CS 573: Algorithms, Fall 2013

Network Flow

Lecture 12 October 3, 2013

Network flow

- **1** Transfer as much "merchandise" as possible from one point to another.
- ² Wireless network, transfer a large file from **s** to **t**.
- **3** Limited capacities.

Network: Definition

- **1** Given a network with capacities on each connection.
- ² Q: How much "flow" can transfer from source **s** to a sink **t**?
- **3** The flow is *splitable*.
- **4** Network examples: water pipes moving water. Electricity network.
- **5** Internet is packet base, so not quite splitable.

Definition

- \star **G** = (**V***,* **E**): a **directed** graph.
- $\star \forall$ ($u \rightarrow v$) \in **E**(**G**): *capacity c*(*u*, *v*) $>$ 0,
- \star $(u \to v) \notin G \implies c(u, v) = 0.$
- *?* **s**: **source** vertex, **t**: target **sink** vertex.
- \star **G**, *s*, *t* and $c(\cdot)$: form **flow network** or **network**.

Flow across sets of vertices

¹ **∀X***,* **Y ⊆ V**, let **f** (**X***,* **Y**) = P **^x∈X***,***y∈^Y f** (**x***,* **y**). $f(v, S) = f(\{v\}, S)$, where $v \in V(G)$.

Observation

 $|f| = f(s, V)$.

Basic properties of flows: (ii)

Lemma

For a flow **f** , the following properties holds: (ii) ∀**X** \subseteq **V** we have $f(X, X) = 0$,

Proof.

$$
f(X, X) = \sum_{\{u,v\} \subseteq X, u \neq v} (f(u, v) + f(v, u)) + \sum_{u \in X} f(u, u)
$$

=
$$
\sum_{\{u,v\} \subseteq X, u \neq v} (f(u, v) - f(u, v)) + \sum_{u \in X} 0 = 0,
$$

by the anti-symmetry property of flow.

Basic properties of flows: (i)

Lemma

For a flow **f** , the following properties holds: (i) $\forall u \in V(G)$ we have $f(u, u) = 0$,

Proof.

Holds since $(u \rightarrow u)$ it not an edge in **G**. $(u \rightarrow u)$ capacity is zero, Flow on $(u \rightarrow u)$ is zero.

Basic properties of flows: (iii)

Lemma

For a flow **f** , the following properties holds: (iii) ∀**X**, **Y** \subset **V** we have $f(X, Y) = -f(Y, X)$,

Proof.

By the anti-symmetry of flow, as

$$
f(X,Y)=\sum_{x\in X,y\in Y}f(x,y)=-\sum_{x\in X,y\in Y}f(y,x)=-f(Y,X).
$$

Sariel (UIUC) CS573 10 Fall 2013 10 / 58

 \Box

 \Box

Basic properties of flows: (iv)

Lemma

For a flow **f** , the following properties holds: (iv) ∀**X**, **Y**, **Z** \subset **V** such that **X** \cap **Y** = \emptyset we have that $f(X \cup Y, Z) = f(X, Z) + f(Y, Z)$ and $f(Z, X \cup Y) = f(Z, X) + f(Z, Y)$.

Proof.

Follows from definition. (Check!)

Basic properties of flows: summary

Lemma

For a flow **f**, the following properties holds:

- (i) $\forall u \in V(G)$ we have $f(u, u) = 0$,
- (iii) ∀**X** \subset **V** we have $f(X, X) = 0$,
- (iii) ∀**X**, **Y** ⊂ **V** we have $f(X, Y) = -f(Y, X)$,
- (iv) ∀**X**, **Y**, **Z** \subset **V** such that **X** \cap **Y** = \emptyset we have that
- $f(X \cup Y, Z) = f(X, Z) + f(Y, Z)$ and $f(Z, X \cup Y) = f(Z, X) + f(Z, Y).$
- (v) For all $u \in V \setminus \{s, t\}$, we have $f(u, V) = f(V, u) = 0$.

Sariel (UIUC) CS573 15 Fall 2013 15 / 58

Lemma

For a flow **f** , the following properties holds: (v) $\forall u \in V \setminus \{s, t\}$, we have $f(u, V) = f(V, u) = 0$.

