negative cycles. J. Assoc. Comput. Mach., 36(4): 873–886, 1989.
- R. M. Karp. A characterization of the minimum cycle mean in a digraph. *Discrete Math.*, 23:309–311, 1978.
- A. Schrijver. Combinatorial Optimization : Polyhedra and Efficiency (Algorithms and Combinatorics). Springer, July 2004. ISBN 3540204563.
- É. Tardos. A strongly polynomial minimum cost circulation algorithm. *Combinatorica*, 5(3):247–255, 1985. ISSN 0209-9683.