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Minimum Average Cost Cycle

Q@ G = (V,E): a digraph, n vertices, m edges.
Q@ w: E — IR weight on the edges.
@ directed cycle: closed walk C = (wvg, v1,...,v:), where
vy = vg and (v; = v;41) €EE fori=0,...,t — 1.
Q average cost of a directed cycle is
AvgCost(C) = w(C) /t =(Zcccwl(e)) /t.
@ di(v): min length of walk with exactly k edges, ending at v
Q do(v) =0 and dii1(v) =
min,—(uswer (d(w) + w(e)) .
@ Compute d;(v), for Vi,Vv € V.
In O(nm) time using dynamic programming.

Sariel (UIUC) CS573 3 Fall 2013 3 /27



Computing the Min-Average Cost cycle

Cost of minimum average cost cycle is
MinAvgCostCycle(G) = @ min  AvgCost(C)

Cis a cycle in G
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Computing the Min-Average Cost cycle

Cost of minimum average cost cycle is
MinAvgCostCycle(G) = = min _ AvgCost(C)

Cisacyclein G

Theorem
The minimum average cost of a directed cycle in G is equal to
n-1 dn(v) — di(v)

a = min max
veEV k=0 n—k

Namely, a = MinAvgCostCycle(G).
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Proof

© Adding r to weight of every edge increases the average cost of a
cycle AvgCost(C) by 7.
© « also increases by .

© Assume price of min. average cost cycle = 0.
@ ... all cycles have non-negative (average) cost.

@ Prove: MinAvgCostCycle(G) =0 — a = 0.
(Implies theorem by shifting prices by ).

Sariel (UIUC) CS573 5 Fall 2013 5 /27



Proof continued
MinAvgCostCycle(G) =0 — a >0

Proof continued

1 dn(u) — dk(’U:).

Q@ a = min,cy B(u), where B(u) = uine n—k
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Proof continued
MinAvgCostCycle(G) =0 — a >0

Proof continued

n_lx dn(u) — dk('u,).

Q@ a = min,cy B(u), where f(u) = ma
k=0 n—k

@ Assume « realized by vertex v; a = B(v).
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Proof continued
MinAvgCostCycle(G) =0 — a >0

Proof continued

n_lx dn(u) — dk('u,).

Q@ a = min,cy B(u), where f(u) = ma
k=0 n—k

@ Assume « realized by vertex v; a = B(v).
@ P,: n edges walk ending at v, of length d,(v).
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Proof continued
MinAvgCostCycle(G) =0 — a >0

Proof continued

n_lx dn(u) — dk('u,).

Q@ a = min,cy B(u), where f(u) = ma
k=0 n—k

@ Assume « realized by vertex v; a = B(v).
@ P,: n edges walk ending at v, of length d,(v).
© P, must contain a cycle.
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Proof continued
MinAvgCostCycle(G) =0 — a >0

Proof continued

1 do(u) — di(u)
g n—k ’
@ Assume « realized by vertex v; a = B(v).

Q@ a = min,cy B(u), where B(u) =

@ P,: n edges walk ending at v, of length d,(v).
© P, must contain a cycle.
@ Break P,: a cycle w (length n — k) and path o (length k).
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Proof continued
MinAvgCostCycle(G) =0 — a >0

Proof continued

n—1 dn(u) — dk(u).

Q@ a = min,cy B(u), where B(u) = max
k=0 n—k

@ Assume « realized by vertex v; a = B(v).

@ P,: n edges walk ending at v, of length d,(v).

© P, must contain a cycle.

@ Break P,: a cycle w (length n — k) and path o (length k).

v

qon

v
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Proof continued
MinAvgCostCycle(G) =0 — a >0

Proof continued

n—1 dn(u) — dk(u).

Q@ a = min,cy B(u), where B(u) = max
k=0 n—k

@ Assume « realized by vertex v; a = B(v).