Proof

 \Box

This is a restatement of the conservation of flow property.

All flow gets to the sink Claim $|f| = f(V, t).$ Proof. $|f| = f(s, V) = f(V \setminus (V \setminus \{s\}), V)$ $= f(V, V) - f(V \setminus \{s\}, V)$ $= -f(V \setminus \{s\}, V)$ = $f(V, V \setminus \{s\})$ $= f(V, t) + f(V, V \setminus \{s, t\})$ $= f(V, t) + \sum f(V, u)$ $u \in V \setminus \{s,t\}$ $= f(V, t) + \sum 0$ $u \in V \setminus \{s,t\}$ = **f** (**V***,* **t**)*,* Sariel (UIUC) CS573 16 Fall 2013 16 / 58

Sariel (UIUC) CS573 14 Fall 2013 14 / 58

 $f(x) = f(x) - f(x) - f(x) - f(x)$

Residual capacity

Definition

 c : capacity, f : flow. The **residual capacity** of an edge $(u \rightarrow v)$ is

 $c_f(u, v) = c(u, v) - f(u, v).$

- **1** residual capacity $c_f(u, v)$ on $(u \rightarrow v)$ = amount of unused capacity on $(u \rightarrow v)$.
- ² ... next construct graph with all edges not being fully used by **f** .

Sariel (UIUC) CS573 17 Fall 2013 17 / 58

Residual graph: Definition

Definition

Given f , $G = (V, E)$ and c , as above, the **residual graph** (or *residual network*) of **G** and **f** is the graph $G_f = (V, E_f)$ where

 $\mathsf{E}_f = \{(u, v) \in \mathsf{V} \times \mathsf{V} \mid c_f(u, v) > 0\}.$

\n- \n
$$
(u \rightarrow v) \in E
$$
: might induce two edges in E_f \n
\n- \n $[u \rightarrow v) \in E$, $f(u, v) < c(u, v)$ and $(v \rightarrow u) \notin E(G)$ \n
\n- \n $\Rightarrow c_f(u, v) = c(u, v) - f(u, v) > 0$ \n
\n- \n \therefore and $(u \rightarrow v) \in E_f$. Also,\n $c_f(v, u) = c(v, u) - f(v, u) = 0 - (-f(u, v)) = f(u, v)$, since $c(v, u) = 0$ as $(v \rightarrow u)$ is not an edge of G .\n
\n- \n $\Rightarrow (v \rightarrow u) \in E_f$.\n
\n

Residual network properties

Since every edge of **G** induces at most two edges in **G^f** , it follows that G_f has at most twice the number of edges of G ; formally, $|E_f| \leq 2 |E|$.

Lemma

Given a flow **f** defined over a network **G**, then the residual network **G^f** together with **c^f** form a flow network.

Proof.

One need to verify that $c_f(\cdot)$ is always a non-negative function, which is true by the definition of **E^f** .

Increasing the flow

Lemma

 $\textsf{G}(\textsf{V},\textsf{E})$, a flow \textsf{f} , and \textsf{h} a flow in $\textsf{G}_\textsf{f}$. $\textsf{G}_\textsf{f}$: residual network of \textsf{f} . Then $f + h$ is a flow in **G** and its capacity is $|f + h| = |f| + |h|$.

proof

Increasing the flow – proof continued

proof continued

- **0** For $u \in V s t$ we have $(f + h)(u, V) = f(u, V) + h(u, V) = 0 + 0 = 0$ and as such $f + h$ comply with the conservation of flow requirement.
- **2** Total flow is

$$
|f+h| = (f+h)(s, V) = f(s, V) + h(s, V) = |f| + |h|.
$$

Sariel (UIUC) CS573 22 Fall 2013 22 / 58

More on augmenting paths

- \bullet π : augmenting path.
- **2** All edges of $\boldsymbol{\pi}$ have positive capacity in $\boldsymbol{\mathsf{G}}_f$.
- ³ ... otherwise not in **E^f** .
- **4 f**, π : can improve **f** by pushing positive flow along π .

