	CS 573: Alg	gorithm	IS		
	Sariel Har sariel@illin 3306 S	nois.edu			
Un	iversity of Illinois, Ur	bana-Champa	aign		
	Fall 20	13			
Sariel (UIUC)	CS573	1		Fall 2013	1 / 59

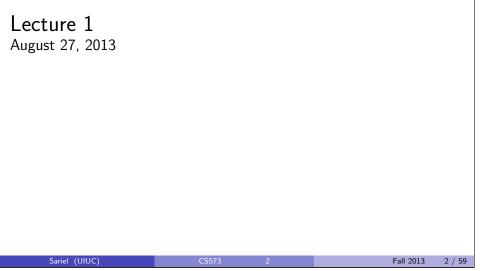
The word "algorithm" comes from...

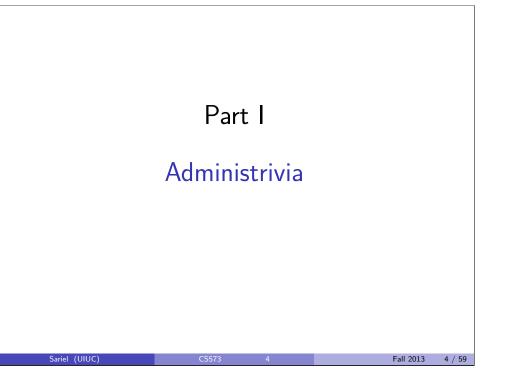
Muhammad ibn Musa al-Khwarizmi 780-850 AD The word "algebra" is taken from the title of one of his books.

Sariel (UIUC) C5573 3 Fall 2013 3 / 59

CS 573: Algorithms, Fall 2013

Administrivia, Introduction





Instructional Staff

Instructor:

Sariel Har-Peled (sariel)

2 Teaching Assistants:

- Ben Raichel (raichel2)
- ② David Holcomb (dholcom2)
- **Office hours:** See course webpage
- Email: See course webpage

Webpage: courses.engr.illinois.edu/cs573/fa2013/ General information, homeworks, etc.

2 Moodle: Quizzes, solutions to homeworks.

Online resources

Sariel (UIUC

Online questions/announcements: Piazza Online discussions, etc.

Textbooks

Sariel (UIUC

- Prerequisites: CS 173 (discrete math), CS 225 (data structures) and CS 373 (theory of computation)
- Recommended books:
 - Algorithms by Dasgupta, Papadimitriou & Vazirani. Available online for free!

CS57

- **2** Algorithm Design by Kleinberg & Tardos
- Lecture notes: Available on the web-page before/during/after every class.
- Additional References
 - Previous class notes of Jeff Erickson, Sariel Har-Peled and the instructor.
 - **2** Introduction to Algorithms: Cormen, Leiserson, Rivest, Stein.
 - **③** Computers and Intractability: Garey and Johnson.

1	Asymptotic notation: $O(), \Omega(), o()$.
2	Discrete Structures: sets, functions, relations, equivalence classes, partial orders, trees, graphs
3	Logic: predicate logic, boolean algebra
4	Proofs: by induction, by contradiction
5	Basic sums and recurrences: sum of a geometric series, unrolling of recurrences, basic calculus
6	Data Structures: arrays, multi-dimensional arrays, linked lists, trees, balanced search trees, heaps
7	Abstract Data Types: lists, stacks, queues, dictionaries, priority queues
8	Algorithms: sorting (merge, quick, insertion), pre/post/in order traversal of trees, depth/breadth first search of tree (maybe graphs)
9	Basic analysis of algorithms: loops and nested loops, deriving recurrences from a recursive program
10	Concepts from Theory of Computation: languages, automata, Turing machine, undecidability, non-determinism
1	Programming: in some general purpose language
12	Elementary Discrete Probability: event, random variable, independence
13	Mathematical maturity

CS57

Sariel (UIUC)

Fall 2013 7 / 59

Fall 2013

5 / 59

```
Sariel (UIUC)
```

CS57<u>3</u>____

Fall 2013 8 / 59

Fall 2013

Grading Policy: Overview

- Attendance/clickers: 5%
- Quizzes: 5%
- Homeworks: 15%
- Midterm: 30%
- Finals: 45% (covers the full course content)

More on Homeworks

Sariel (UIUC

- O No extensions or late homeworks accepted.
- To compensate, the homework with the least score will be dropped in calculating the homework average.
- **Important**: Read homework faq/instructions on website.

