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Part I
.

......
Minimum Average Cost Cycle
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Minimum Average Cost Cycle
...1 G = (V, E): a digraph, n vertices, m edges.
...2 ω : E → IR weight on the edges.
...3 directed cycle: closed walk C = (v0, v1, . . . , vt), where

vt = v0 and (vi → vi+1) ∈ E, for i = 0, . . . , t − 1.
...4 average cost of a directed cycle is

AvgCost(C) = ω(C) /t =(∑
e∈C ω(e)) /t.

...5 dk(v): min length of walk with exactly k edges, ending at v

...6 d0(v) = 0 and dk+1(v) =
mine=(u→v)∈E

(
dk(u) + ω(e)

)
.

...7 Compute di(v), for ∀i, ∀v ∈ V.
In O(nm) time using dynamic programming.
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Computing the Min-Average Cost cycle

Cost of minimum average cost cycle is
MinAvgCostCycle(G) = min

C is a cycle in G
AvgCost(C)

.
Theorem..

......

The minimum average cost of a directed cycle in G is equal to

α = min
v∈V

n−1max
k=0

dn(v) − dk(v)
n − k

.

Namely, α = MinAvgCostCycle(G).
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Proof
.
Proof..

......

...1 Adding r to weight of every edge increases the average cost of a
cycle AvgCost(C) by r .

...2 α also increases by r .

...3 Assume price of min. average cost cycle = 0.

...4 ... all cycles have non-negative (average) cost.

...5 Prove: MinAvgCostCycle(G) = 0 =⇒ α = 0.
(Implies theorem by shifting prices by r).
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Proof continued
MinAvgCostCycle(G) = 0 =⇒ α ≥ 0

.
Proof continued..

......

...1 α = minu∈V β(u), where β(u) = n−1max
k=0

dn(u) − dk(u)
n − k

.

...2 Assume α realized by vertex v; α = β(v).

...3 Pn : n edges walk ending at v, of length dn(v).

...4 Pn must contain a cycle.

...5 Break Pn : a cycle π (length n − k) and path σ (length k).

...6 dn(v) = ω(Pn) = ω(π) + ω(σ) ≥ ω(σ) ≥ dk(v),
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Proof continued
Continue proving: MinAvgCostCycle(G) = 0 =⇒ α ≥ 0

σ π

v

...1 ω(π) ≥ 0: since π is cycle + by assumption ∀ cycle cost ≥ 0.

...2 =⇒ dn(v) − dk(v) ≥ 0. As such, dn(v)−dk(v)
n−k ≥ 0. Let

β(v) = n−1max
j=0

dn(v) − dj(v)
n − j

≥
dn(v) − dk(v)

n − k
≥ 0.

Now, α = β(v) ≥ 0, by the choice of v.
...3 QED for this direction.
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Proof for other direction
MinAvgCostCycle(G) = 0 =⇒ α ≤ 0:

...1 C = (v0, v1, . . . , vt): directed cycle of
weight 0.

...2 min∞
j=0 dj(v0) realized by index r < n.

(Otherwise remove non-negative cycles.)
...3 ξ = walk of length r ending at v0.
...4 w ∈ C = walk n − r edges on C from v0.
...5 τ is this walk (i.e., |τ | = n − r).
...6 dn(w) ≤ ω

(
ξ || τ

)
= dr(v0) + ω(τ ) ,

...7 ρ: walk on C from w back to v0.

...8 τ || ρ goes around C several times.

...9 ω(τ || ρ) = 0, as ω(C) = 0.

v0ξ

w
τ

ρ

C
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Proof for other direction
MinAvgCostCycle(G) = 0 =⇒ α ≤ 0: continued

...1 For any k: extend k edges shortest path ending at
w to a path to v0 (concatenating ρ)

...2 dk(w) + ω(ρ) ≥ dk+|ρ|(v0) ≥ dr(v0) ≥
dn(w) − ω(τ ) ,

...3 ω(ρ) ≥ dn(w) − ω(τ ) − dk(w).

...4 0 = ω(τ || ρ) = ω(ρ) + ω(τ )
≥

(
dn(w) − ω(τ ) − dk(w)

)
+ ω(τ )

= dn(w) − dk(w)
...5 =⇒ β(w) = maxn−1

k=0
dn(w)−dk(w)

n−k ≤ 0.

...6 α = min
v∈V (G)

β(v) ≤ β(w) ≤ 0
...7 =⇒ α = 0. QED

v0ξ

w
τ

ρ

C
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Computing α:
...1 ∀k, ∀v dk(v): longest path with k edges ending at v.

Computed in O(nm) time.
...2 α = minv∈V maxn−1

k=0
dn(v)−dk(v)

n−k .