@ P,: n edges walk ending at v, of length d,(v).
© P, must contain a cycle.
@ Break P,: a cycle w (length n — k) and path o (length k).

v

qon

Q dy(v) = w(Ppn) = w(m) +w(o) 2 w(o) > di(v),

v
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Proof continued
Continue proving: MinAvgCostCycle(G) =0 — « >0

Q@ w(m) > 0: since 7 is cycle + by assumption V cycle cost > 0.
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Proof continued

Continue proving: MinAvgCostCycle(G) =0 — a >0

Q@ w(m) > 0: since 7 is cycle + by assumption V cycle cost > 0.
@ = d.(v) — di(v) > 0. Assuch, ==%() > o |et
R d, d; d, —d
B(v) = riak (v) — dj(v) > (v) — di(v) > 0.

n—j n—k

Now, & = B(v) > 0, by the choice of v.
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Proof continued

Continue proving: MinAvgCostCycle(G) =0 — a >0

Q@ w(m) > 0: since 7 is cycle + by assumption V cycle cost > 0.
@ = d.(v) — di(v) > 0. Assuch, ==%() > o |et
R d, d; d, —d
B(v) = riak (v) — dj(v) > (v) — di(v) > 0.

n—j n—k

Now, & = B(v) > 0, by the choice of v.
© QED for this direction.
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Proof for other direction

MinAvgCostCycle(G) =0 — a < 0:

Q@ C = (v, v1,...,v;): directed cycle of
weight 0.
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Proof for other direction

MinAvgCostCycle(G) =0 — a < 0:

Q@ C = (v, v1,...,v;): directed cycle of
weight 0.

Q@ min;Z dj(vo) realized by index r < n.
(Otherwise remove non-negative cycles.)
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Proof for other direction

MinAvgCostCycle(G) =0 — a < 0:

Q@ C = (v, v1,...,v;): directed cycle of
weight 0.

Q@ min;Z dj(vo) realized by index r < n.
(Otherwise remove non-negative cycles.)

@ ¢ = walk of length r ending at vy.
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Proof for other direction

MinAvgCostCycle(G) =0 — a < 0:

Q@ C = (v, v1,...,v;): directed cycle of
weight 0.

Q@ min;Z dj(vo) realized by index r < n.
(Otherwise remove non-negative cycles.)

© & = walk of length r ending at vp.

Q@ w € C =walk n — r edges on C from vy.
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Proof for other direction

MinAvgCostCycle(G) =0 — a < 0:

Q@ C = (v, v1,...,v;): directed cycle of
weight 0.

Q@ min;Z dj(vo) realized by index r < n.
(Otherwise remove non-negative cycles.)

© & = walk of length r ending at vp.

Q@ w € C =walk n — r edges on C from vy.

@ 7 is thiswalk (i.e., || = n — 7).
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Proof for other direction

MinAvgCostCycle(G) =0 — a < 0:

Q@ C = (v, v1,...,v;): directed cycle of
weight 0.

Q@ min;Z dj(vo) realized by index r < n.
(Otherwise remove non-negative cycles.)

© & = walk of length r ending at vp.

Q@ w € C =walk n — r edges on C from vy.

@ 7 is thiswalk (i.e., || = n — 7).

Q dy(w) < w(£ I 7') = d.(vo) +w(7),

@ p: walk on C from w back to vg.

