CS 573: Algorithms, Fall 2013

Network Flow

Lecture 12
October 3, 2013
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Part |

Network Flow

Network flow
© Transfer as much “merchandise” as possible from one point to
another.
@ Wireless network, transfer a large file from s to t.
© Limited capacities.
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Network: Definition
@ Given a network with capacities on each connection.
@ Q: How much “flow” can transfer from source s to a sink t?
© The flow is splitable.
© Network examples: water pipes moving water. Electricity
network.
© Internet is packet base, so not quite splitable.
Definition
* G = (V,E): a directed graph.
* V(u — v) € E(G): capacity c(u,v) > 0,
* (u—>v)¢ G = c(u,v) =0.
* S source vertex, t: target sink vertex.
* G, s, t and c(-): form flow network or network.
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Network Example

@ All flow from the source ends up in the sink.
@ Flow on edge: non-negative quantity < capacity of edge.
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Problem: Max Flow

© Flow on edge can be negative (i.e., positive flow on edge in
other direction).
Problem (Maximum flow)

Given a network G find the maximum flow in G. Namely, compute
a legal flow f such that |f| is maximized.
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Flow definition

Definition (flow)

flow in network is a function f(-,-) : E(G) — IR:
(A) Bounded by capacity:
V(u—>v)eE f(u,v)<c(u,v).
(B) Anti symmetry:
Yu, v f(u,v) = —f(v, u).
(C) Two special vertices: (i) the source s and the sink t.
(D) Conservation of flow (Kirchhoff's Current Law):

Yu e V\ {s,t} > f(u,v) =0.
flow /value of f: || = > f(s,v).

vev )
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Part I
Some properties of flows and residual
networks
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Flow across sets of vertices

O VX, Y CV, let f(X,Y) = Seexyey F(X, ).
F(v,S) = f({v},S), where v € V(G).

Observation
If| = f(s, V).
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Basic properties of flows: (i)

Lemma

For a flow f, the following properties holds:
(i) Yu € V(G) we have f(u,u) =0,

Proof.

Holds since (u — u) it not an edge in G.
(v — u) capacity is zero,

Flow on (u — u) is zero.
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Basic properties of flows: (ii)

Lemma
For a flow f, the following properties holds:
(i) VX C V we have f(X, X) =0,
Proof.
f(X,X)= Z (f(u,v)+f(v,u))+Zf(u,u)
{u,v}CTX,u#v ueX
= Z (f(u,v)—f(u,v))+20=0,
{u,v}CX,u#v ueX
by the anti-symmetry property of flow. ]

Sariel (UIUC) CS573 11 Fall 2013 11 /58

Basic properties of flows: (jii)

Lemma

For a flow f, the following properties holds:
(i) VX, Y C V we have f(X,Y) = —f(Y, X),

Proof.

By the anti-symmetry of flow, as

f(X,Y) = Z f(x,y) = — Z f(y,x) = —f(Y,X).

xeX,yeY xeX,yeY

]

’
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Basic properties of flows: (iv)

Lemma

For a flow f, the following properties holds:

(iv) VX, Y,Z C V such that XN'Y = ( we have that
f(XUY,Z2)=f(X,Z2)+ f(Y,Z) and
f(Z,XUY)=Ff(Z,X)+f(Z,Y).

Proof.
Follows from definition. (Check!) O
Sariel (UIUC) CS573 13 Fall 2013 13 / 58

Basic properties of flows: (v)

Lemma

For a flow f, the following properties holds:
(v) YVu € V \ {s, t}, we have f(u,V) = f(V,u) = 0.

Proof.

This is a restatement of the conservation of flow property.
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Basic properties of flows: summary

Lemma

For a flow f, the following properties holds:
(i) Yu € V(G) we have f(u,u) =0,

(i) VX C V we have f(X, X) =0,

(i) VX, Y C V we have f(X,Y) = —f(Y, X),

(iv) VX, Y,Z C V such that XN'Y = ( we have that
f(XUY,Z2)=f(X,Z2)+ f(Y,Z) and
f(Z,XUY)=Ff(Z,X)+f(Z,Y).

(v) For allu € V\ {s, t}, we have f(u,V) = f(V,u) = 0.
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All flow gets to the sink

Claim
If| = F(V, t).

