CS 573: Algorithms, Fall 2013 **Detervant Flows** Lecture 12 October 3, 2013

Network flow

- Transfer as much "merchandise" as possible from one point to another.
- **2** Wireless network, transfer a large file from s to t.
- Limited capacities.

Sariel (UIUC)

Fall 2013

3 / 58

Network: Definition

- Given a network with capacities on each connection.
- **Q**: How much "flow" can transfer from source **s** to a sink **t**?
- The flow is splitable.
- Network examples: water pipes moving water. Electricity network.
- Internet is packet base, so not quite splitable.

Definition

- \star G = (V, E): a *directed* graph.
- ★ \forall ($u \rightarrow v$) ∈ E(G): *capacity* $c(u, v) \ge 0$,
- $\star (u \to v) \notin G \implies c(u, v) = 0.$
- ***** *s*: *source* vertex, *t*: target *sink* vertex.
- **\star G**, *s*, *t* and *c*(·): form *flow network* or *network*.

Fall 2013 4 / 58

Fall 2013 8 / 58

Fall 2013

Flow across sets of vertices

• $\forall X, Y \subseteq V$, let $f(X, Y) = \sum_{x \in X, y \in Y} f(x, y)$. $f(v, S) = f(\{v\}, S)$, where $v \in V(G)$.

Observation

f =f(s,V).				
Sariel (UIUC)	CS573	9	Fall 2013	9 / 58

Basic properties of flows: (ii)

Lemma

For a flow \mathbf{f} , the following properties holds: (ii) $\forall \mathbf{X} \subseteq \mathbf{V}$ we have $\mathbf{f}(\mathbf{X}, \mathbf{X}) = \mathbf{0}$,

Proof.

$$f(X, X) = \sum_{\{u,v\}\subseteq X, u\neq v} (f(u, v) + f(v, u)) + \sum_{u\in X} f(u, u)$$

=
$$\sum_{\{u,v\}\subseteq X, u\neq v} (f(u, v) - f(u, v)) + \sum_{u\in X} 0 = 0,$$

Fall 2013

11 / 58

by the anti-symmetry property of flow.

Sariel (UIUC)

Basic properties of flows: (i)

Lemma

For a flow **f**, the following properties holds: (i) $\forall u \in V(G)$ we have f(u, u) = 0,

Proof.

Holds since $(u \rightarrow u)$ it not an edge in **G**. $(u \rightarrow u)$ capacity is zero, Flow on $(u \rightarrow u)$ is zero.

Basic properties of flows: (iii)

Lemma

Sariel (UIUC

For a flow f, the following properties holds: (iii) $\forall X, Y \subseteq V$ we have f(X, Y) = -f(Y, X),

Proof.

By the anti-symmetry of flow, as

$$f(X,Y) = \sum_{x \in X, y \in Y} f(x,y) = -\sum_{x \in X, y \in Y} f(y,x) = -f(Y,X).$$

Sariel (UIUC)

CS573

Fall 2013 12 / 58

Fall 2013

Basic properties of flows: (iv)

Lemma

For a flow f, the following properties holds: (iv) $\forall X, Y, Z \subseteq V$ such that $X \cap Y = \emptyset$ we have that $f(X \cup Y, Z) = f(X, Z) + f(Y, Z)$ and $f(Z, X \cup Y) = f(Z, X) + f(Z, Y)$.

Proof. Follows from definition. (Check!)

Sariel (LILLC)	CS573	13	Eall 2013	13 / 58
	00010		1 411 2013	13 / 30

Basic properties of flows: summary Lemma For a flow f, the following properties holds: (i) $\forall u \in V(G)$ we have f(u, u) = 0, (ii) $\forall X \subseteq V$ we have f(X, X) = 0, (iii) $\forall X, Y \subseteq V$ we have f(X, Y) = -f(Y, X), (iv) $\forall X, Y, Z \subseteq V$ such that $X \cap Y = \emptyset$ we have that $f(X \cup Y, Z) = f(X, Z) + f(Y, Z)$ and $f(Z, X \cup Y) = f(Z, X) + f(Z, Y)$. (v) For all $u \in V \setminus \{s, t\}$, we have f(u, V) = f(V, u) = 0.

Basic properties of flows: (v)

Lemma

For a flow \mathbf{f} , the following properties holds: (v) $\forall \mathbf{u} \in \mathbf{V} \setminus \{s, t\}$, we have $f(\mathbf{u}, \mathbf{V}) = f(\mathbf{V}, \mathbf{u}) = \mathbf{0}$.

Proof.

Sariel (UIUC

This is a restatement of the conservation of flow property.