Residual capacity

Flow along augmenting path

$$
f_{\pi}(u, v) = \left\{ \begin{array}{ll} c_f(\pi) & \text{if } (u \to v) \text{ is in } \pi \\ -c_f(\pi) & \text{if } (v \to u) \text{ is in } \pi \\ 0 & \text{otherwise.} \end{array} \right.
$$

Increase flow by augmenting flow

Lemma

 π : augmenting path. f_{π} is flow in G_f and $|f_{\pi}| = c_f(\pi) > 0$.

Get bigger flow...

Lemma

Let **f** be a flow, and let π be an augmenting path for **f**. Then $f + f_\pi$ is a "better" flow. Namely, $|f + f_\pi| = |f| + |f_\pi| > |f|$.

Sariel (UIUC) **CS573** 28 **Fall 2013** 28 / 58

Flowing into the wall

- **1** Namely, $f + f_\pi$ is flow with larger value than f .
- ² Can this flow be improved? Consider residual flow...

- **5** Found local maximum!
- **6** Is that a global maximum?
- **2** Is this the maximum flow?

Sariel (UIUC) CS573 29 Fall 2013 29 / 58

Part III

[On maximum flo](#page-7-0)ws

The Ford-Fulkerson method

Sariel (UIUC) CS573 30 Fall 2013 30 / 58

Some definitions

Definition

 (S, T) : **directed cut** in flow network $G = (V, E)$. A partition of **V** into **S** and $T = V \setminus S$, such that $s \in S$ and $t \in T$.

Definition

The net **flow of f across a cut** (**S***,* **T**) is $f(S, T) = \sum_{s \in S, t \in T} f(s, t).$

Definition

The *capacity* of $(\mathcal{S}, \mathcal{T})$ is $c(\mathcal{S}, \mathcal{T}) = \sum_{s \in \mathcal{S}, t \in \mathcal{T}} c(s, t)$.

Definition

The **minimum cut** is the cut in **G** with the minimum capacity.

Sariel (UIUC) **CS573** 32 / 58 Fall 2013 32 / 58

Flow across cut is the whole flow

Lemma

 G, f, s, t . (S, T) : cut of G . Then $f(S, T) = |f|$.

Proof.

$$
f(S, T) = f(S, V) - f(S, S) = f(S, V)
$$

= f(s, V) + f(S - s, V) = f(s, V)
= |f|,

 $\bm{\mathcal{T}}=\bm{\mathsf{V}}\setminus\bm{\mathsf{S}},$ and $\bm{\mathit{f(S-s, V)}}=\sum_{u\in\bm{\mathsf{S-s}}}f(u, \bm{\mathsf{V}})=\bm{0}$ (note that **u** can not be **t** as $t \in T$). \Box

Sariel (UIUC) CS573 33 Fall 2013 33 / 58

THE POINT

Key observation

Maximum flow is bounded by the capacity of the minimum cut.

Surprisingly...

Maximum flow is exactly the value of the minimum cut.

Flow bounded by cut capacity

Claim

The flow in a network is upper bounded by the capacity of any cut (**S***,* **T**) in **G**.

Proof.

Consider a cut (S, T) . We have $|f| = f(S, T)$ $\sum_{u\in S, v\in T}f(u,v)\leq \sum_{u\in S, v\in T}c(u,v)=c(S,T).$

The Min-Cut Max-Flow Theorem

Theorem (Max-flow min-cut theorem)

If **f** is a flow in a flow network $G = (V, E)$ with source **s** and sink **t**, then the following conditions are equivalent:

Sariel (UIUC) CS573 34 Fall 2013 34 / 58

- (A) **f** is a maximum flow in **G**.
- (B) The residual network **G^f** contains no augmenting paths.
- (C) $|f| = c(S, T)$ for some cut (S, T) of G. And (S, T) is a
	- minimum cut in **G**.

Proof: $(A) \Rightarrow (B)$:

Proof.