Proof.

|l = F(s,V) = F(V\(V\ {s}), V)
=f(V,V)—-f(V\{s},V)
= —f(V\{s},V)
= f(V,t) + F(V,V\ {s, t})
=f(V,t) + Z f(V,u)

ueV\{s,t}
=f(V,t) + Z 0

ueV\{s,t}

= f(V,V
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Residual capacity Residual graph

Definition
c: capacity, f: flow.
The residual capacity of an edge (u — v) is

cr(u,v) = c(u,v) — f(u,v).

8 3

Residual graph

Q residual capacity ¢r(u, v) on (u — v) = amount of unused
f(uyw) = —f(w,u) = -1 = cf(u,w) =10 - (—1) =11.

capacity on (u — v).
@ ... next construct graph with all edges not being fully used by f.
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Residual graph: Definition Residual network properties
Definition Since every edge of G induces at most two edges in Gy, it follows
h h ice th f f G; fi Il
Given f, G = (V, E) and c, as above, the residual graph (or TEaT (<;f2 Télat most twice the number of edges of G; formally,
residual network) of G and f is the graph Gr =(V, Ef) where fl = '
Lemma
Er = {(u, v) eV XV ‘ cr(u, v) > 0} ° Given a flow f defined over a network G, then the residual network

Gy together with cf form a flow network.

Q (u — v) € E: might induce two edges in Ef¢

Q@ If (u—v)EE, f(u,v) < c(u,v) and (v — u) € E(G) Proof.
@ = cr(u,v) =c(u,v) — f(u,v) >0 One need to verify that ¢¢(-) is always a non-negative function,
Q ... and (u — v) € E¢. Also, which is true by the definition of Ey. O

v

cr(v,u) = c(v,u) — f(v,u) =0 — (—f(u,v)) = f(u,v),

since ¢(v, u) = 0 as (v — u) is not an edge of G.
Q@ — (v—u)€EE
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Increasing the flow

Lemma

G(V,E), aflow f, and h a flow in G¢. Gg¢: residual network of f.
Then f + h is a flow in G and its capacity is |f + h| = |f| + |h|.

proof
By definition: (f + h)(u, v) = f(u, v) + h(u, v) and thus
(f + h)(X, Y) = F(X, Y) + h(X, Y). Verify legal...
Q Anti symmetry: (f + h)(u,v) = f(u,v) + h(u,v) =
—f(v,u) — h(v,u) = —(f + h)(v, u).
© Bounded by capacity:

(f + h)(ua V) < f(ua V) + h(ua V) < f(“a V) + Cf(uv V)
= f(u,v) + (c(u, v) — f(u, v)) = c(u, v). |
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Increasing the flow — proof continued

proof continued

Q@ Forue V —s — t we have
(f + h)(u,V) = f(u,V) + h(u,V) = 040 = 0 and as such
f + h comply with the conservation of flow requirement.

@ Total flow is

[f + b = (F + h)(s,V) = F(5,V) + h(s,V) = |f| + |h].
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Augmenting path

3
Residual graph

Definition

For G and a flow f, a path =
in Gf between s and t is an
augmenting path.
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More on augmenting paths

@ m: augmenting path.

@ All edges of 7 have positive capacity in Gy.

© ... otherwise not in Ef.

© f, m: can improve f by pushing positive flow along 7.
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Residual capacity

Definition

7. augmenting path of f.

¢r(7): maximum amount of flow can push on 7.
cr(m) is residual capacity of .

Formally,
cr(w) = min cr(u,v).
(u—v)enm
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Flow along augmenting path
c(m) f (u—v)isinm
fr(u,v) =¢ —cf(mw) if (v—>u)isinm
0 otherwise.
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An example of an augmenting path

(C) Augmenting path
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Increase flow by augmenting flow

Lemma
7: augmenting path. f is flow in Gy and |f;| = ¢¢(7) > 0.

Get bigger flow...

Lemma
Let f be a flow, and let ™ be an augmenting path for f. Then

f + £ is a “better” flow. Namely, |f + .| = |f| + || > |f].
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Flowing into the wall

@ Namely, f + £, is flow with larger value than f.
@ Can this flow be improved? Consider residual flow...

© s is disconnected from t in this residual network.
@ unable to push more flow.

© Found local maximum!

Q Is that a global maximum?

@ Is this the maximum flow?