@ 7 || p goes around C several times.
Q w(t || p) =0, asw(C) =0.
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Proof for other direction

MinAvgCostCycle(G) = 0 = « < 0: continued

© For any k: extend k edges shortest path ending at
w to a path to vy (concatenating p)
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Proof for other direction

MinAvgCostCycle(G) = 0 = « < 0: continued

© For any k: extend k edges shortest path ending at
w to a path to vy (concatenating p)

Q di(w) + w(p) = ditip(v0) = dr(v0) >
dn(w) — w(T),
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Proof for other direction

MinAvgCostCycle(G) = 0 = « < 0: continued

© For any k: extend k edges shortest path ending at
w to a path to vy (concatenating p)

Q di(w) + w(p) = ditip(v0) = dr(v0) >
dp(w) —w(T),
Q w(p) 2 dp(w) — w(1) — dyp(w).
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Proof for other direction

MinAvgCostCycle(G) = 0 = « < 0: continued

© For any k: extend k edges shortest path ending at
w to a path to vy (concatenating p)

Q di(w) + w(p) = ditip(v0) = dr(v0) >
dn(w) — w(T),

© w(p) > du(w) — w(r) — dy(w).
© 0=w(r p) =wp) +w(r)
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Proof for other direction

MinAvgCostCycle(G) = 0 = « < 0: continued

© For any k: extend k edges shortest path ending at
w to a path to vy (concatenating p)

Q di(w) + w(p) = diyjp(v0) > dr(v0) >
dn(w) — w(7),

Q w(p) = dn(w) — w(7) — di(w).

Q 0=w(7 || p) =w(p) +w()
> (do(w) — w(7) — di(w)) + w(T)
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Proof for other direction

MinAvgCostCycle(G) = 0 = « < 0: continued

© For any k: extend k edges shortest path ending at
w to a path to vy (concatenating p)

Q di(w) + w(p) = ditip/(v0) > dr(v0) >
dn(w) — w(7),

Q w(p) = dn(w) — w(7) — di(w).

Q 0=w(r |l p) =w(p) +w(r)
> (do(w) — w(7) — di(w)) + w(T)
= dyp(w) — di(w)
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Proof for other direction

MinAvgCostCycle(G) = 0 = « < 0: continued

© For any k: extend k edges shortest path ending at
w to a path to vy (concatenating p)

Q di(w) + w(p) = ditip/(v0) > dr(v0) >
dn(w) — w(7),

Q w(p) = dn(w) — w(7) — di(w).

Q 0=w(r |l p) =w(p) +w(r)
> (do(w) — w(7) — di(w)) + w(T)
= dyp(w) — di(w)

@ — [(w) = max;_ 1M<O
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Proof for other direction

MinAvgCostCycle(G) = 0 = « < 0: continued

© For any k: extend k edges shortest path ending at
w to a path to vy (concatenating p)

Q di(w) + w(p) = ditip(v0) = dr(v0) >
dn(w) — w(T),

Q w(p) = dn(w) — w(7) — di(w).

Q 0=w(r |l p) =w(p) +w(r)
> (do(w) — w(7) — di(w)) + w(T)
= dyp(w) — di(w)

@ — [(w) = max;_ 1M<O
— i < <0
Qa vgy(ré)ﬁ(v) < B(w) <
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Proof for other direction

MinAvgCostCycle(G) = 0 = « < 0: continued

© For any k: extend k edges shortest path ending at
w to a path to vy (concatenating p)

Q di(w) + w(p) = ditip(v0) = dr(v0) >
dn(w) — w(T),

Q w(p) = dn(w) — w(7) — di(w).

Q 0=w(r |l p) =w(p) +w(r)
> (do(w) — w(7) — di(w)) + w(T)
= dyp(w) — di(w)

0 = B(w) = maxj_; “=k) <o
= i < <0
(s Je" vgy(ré)ﬁ(v) < B(w) <

Q@ — a=0. QED

Sariel (UIUC) CS573 9 Fall 2013 9 /27



Q VEk,Vv di(v): longest path with k edges ending at v.
Computed in O(nm) time.
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Q VEk,Vv di(v): longest path with k edges ending at v.
Computed in O(nm) time.

. —1 dy(v)—d,
Q@ a = min,cy max;_, %
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Q VEk,Vv di(v): longest path with k edges ending at v.
Computed in O(nm) time.
@ a = min,cy max}_, %.

© Compute a in O(n?) after d;(-) computed.