...3 Compute α in O(n2) after di(·) computed.
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Finding min average cost cycle...
...1 Proved: Minimum avg cost of cycle in G is =

α = minv∈V maxn−1
k=0

dn(v)−dk(v)
n−k .

...2 Compute v that realizes α.

...3 Add −α to all the edges in the graph.

...4 Looking for cycle of weight 0.

...5 Recompute di(·) to agree with the new weights of the edges.

...6 For v above: 0 = α = maxn−1
k=0

dn(v)−dk(v)
n−k

...7 =⇒ ∀k ∈ {0, . . . , n − 1} dn(v)−dk(v)
n−k ≤ 0

...8 =⇒ ∀k ∈ {0, . . . , n − 1} dn(v) − dk(v) ≤ 0.

...9 =⇒ ∀i dn(v) ≤ di(v), for all i.
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...6 For v above: 0 = α = maxn−1
k=0

dn(v)−dk(v)
n−k

...7 =⇒ ∀k ∈ {0, . . . , n − 1} dn(v)−dk(v)
n−k ≤ 0

...8 =⇒ ∀k ∈ {0, . . . , n − 1} dn(v) − dk(v) ≤ 0.

...9 =⇒ ∀i dn(v) ≤ di(v), for all i.
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Finding min average cost cycle...
...1 Repeat proof of theorem...
...2 Pn : path with n edges realizing

dn(v).
...3 Pn = σ||π

σ : a path of length k, π is a cycle.
...4 ω(π) ≥ 0
...5 ω(σ) ≥ dk(v)
...6 ω(π) = dn(v) − ω(σ) ≤

dn(v) − dk(v) ≤ 0
...7 π is a cycle and ω(π) = 0. Done!
...8 Note - the reweighting is not really

necessary.

σ π

v
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Finding min average cost cycle...
.
Corollary..

......

A direct graph G with n vertices and m edges, and a weight function
ω(·) on the edges, one can compute the cycle with minimum average
cost in O(nm) time.
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Part II
.

......
Potentials
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Shortest path with negative weights...
...1 Dijkstra algorithm works only for graphs with non-negative

weights.
...2 If negative weights, then one can use the Bellman-Ford

algorithm.
...3 Bellman-Ford is slow... O(mn).
...4 Show how to use Dijkstra algorithm for some cases.
...5 G = (V, E) with weight w(·) on edges.
...6 dω(s, t): length of shortest path.
...7 Weights might be negative!
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Potential

A potential p(·) is a function that assigns a real value to each
vertex of G, such that if e = (u → v) ∈ G then
w(e) ≥ p(v) − p(u).
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Lemma (i)
.
Lemma..
......∃p(·) potential for G ⇐⇒ G has no negative cycles (for w(·)).
.
Proof...

......

⇒: Assume ∃p(·) potential. For any cycle C:

w(C) =
∑

(u→v)∈E(C)
w(e) ≥

∑
(u→v)∈E(C)

(p(v) − p(u)) = 0.

⇐: Assume no negative cycle. p(v): shortest walk that ends at v.
Claim: p(v) is a potential.

...1 No negative cycles: p(v) is well defined.

...2 ∀ (u → v) ∈ E(G): p(v) ≤ p(u) + w(u → v)

...3 p(v) − p(u) ≤ w(u → v), as required.
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Lemma (ii)
.
Lemma..

......

p(·): potential. ∀e = (u → v) ∈ E(G):
ℓ(e) = w(e) − p(v) + p(u)

(A) ℓ(·) is non-negative for all edges.
(B) ∀s, t ∈ V(G): shortest path π of dℓ(s, t) also s.p. dω(s, t).

.
Proof...

......

Proof of (A): w(e) ≥ p(v) − p(u) =⇒
w(e) − p(v) + p(u) ≥ 0.

Proof of (B): ∀ s − t path π in G:
ℓ(π) = ∑

e=(u→v)∈π(w(e) − p(v) + p(u)) =
w(π) + p(s) − p(t),
=⇒ dℓ(s, t) = dω(s, t) + p(s) − p(t).

Sariel (UIUC) CS573 18 Fall 2013 18 / 27



Lemma (ii)
.
Lemma..

......

p(·): potential. ∀e = (u → v) ∈ E(G):
ℓ(e) = w(e) − p(v) + p(u)

(A) ℓ(·) is non-negative for all edges.
(B) ∀s, t ∈ V(G): shortest path π of dℓ(s, t) also s.p. dω(s, t).

.
Proof...

......

Proof of (A): w(e) ≥ p(v) − p(u) =⇒
w(e) − p(v) + p(u) ≥ 0.

Proof of (B): ∀ s − t path π in G:
ℓ(π) = ∑

e=(u→v)∈π(w(e) − p(v) + p(u)) =
w(π) + p(s) − p(t),
=⇒ dℓ(s, t) = dω(s, t) + p(s) − p(t).