 $(A) \Rightarrow (B)$: By contradiction. If there was an augmenting path **p** then $c_f(p) > 0$, and we can generate a new flow $f + f_p$, such that $|f + f_p| = |f| + c_f(p) > |f|$. A contradiction as f is a maximum flow. \Box

Proof: $(C) \Rightarrow (A)$:

Proof.

Well, for any cut (U, V) , we know that $|f| \le c(U, V)$. This implies that if $|f| = c(S, T)$ then the flow can not be any larger, and it is thus a maximum flow. \Box

Proof: $(B) \Rightarrow (C)$:

Proof.

s and **t** are disconnected in **G^f** .

Set $S = \{ \mathbf{v} \mid \text{Exists a path between } s \text{ and } \mathbf{v} \text{ in } \mathbf{G}_f \}$ $\mathbf{T} = \mathbf{V} \setminus S$. Have: $\mathbf{s} \in \mathbf{S}$, $\mathbf{t} \in \mathbf{T}$, $\forall u \in \mathbf{S}$ and $\forall v \in \mathbf{T}$: $\mathbf{f}(u, v) = \mathbf{c}(u, v)$. By contradiction: $\exists u \in S$, $v \in T$ s.t. $f(u, v) < c(u, v) \implies$ $(\boldsymbol{u} \to \boldsymbol{v}) \in \mathsf{E}_f \implies \boldsymbol{v}$ would be reachable from \boldsymbol{s} in G_f . Contradiction. \implies $|f| = f(S, T) = c(S, T)$. (S, T) must be mincut. Otherwise $\exists (S', T')$: $c(S', T') < c(S, T) = f(S, T) = |f|,$ But... $|f| = f(S', T') \leq c(S', T')$. A contradiction. \Box

Implications

¹ The max-flow min-cut theorem =**⇒** if **algFordFulkerson** terminates, then computed max flow.

Sariel (UIUC) CS573 38 Fall 2013 38 / 58

- ² Does not imply **algFordFulkerson** always terminates.
- **3** algFordFulkerson might not terminate.

Sariel (UIUC) **CS573** 40 **Fall 2013** 40 / 58

Some algebra...
\nFor
$$
\alpha = \frac{\sqrt{5} - 1}{2}
$$
:
\n
$$
\alpha^2 = \left(\frac{\sqrt{5} - 1}{2}\right)^2 = \frac{1}{4} (\sqrt{5} - 1)^2 = \frac{1}{4} (5 - 2\sqrt{5} + 1)
$$
\n
$$
= 1 + \frac{1}{4} (2 - 2\sqrt{5})
$$
\n
$$
= 1 + \frac{1}{2} (1 - \sqrt{5})
$$
\n
$$
= 1 - \frac{\sqrt{5} - 1}{2}
$$
\n
$$
= 1 - \alpha.
$$

Ford-Fulkerson runs in vain

Some algebra... Claim Given: $\alpha = (\sqrt{5} - 1)/2$ and $\alpha^2 = 1 - \alpha$. $\implies \forall i$ $\alpha^{i} - \alpha^{i+1} = \alpha^{i+2}$ Proof. $\alpha^{i} - \alpha^{i+1} = \alpha^{i}(1-\alpha) = \alpha^{i}\alpha^{2} = \alpha^{i+2}$. \Box

Sariel (UIUC) **CS573** 44 Fall 2013 44 / 58

Let it flow II

Let it flow III 3. $z \rightarrow y \rightarrow z$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{\alpha}$ t s p_1 w) α^2 \widehat{x} $\frac{1-\alpha}{\alpha}$ 2 1 $\alpha - \alpha$ 2 $\sum_{\alpha=3}$ $=\alpha^3$ α α^2 α^2 2 \overline{w} \overline{z} \overline{y} 4. $z \rightarrow y \rightarrow x$ $1 \sqrt{1}$ α t s \overline{p}_3 w α^2 \widehat{x} $\frac{\alpha^2}{\alpha}$ 1 2 α 3 α 2 $1 - \alpha$ 2 w $\frac{a}{2}$ $\frac{1}{2}$ Sariel (UIUC) CS573 49 Fall 2013 49 / 58

Let it flow III