Sariel (UIUC) CS573 10 Fall 2013 10 / 27



Finding min average cost cycle...

© Proved: Minimum avg cost of cycle in G is =

n—1 dp(v)—dg(v)
a = min,ecy max;_g ~=— .
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Finding min average cost cycle...

© Proved: Minimum avg cost of cycle in G is =
d d
o = min,cy max}_ 7"(”7)1 k’“(”)

@ Compute v that realizes a.

Sariel (UIUC) CS573 11 Fall 2013 11 /27



Finding min average cost cycle...

© Proved: Minimum avg cost of cycle in G is =
n—1 dp(v)—dg(v)
a = min,ey max;_q —-— .
@ Compute v that realizes a.

© Add —a to all the edges in the graph.
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Finding min average cost cycle...

© Proved: Minimum avg cost of cycle in G is =
o = min,cy max}_ w

@ Compute v that realizes a.

© Add —a to all the edges in the graph.

@ Looking for cycle of weight O.
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Finding min average cost cycle...

© Proved: Minimum avg cost of cycle in G is =
o = min,cy max}_ w

@ Compute v that realizes a.

© Add —a to all the edges in the graph.

@ Looking for cycle of weight O.

© Recompute d;(-) to agree with the new weights of the edges.
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Finding min average cost cycle...

© Proved: Minimum avg cost of cycle in G is =

o = min,cy max}_ w

Compute v that realizes a.

Add —a to all the edges in the graph.

Looking for cycle of weight 0.

Recompute d;(-) to agree with the new weights of the edges.

For v above: 0 = a = max;_ 1%

© 0000
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Finding min average cost cycle...

© Proved: Minimum avg cost of cycle in G is =
n—1 dp(v)— dk(v)

a = min,ey max;_, ~“—
@ Compute v that realizes a.

© Add —a to all the edges in the graph.

@ Looking for cycle of weight O.

© Recompute d;(-) to agree with the new weights of the edges.

O For v above: 0 = @ = maxj_ 1%

Q@ — Vkec{0,...,n—1} ==& <
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Finding min average cost cycle...

© Proved: Minimum avg cost of cycle in G is =
n—1 dp(v)— dk(v)

a = min,ey max;_, ~“—
@ Compute v that realizes a.

© Add —a to all the edges in the graph.

@ Looking for cycle of weight O.

© Recompute d;(-) to agree with the new weights of the edges.

O For v above: 0 = @ = maxj_ 1%

@ — Vke{0,...,n—1} %SO
Q@ — Vke{0,...,n—1} d,(v) — di(v) <O0.

Sariel (UIUC) CS573 11 Fall 2013 11 /27



Finding min average cost cycle...

© Proved: Minimum avg cost of cycle in G is =

n—1 dp(v)—dg(v)
a = min,ecy max;_g ~=— .

@ Compute v that realizes a.

© Add —a to all the edges in the graph.

@ Looking for cycle of weight O.

© Recompute d;(-) to agree with the new weights of the edges.

O For v above: 0 = @ = maxj_ 1%

@ = Vke{0,...,n—1} =&l <
Q@ = Vke{0,...,n—1} d,(v) — di(v) <0.
Q — Vi d,(v) < d;(v), for all 4.
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Finding min average cost cycle...

© Repeat proof of theorem...
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Finding min average cost cycle...

© Repeat proof of theorem...

@ P,: path with n edges realizing
d,(v).
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Finding min average cost cycle...

© Repeat proof of theorem...
@ P,: path with n edges realizing
d,(v).
Q@ P,=ol|r
o : a path of length k, 7 is a cycle. v
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Finding min average cost cycle...

© Repeat proof of theorem...
@ P,: path with n edges realizing
d,(v).
Q@ P,=ol|r
o : a path of length k, 7 is a cycle. v
Q w(m) >0
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Finding min average cost cycle...