The Ford-Fulkerson method

algFordFulkerson (G, c)
begin
f < Zero flow on G
while (Gf has augmenting
path p) do
(* Recompute Gf for
this check *)
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Part Il
On maximum flows
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fe F+F,
return f
end
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Some definitions
Definition
(S, T): directed cut in flow network G = (V, E).
A partition of Vinto S and T = V' \ S, such that s € S and
te T. )
Definition
The net flow of f across a cut (S, T) is
f(s,T)= D oseS,teT f(s,t). |
Definition
The capacity of (S, T) is ¢(S, T) = Yses.iet €(5, t).
Definition
The minimum cut is the cut in G with the minimum capacity.
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Flow across cut is the whole flow Flow bounded by cut capacity

Lemma Claim
G,f,s,t. (S, T): cut of G. The flow in a network is upper bounded by the capacity of any cut
Then f(S, T) = |f|. (S, T)inG.
Proof. Proof.
Consider a cut (S, T). We have |f| = f(S, T) =
(S, T) = £(S,V) — £(S,S) = £(S,V) Yueswer F(u,v) < Yyesver c(u,v) = ¢(S, T). O]
= f(s,V)+ f(S —s,V) =f(s,V)
= |f],
since T=V\S, and f(S —s,V) =X ,cs5_s f(u, V) = 0 (note
that u can not be t ast € T). O
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THE POINT The Min-Cut Max-Flow Theorem
Key observation Theorem (Max-flow min-cut theorem)
Maximum flow is bounded by the capacity of the minimum cut. | If f is a flow in a flow network G = (V, E) with source s and sink t,
then the following conditions are equivalent:
Surprisingly... (A) f is a maximum flow in G.
Maximum flow is exactly the value of the minimum cut. (B) The residual network Gy contains no augmenting paths.
. (C) |f| = c(S, T) for some cut (S, T) of G. And (S, T) is a
minimum cut in G. )
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Proof: (A) — (B):

Proof.

(A) = (B): By contradiction. If there was an augmenting path p
then cr(p) > 0, and we can generate a new flow f + f,, such that
|f + f,| = |f| + cc(p) > |f|. A contradiction as f is a maximum
flow. O
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Proof: (C) — (A):

Proof.

Well, for any cut (U, V), we know that |f| < ¢(U, V). This implies
that if |f| = ¢(S, T) then the flow can not be any larger, and it is
thus a maximum flow. O
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Proof: (B) — (C):
Proof.

s and t are disconnected in Gy.
Set

S = {v ) Exists a path between s and v in Gf} T=V\S.

Have: s€ S, t€ T,Yu e Sand Vv € T: f(u,v) = c(u,v).
By contradiction: u € S, v € T s.it. f(u,v) < c(u,v) =
(u — v) € Ef = v would be reachable from s in Gy.
Contradiction.

= |f|=f(S,T)=¢c(S, T).

(S, T) must be mincut. Otherwise 3(S’, T'):

c(S',T')<c(S, T)=1£(S, T) = |f],

But... |f| = f(S’, T") < ¢(S’, T’). A contradiction. O
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Implications

@ The max-flow min-cut theorem == if algFordFulkerson
terminates, then computed max flow.

@ Does not imply algFordFulkerson always terminates.
© algFordFulkerson might not terminate.
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Part |V

Non-termination of Ford-Fulkerson
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Some algebra...

Fora=\/§_1:
2
2
a2=(‘/§2‘1) “ sy =l soavsa
1
=1+Z(2—2\/§)
1
=1+§(1—\/§)
_ . V5-1
T2
=1—a.
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Ford-Fulkerson runs in vain

@ M: large positive integer.

Q@ a=(v5-1)/2~0.618.
Q a<l,

Ql—a<a

@ Maximum flow in this
network is: 2M + 1.
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Some algebra...
Claim
Given: a = (V5 —1)/2anda® =1 — .

= Vi o —a'tl=qait?
Proof.
o — ot =ad(l —a) =ada®=a "
DJ
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The network
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Let it flow Il

Let it flow...
# || Augment. path ™ | ¢, New residual network
®
1
0. || @ o ® : 1 1 « :

# || Augment. path m | ¢,

New residual network
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1.
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Let it flow Il
(s)
b2 2
2 « 1 Q
2. O W@ @Q+—@
1—a?
2
o — o
2 ~——
3. 1— a2 =a3
C T 2 2 Y T
o a
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Let it flow Il
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Let it flow Il
] moves Residual network after ‘
0 1 1 o
W @+—Pe+—@
moves 0, (1, 2, 3, 4) W@é@
1—a? a’
moves 0, (1,2, 3,4)2 @%@.17 o’
1—a* a(l —at)
0.(1,2,3,4) | @2 pel g" @
1 — a2 a — o2t

Namely, the algorithm never terminates.
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