All flow gets to the sink		
Claim		
$ f = f(\mathbf{V}, t).$		
Proof.		
$ f = f(s, V) = f(V \setminus (V \setminus \{s\}), V)$ = $f(V, V) - f(V \setminus \{s\}, V)$ = $-f(V \setminus \{s\}, V)$ = $f(V, t) + f(V, V \setminus \{s, t\})$ = $f(V, t) + \sum_{u \in V \setminus \{s, t\}} f(V, u)$ = $f(V, t) + \sum_{u \in V \setminus \{s, t\}} 0$ = $f(V, t)$.	$= f(V,V\setminus\{s\})$	

 $C_{\text{res}} = f(Y \mid Y) = O_{\text{res}} (Y) = o_{\text{res}} f(Y \mid x) = O_{\text{res}} (Y)$

Fall 2013

Fall 2013

Residual capacity

Definition

c: capacity, f: flow. The *residual capacity* of an edge $(u \rightarrow v)$ is

 $c_f(u, v) = c(u, v) - f(u, v).$

- residual capacity $c_f(u, v)$ on $(u \rightarrow v)$ = amount of unused capacity on $(u \rightarrow v)$.
- \bigcirc ... next construct graph with all edges not being fully used by f.

Fall 2013

17 / 5

Residual graph: Definition

Definition

Sariel (UIUC

Given f, G = (V, E) and c, as above, the *residual graph* (or *residual network*) of G and f is the graph $G_f = (V, E_f)$ where

$$\mathsf{E}_f = \left\{ (u, v) \in \mathsf{V} \times \mathsf{V} \mid c_f(u, v) > 0 \right\}.$$

•
$$(u \rightarrow v) \in E$$
: might induce two edges in E_f
• If $(u \rightarrow v) \in E$, $f(u, v) < c(u, v)$ and $(v \rightarrow u) \notin E(G)$
• $\Rightarrow c_f(u, v) = c(u, v) - f(u, v) > 0$
• ... and $(u \rightarrow v) \in E_f$. Also,
 $c_f(v, u) = c(v, u) - f(v, u) = 0 - (-f(u, v)) = f(u, v)$,
since $c(v, u) = 0$ as $(v \rightarrow u)$ is not an edge of G.
• $\Rightarrow (v \rightarrow u) \in E_f$.

Residual network properties

Since every edge of **G** induces at most two edges in **G**_f, it follows that **G**_f has at most twice the number of edges of **G**; formally, $|\mathbf{E}_f| \leq 2 |\mathbf{E}|$.

Lemma

Given a flow **f** defined over a network **G**, then the residual network $\mathbf{G}_{\mathbf{f}}$ together with $\mathbf{c}_{\mathbf{f}}$ form a flow network.

Proof.

One need to verify that $c_f(\cdot)$ is always a non-negative function, which is true by the definition of E_f .

Sariel (UIUC)

CS57<u>3</u>____

Fall 2013 20 / 58

Increasing the flow

Lemma

G(V, E), a flow f, and h a flow in G_f . G_f : residual network of f. Then f + h is a flow in G and its capacity is |f + h| = |f| + |h|.

proof

Increasing the flow - proof continued

proof continued

Sor u ∈ V − s − t we have (f + h)(u, V) = f(u, V) + h(u, V) = 0 + 0 = 0 and as such f + h comply with the conservation of flow requirement.
2 Total flow is

$$|f + h| = (f + h)(s, V) = f(s, V) + h(s, V) = |f| + |h|.$$

More on augmenting paths

• π : augmenting path.

Sariel (UIUC

- **2** All edges of π have positive capacity in **G**_{*f*}.
- \bigcirc ... otherwise not in \mathbf{E}_{f} .
- **f**, π : can improve **f** by pushing positive flow along π .

CS573

Fall 2013 24 / 58

Fall 2013

Residual capacity

Increase flow by augmenting flow

Lemma

 π : augmenting path. f_{π} is flow in G_f and $|f_{\pi}| = c_f(\pi) > 0$.

Get bigger flow...

Lemma

Let **f** be a flow, and let π be an augmenting path for **f**. Then $\mathbf{f} + \mathbf{f}_{\pi}$ is a "better" flow. Namely, $|\mathbf{f} + \mathbf{f}_{\pi}| = |\mathbf{f}| + |\mathbf{f}_{\pi}| > |\mathbf{f}|$.

Sariel (UIUC)

CS573

Fall 2013 28 / 58

Flowing into the wall

- Namely, $f + f_{\pi}$ is flow with larger value than f.
- ② Can this flow be improved? Consider residual flow...

- Is that a global maximum?
- Is this the maximum flow?

Sariel (UIUC

Part III On maximum flows

The Ford-Fulkerson method

Some definitions

Definition

(S, T): *directed cut* in flow network G = (V, E). A partition of V into S and $T = V \setminus S$, such that $s \in S$ and $t \in T$.

Definition

The net flow of f across a cut (S, T) is $f(S, T) = \sum_{s \in S, t \in T} f(s, t)$.