© Repeat proof of theorem...
@ P,: path with n edges realizing
d,(v).
Q@ P,=ol|r
o : a path of length k, 7 is a cycle. v
Q w(m) >0
Q w(o) = di(v) o
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Finding min average cost cycle...

© Repeat proof of theorem...
@ P,: path with n edges realizing
d,(v).
Q@ P,=ol|r
o : a path of length k, 7 is a cycle. v
Q w(m) >0
Q w(o) = di(v) o
0 w(m) = dy(v) —w(o) < n
d,(v) — dp(v) <0
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Finding min average cost cycle...

© Repeat proof of theorem...
@ P,: path with n edges realizing
d,(v).
Q@ P,=ol|r
o : a path of length k, 7 is a cycle. v
Q w(m) >0
Q w(o) = di(v) o
0 w(m) = du(v) — w(o) < T
d,(v) — dp(v) <0

@ mis a cycle and w(w) = 0. Donel!
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Finding min average cost cycle...

© Repeat proof of theorem...
@ P,: path with n edges realizing
d,(v).
Q@ P,=ol|r
o : a path of length k, 7 is a cycle. v
Q w(m) >0
Q w(o) = di(v) o
0 w(m) = du(v) — w(o) < T
d,(v) — dp(v) <0
@ mis a cycle and w(w) = 0. Donel!

© Note - the reweighting is not really
necessary.
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Finding min average cost cycle...

A direct graph G with n vertices and m edges, and a weight function
w(-) on the edges, one can compute the cycle with minimum average
cost in O(nm) time.
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Shortest path with negative weights...

© Dijkstra algorithm works only for graphs with non-negative
weights.

@ If negative weights, then one can use the Bellman-Ford
algorithm.

@ Bellman-Ford is slow... O(mn).

@ Show how to use Dijkstra algorithm for some cases.
@ G = (V,E) with weight w(+) on edges.

O d.(s,t): length of shortest path.

@ Weights might be negative!
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Potential

A potential p(-) is a function that assigns a real value to each
vertex of G, such that if e = (u — v) € G then

w(e) > p(v) — p(u).
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Lemma (i)

dp(-) potential for G <—=> G has no negative cycles (for w(-)). \

=>: Assume Jp(-) potential. For any cycle C:

v
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Lemma (i)

dp(-) potential for G <—=> G has no negative cycles (for w(-)). \

=>: Assume Jp(-) potential. For any cycle C:

wC= > wle)> > (p(v)—p(u))=0.

(u—v)€E(C) (u—v)€EE(C)

v
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Lemma (i)

dp(-) potential for G <—=> G has no negative cycles (for w(-)). \

=>: Assume Jp(-) potential. For any cycle C:

wC= > wle)> > (p(v)—p(u))=0.

(u—v)€E(C) (u—v)€EE(C)

<=: Assume no negative cycle. p(v): shortest walk that ends at v.
Claim: p(w) is a potential.

v
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Lemma (i)

dp(-) potential for G <—=> G has no negative cycles (for w(-)). \

=>: Assume Jp(-) potential. For any cycle C:

wC= > wle)> > (p(v)—p(u))=0.

(u—v)€E(C) (u—v)€EE(C)

<=: Assume no negative cycle. p(v): shortest walk that ends at v.
Claim: p(w) is a potential.

© No negative cycles: p(v) is well defined.

v
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Lemma (i)

dp(-) potential for G <—=> G has no negative cycles (for w(-)). \

Proof

=>: Assume Jp(-) potential. For any cycle C:

wC= > wle)> > (p(v)—p(u))=0.

(u—v)€E(C) (u—v)€EE(C)

<=: Assume no negative cycle. p(v): shortest walk that ends at v.
Claim: p(w) is a potential.