Homeworks

- One quiz every 1-2-3 weeks: Due by midnight on Sunday.
- One homework every 1-2-3 weeks.
- Homeworks can be worked on in groups of up to 3 and each group submits *one* written solution (except Homework 0).
 - Short quiz-style questions to be answered individually on *Moodle*.
- Groups can be changed a *few* times only.

Advice

Attend lectures, please ask plenty of questions.

CS57

Olickers...

Sariel (UIUC

- Attend discussion sessions.
- On't skip homework and don't copy homework solutions.
- Study regularly and keep up with the course.
- Ask for help promptly. Make use of office hours.

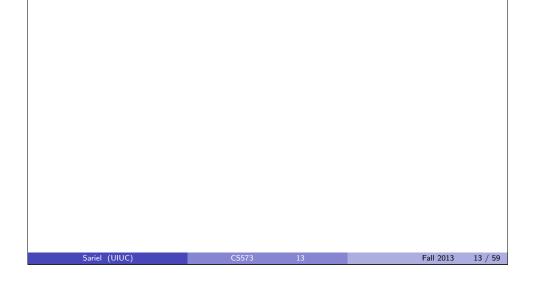
Fall 2013

CS573

Fall 2013

Homeworks

- **O** HW 0 is posted on the class website. Quiz 0 available
- **2** HW 0 to be submitted in individually.

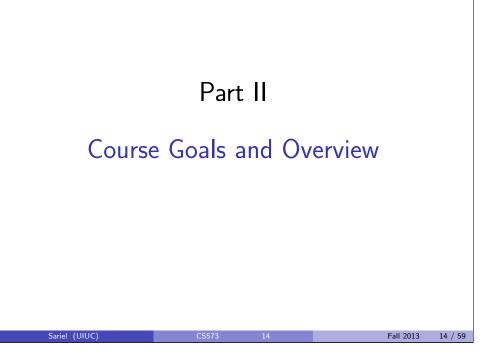


Topics

- Some fundamental algorithms
- **2** Broadly applicable techniques in algorithm design
 - Understanding problem structure
 - Ø Brute force enumeration and backtrack search
 - 8 Reductions
 - Recursion
 - Divide and Conquer
 - Oynamic Programming
 - Greedy methods
 - Network Flows and Linear/Integer Programming (optional)
- Analysis techniques
 - Correctness of algorithms via induction and other methods
 - 2 Recurrences
 - O Amortization and elementary potential functions
- Olynomial-time Reductions, NP-Completeness, Heuristics

Fall 2013

15 / 59



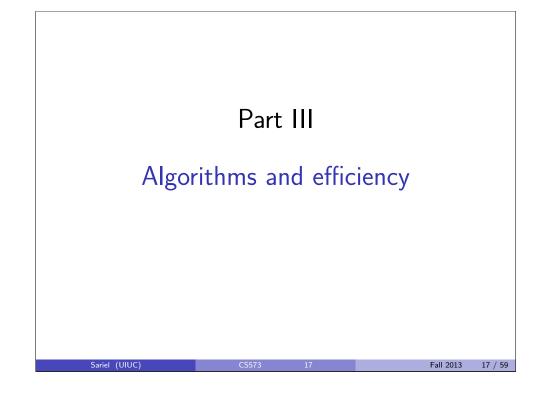
Goals

1

- 2 Learn/remember some basic tricks, algorithms, problems, ideas
- Output Stand St
- Appreciate the importance of algorithms in computer science and beyond (engineering, mathematics, natural sciences, social sciences, ...)
- Have fun!!!

CS573

Fall 2013 16 / 59



Primality testing

...Polynomial means... in input size

```
How many bits to represent N in binary? \lceil \log N \rceil bits.
```

Simple Algorithm takes $\sqrt{N} = 2^{(\log N)/2}$ time. Exponential in the input size $n = \log N$.