Definition

The *capacity* of (S, T) is $c(S, T) = \sum_{s \in S, t \in T} c(s, t)$.

Definition

Sariel (UIUC)

The *minimum cut* is the cut in **G** with the minimum capacity.

3

Fall 2013

29 / 58

Fall 2013 32 / 58

Flow across cut is the whole flow

Lemma

G, f, s, t. (S, T): cut of G. Then f(S, T) = |f|.

Proof.

$$f(S, T) = f(S, V) - f(S, S) = f(S, V)$$

= f(s, V) + f(S - s, V) = f(s, V)
= |f|,

since $T = V \setminus S$, and $f(S - s, V) = \sum_{u \in S-s} f(u, V) = 0$ (note that u can not be t as $t \in T$).

THE POINT

Sariel (UIUC

Key observation

Maximum flow is bounded by the capacity of the minimum cut.

Surprisingly...

Maximum flow is exactly the value of the minimum cut.

Flow bounded by cut capacity

Claim

The flow in a network is upper bounded by the capacity of any cut (S, T) in **G**.

Proof.

Sariel (UIUC

Consider a cut (S, T). We have $|f| = f(S, T) = \sum_{u \in S, v \in T} f(u, v) \le \sum_{u \in S, v \in T} c(u, v) = c(S, T)$.

The Min-Cut Max-Flow Theorem

Theorem (Max-flow min-cut theorem)

If **f** is a flow in a flow network $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ with source **s** and sink **t**, then the following conditions are equivalent:

- (A) \mathbf{f} is a maximum flow in \mathbf{G} .
- (B) The residual network G_f contains no augmenting paths.
- (C) |f| = c(S, T) for some cut (S, T) of G. And (S, T) is a
 - minimum cut in **G**.

Fall 2013

33 / 58

CS5

Fall 2013

Proof: (A) \Rightarrow (B):

Proof.

 $(A) \Rightarrow (B)$: By contradiction. If there was an augmenting path p then $c_f(p) > 0$, and we can generate a new flow $f + f_p$, such that $|f + f_p| = |f| + c_f(p) > |f|$. A contradiction as f is a maximum flow.

Sariel (UIUC)	CS573	Fall 2013	37 / 58
(1

Proof: (C) \Rightarrow (A):

Proof.

Well, for any cut (U, V), we know that $|f| \le c(U, V)$. This implies that if |f| = c(S, T) then the flow can not be any larger, and it is thus a maximum flow.

thus a maximum flow.		, 0	

Proof: (B) \Rightarrow (C):

Proof.

s and t are disconnected in G_f .

Set $S = \{v \mid \text{Exists a path between } s \text{ and } v \text{ in } G_f\}$ $T = V \setminus S$. Have: $s \in S, t \in T, \forall u \in S \text{ and } \forall v \in T: f(u, v) = c(u, v)$. By contradiction: $\exists u \in S, v \in T \text{ s.t. } f(u, v) < c(u, v) \Longrightarrow$ $(u \rightarrow v) \in E_f \implies v \text{ would be reachable from } s \text{ in } G_f$. Contradiction. $\implies |f| = f(S, T) = c(S, T)$. $(S, T) \text{ must be mincut. Otherwise } \exists (S', T'):$ c(S', T') < c(S, T) = f(S, T) = |f|, But... $|f| = f(S', T') \leq c(S', T')$. A contradiction.

Implications

Sariel (UIUC

- The max-flow min-cut theorem ⇒ if algFordFulkerson terminates, then computed max flow.
- **2** Does not imply **algFordFulkerson** always terminates.
- **algFordFulkerson** might not terminate.

CS573

Fall 2013

Some algebra...

$$For \alpha = \frac{\sqrt{5} - 1}{2}:$$

$$\alpha^{2} = \left(\frac{\sqrt{5} - 1}{2}\right)^{2} = \frac{1}{4}\left(\sqrt{5} - 1\right)^{2} = \frac{1}{4}\left(5 - 2\sqrt{5} + 1\right)$$

$$= 1 + \frac{1}{4}\left(2 - 2\sqrt{5}\right)$$

$$= 1 + \frac{1}{2}\left(1 - \sqrt{5}\right)$$

$$= 1 - \frac{\sqrt{5} - 1}{2}$$

$$= 1 - \alpha.$$

Let it flow III Residual network after moves 0 -**y**∢ w--x $w = \alpha^2$ moves 0, (1, 2, 3, 4) w^4 moves $0, (1, 2, 3, 4)^2$ $\alpha(1 \omega^{2i}$ α^{2i+1} **0.(1, 2, 3, 4)**^{*i*} 2-1 $\alpha - \alpha^{2i+1}$ Namely, the algorithm never terminates. Fall 2013 Sariel (UIUC) 50 / 58