© No negative cycles: p(v) is well defined.
0 V(u— v) € E(G): p(v) < p(u) + w(u — v)

v
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Lemma (i)

dp(-) potential for G <—=> G has no negative cycles (for w(-)). \

Proof |

=>: Assume Jp(-) potential. For any cycle C:

wC= > wle)> > (p(v)—p(u))=0.

(u—v)€E(C) (u—v)€EE(C)

<=: Assume no negative cycle. p(v): shortest walk that ends at v.
Claim: p(w) is a potential.

© No negative cycles: p(v) is well defined.
0 ¥ (u— v) € E(G): p(v) < p(u) + w(u — v)
9 p(v) — p(u) < w(u — v), as required.

O

v
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Lemma

p(+): potential. Ve = (u — v) € E(G):
£(e) = w(e) — p(v) + p(u)
(A) £(-) is non-negative for all edges.
(B) Vs, t € V(G): shortest path 7 of dy(s, t) also s.p. d,(s,t).

Proof.

V.
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Lemma

p(+): potential. Ve = (u — v) € E(G):
£(e) = w(e) — p(v) + p(u)
(A) £(-) is non-negative for all edges.
(B) Vs, t € V(G): shortest path 7 of dy(s, t) also s.p. d,(s,t).

Proof.
Proof of (A): w(e) > p(v) — p(u) =
w(e) — p(v) + p(u) > 0.

V.
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Lemma

p(+): potential. Ve = (u — v) € E(G):
£(e) = w(e) — p(v) + p(u)
(A) £(-) is non-negative for all edges.
(B) Vs, t € V(G): shortest path 7 of dy(s, t) also s.p. d,(s,t).

Proof.
Proof of (A): w(e) > p(v) — p(u) =
w(e) — p(v) + p(u) > 0.
Proof of (B): V s — t path 7 in G:
€(m) = Xe=(urvyen(w(e) — p(v) + p(u)) =
w(m) 4- p(s) — p(t),
= du(s,t) =du(s,t) + p(s) — p(?).

l:‘)
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Lemma (iii)

G: graph. p(-): potential.
Compute the shortest path from s to all vertices of G in
O(nlogn + m) time, where G has n vertices and m edges

@ Use Dijkstra algorithm on the distances defined by £(-).

© The shortest paths are preserved under this distance by Lemma
(i), and this distance function is always positive.

O
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Min cost flow

G = (V, E): directed graph.
s: source.
t: sink
c(-): capacities on edges,
¢: Desired amount (value) of flow.
K(+): Cost on the edges.

Definition - cost of flow
cost of flow f: cost(f) = D k(e) * f(e).

ecFE
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Min cost flow problem

minimum-cost s-t flow problem: compute the flow f of min cost
that has value ¢.
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Min cost flow problem

minimum-cost s-t flow problem: compute the flow f of min cost
that has value ¢.

min-cost circulation problem

Instead of ¢ we have lower-bound £(-) on edges.
(All flow that enters must leave.)
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Min cost flow problem

minimum-cost s-t flow problem: compute the flow f of min cost
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Min cost flow problem

minimum-cost s-t flow problem: compute the flow f of min cost
that has value ¢.

min-cost circulation problem

Instead of ¢ we have lower-bound £(-) on edges.
(All flow that enters must leave.)

If we can solve min-cost circulation =——> can solve min-cost flow. \

HERE: All demands on vertices are zero!
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Residual graph...

The residual graph of f is the graph G = (V, E¢) where

I f(e) <c(e)
Ef_{e_(u—>v)€ V x V| or f(e1) > £ (e 1) }

where e = (v — u) if e = (u — v).
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Residual graph...

The residual graph of f is the graph G = (V, E¢) where

I f(e) <c(e)
Ef_{e_('u,—>'v)€ V x V| or f(e1) > £ (e 1) }

where e = (v — u) if e = (u — v).

Vu,v (u— v) € E(G) = (v — u) ¢ E(G). \

Cost function is anti-symmetric:

V(u — v) € E¢ n((u—)v)):—n((v—)u)).
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Some definitions

Definition
Cycle sign Directed cycle C in Gy.