Sariel (UIUC) CS573 18 Fall 2013 18 / 27



Lemma (ii)
.
Lemma..

......

p(·): potential. ∀e = (u → v) ∈ E(G):
ℓ(e) = w(e) − p(v) + p(u)

(A) ℓ(·) is non-negative for all edges.
(B) ∀s, t ∈ V(G): shortest path π of dℓ(s, t) also s.p. dω(s, t).

.
Proof...

......

Proof of (A): w(e) ≥ p(v) − p(u) =⇒
w(e) − p(v) + p(u) ≥ 0.

Proof of (B): ∀ s − t path π in G:
ℓ(π) = ∑

e=(u→v)∈π(w(e) − p(v) + p(u)) =
w(π) + p(s) − p(t),
=⇒ dℓ(s, t) = dω(s, t) + p(s) − p(t).

Sariel (UIUC) CS573 18 Fall 2013 18 / 27



Lemma (iii)
.
Lemma..

......

G: graph. p(·): potential.
Compute the shortest path from s to all vertices of G in
O(n log n + m) time, where G has n vertices and m edges

.
Proof...

......

...1 Use Dijkstra algorithm on the distances defined by ℓ(·).

...2 The shortest paths are preserved under this distance by Lemma
(ii), and this distance function is always positive.
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Part III
.

......
Minimum cost flow
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Min cost flow
.
Input:..

......

G = (V, E): directed graph.
s: source.
t: sink

c(·): capacities on edges,
ϕ: Desired amount (value) of flow.

κ(·): Cost on the edges.

.
Definition - cost of flow..

......
cost of flow f: cost(f) =

∑
e∈E

κ(e) ∗ f(e).

Sariel (UIUC) CS573 21 Fall 2013 21 / 27



Min cost flow problem
.
Min-cost flow..

......
minimum-cost s-t flow problem: compute the flow f of min cost
that has value ϕ.

.
min-cost circulation problem..

......
Instead of ϕ we have lower-bound ℓ(·) on edges.
(All flow that enters must leave.)

.
Claim..
......If we can solve min-cost circulation =⇒ can solve min-cost flow.

HERE: All demands on vertices are zero!
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Residual graph...

The residual graph of f is the graph Gf =(V , Ef) where

Ef =
{

e = (u → v) ∈ V × V
∣∣∣∣∣ f(e) < c(e)

or f (e−1) > ℓ (e−1)

}
.

where e−1 = (v → u) if e = (u → v).
.
Assumption..
......∀u, v (u → v) ∈ E(G) =⇒ (v → u) /∈ E(G).

Cost function is anti-symmetric:

∀ (u → v) ∈ Ef κ
(
(u → v)

)
= −κ

(
(v → u)

)
.
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Some definitions
.
Definition..

......

Cycle sign Directed cycle C in Gf .

e = (u → v) ∈ E(G): χC(e) =


1 e ∈ C
−1 e−1 = (v → u) ∈ C
0 otherwise;

Pay 1 if e is in C and −1 if we travel e in the “wrong” direction.

.
Definition..

......

Cycle cost The cost of a directed cycle C in Gf is

κ(C) =
∑
e∈C

κ (e) .
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Even more definitions
...1 Circulation comply with capacity and lower-bounds constraints is

valid .
...2 flow function that only comply with conservation property is a

weak circulation.
...3 Weak circulation might violate capacity and lower bounds.
...4 Weak circulation might not be a valid circulation.
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Another lemma
.
Lemma..

......

f, g: two valid circulations in G = (V, E). Let h = g − f.
(A) h is a weak circulation,
(B) if h(u → v) > 0 then (u → v) ∈ Gf .

.
Proof.....

......

...1 h is clearly a weak circulation (conservation of flow - verify).

...2 If h(u → v) is negative, then h(v → u) = −h(u → v).

...3 For e = (u → v), h(u → v) > 0:
(i) If e = (u → v) ∈ E, and f(e) < c(e) =⇒ e ∈ Gf .

If f(e) = c(e) =⇒ h(e) = g(e) − f(e) ≤ 0.
Contradicts h(u → v) > 0.
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Proof continued...
.
Proof continued:..

......

For e = (u → v), h(u → v) > 0, and e = (u → v) /∈ E:
...1 =⇒ e−1 = (v → u) ∈ E. Otherwise h(u → v) = 0.
...2 0 > h (e−1) = g (e−1) − f (e−1).
...3 =⇒ f (e−1) > g (e−1) ≥ ℓ (e−1).
...4 Flow by f on e−1 larger than lower bound.
...5 Can return this flow in the other direction.
...6 =⇒ e ∈ Gf .
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