1 ecC
e=(u—v) €EEG): xc(e)=¢—-1 el=(v—>u)eC
0 otherwise;

Pay 1 if eisin C and —1 if we travel e in the “wrong” direction.

v
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Some definitions

Cycle sign Directed cycle C in Gy.

1 ecC
e=(u—v) €EEG): xc(e)=¢—-1 el=(v—>u)eC
0 otherwise;

Pay 1 if eisin C and —1 if we travel e in the “wrong” direction.

v

Definition
Cycle cost The cost of a directed cycle C in Gy is

k(C) => k(e).

ecC

v

Sariel (UIUC) CS573 24 Fall 2013 24 /27



Even more definitions

© Circulation comply with capacity and lower-bounds constraints is
valid.
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Even more definitions

© Circulation comply with capacity and lower-bounds constraints is
valid.

© flow function that only comply with conservation property is a
weak circulation.

© Weak circulation might violate capacity and lower bounds.

© Weak circulation might not be a valid circulation.
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Another lemma

f, g: two valid circulations in G = (V,E). Leth =g — f.
(A) h is a weak circulation,
(B) ifh(u — v) > 0 then (u — v) € G.

@ h is clearly a weak circulation (conservation of flow - verify).

v
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(A) h is a weak circulation,
(B) ifh(u — v) > 0 then (u — v) € G.

@ h is clearly a weak circulation (conservation of flow - verify).
@ If h(u — v) is negative, then h(v — u) = —h(u — v).
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Another lemma

f, g: two valid circulations in G = (V,E). Leth =g — f.
(A) h is a weak circulation,
(B) ifh(u — v) > 0 then (u — v) € G.

@ h is clearly a weak circulation (conservation of flow - verify).
@ If h(u — v) is negative, then h(v — u) = —h(u — v).
Q Fore= (u — v), h(u — v) > 0:
(i) If e=(u — v) € E, and f(e) < c(e) = e € Gt.
If f(e) = c(e) = h(e) =g(e) —f(e) < 0.
Contradicts h(u — v) > 0.

4
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Proof continued...

Proof continued:

Fore = (u — v), h(u - v) > 0,and e = (u — v) € E:
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Proof continued...

Proof continued:

Fore = (u — v), h(u - v) > 0,and e = (u — v) € E:
@ — e ! = (v— u) € E. Otherwise h(u — v) = 0.
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Proof continued...

Proof continued:

Fore = (u — v), h(u - v) > 0,and e = (u — v) € E:
@ — e ! = (v— u) € E. Otherwise h(u — v) = 0.
Q@ 0>h(e)=g(e)—f(e)
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Proof continued...

Proof continued:

Fore = (u — v), h(u - v) > 0,and e = (u — v) € E:
@ — e ! = (v— u) € E. Otherwise h(u — v) = 0.
@0>h(eh)=g(e)—f(e).

Q@ = f(e')>g(eh) >L(e).
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Proof continued...

Proof continued:

Fore = (u — v), h(u - v) > 0,and e = (u — v) € E:
@ — e ' = (v— u) € E. Otherwise h(u — v) = 0.
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© Flow by f on e~ ! larger than lower bound.
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Proof continued:
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@ — e ' = (v— u) € E. Otherwise h(u — v) = 0.
@0>h(eh)=g(e)—f(e).
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© Flow by f on e~ ! larger than lower bound.

© Can return this flow in the other direction.
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Proof continued...

Proof continued:

Fore = (u — v), h(u - v) > 0,and e = (u — v) € E:
@ — e ' = (v— u) € E. Otherwise h(u — v) = 0.
@0>h(eh)=g(e)—f(e).

Q@ = f(e')>g(eh) >L(e).
© Flow by f on e~ ! larger than lower bound.

© Can return this flow in the other direction.
Q — ec Gy m
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