- Modern cryptography: binary numbers with 128, 256, 512 bits.
- Simple Algorithm will take 2⁶⁴, 2¹²⁸, 2²⁵⁶ steps!

Lesson:

Pay attention to representation size in analyzing efficiency of algorithms. Especially in *number* problems.

Primality testing

Problem

Given an integer N > 0, is N a prime?

SimpleAlgorithm:
 for i = 2 to [√N] do
 if i divides N then
 return ''COMPOSITE''
 return ''PRIME''
Correctness? If N is composite at least one for

Correctness? If **N** is composite, at least one factor in $\{2, \ldots, \sqrt{N}\}$ Running time? $O(\sqrt{N})$ divisions? Sub-linear in input size! Wrong!

Efficient algorithms

Sariel (UIUC

So, is there an *efficient/good/effective* algorithm for primality?

Question:

What does efficiency mean?

In this class *efficiency* is broadly equated to *polynomial time*. $O(n), O(n \log n), O(n^2), O(n^3), O(n^{100}), \ldots$ where *n* is size of the input.

Why? Is n^{100} really efficient/practical? Etc.

Short answer: polynomial time is a robust, mathematically sound way to define efficiency. Has been useful for several decades.

Sariel (UIUC)

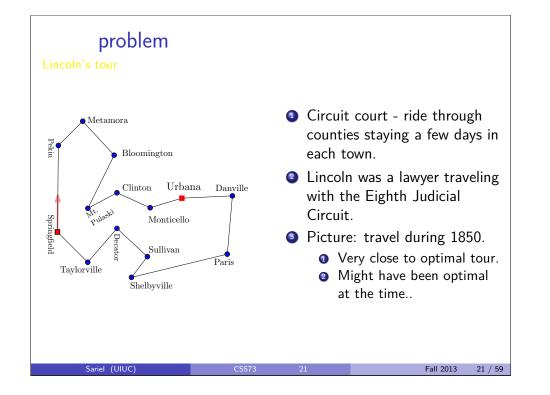
9

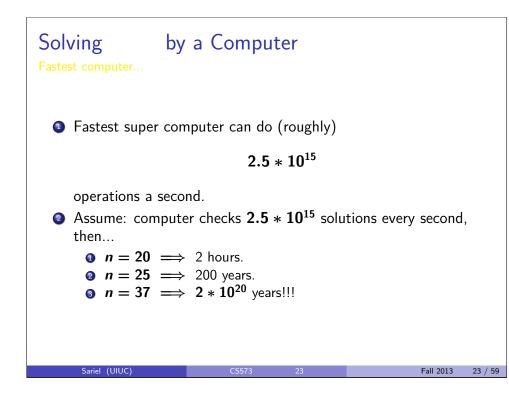
Fall 2013 19 / 59

CS573

Fall 2013 20 / 59

Fall 2013





Solving by a Computer For the real set of the set of

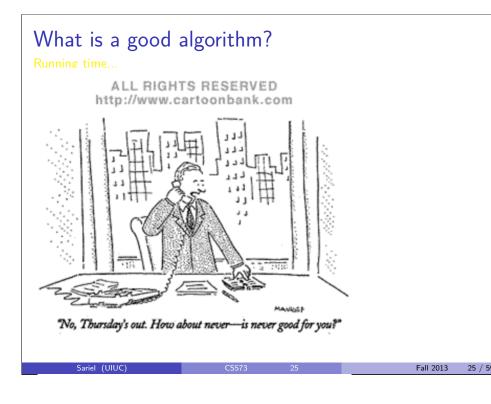
What	is a	good	algorithm?
Running t			

Input size	n ² ops	n ³ ops	n ⁴ ops	n! ops
5	0 secs	0 secs	0 secs	0 secs
20	0 secs	0 secs	0 secs	16 mins
30	0 secs	0 secs	0 secs	$3\cdot 10^9$ years
100	0 secs	0 secs	0 secs	never
8000	0 secs	0 secs	1 secs	never
16000	0 secs	0 secs	26 secs	never
32000	0 secs	0 secs	6 mins	never
64000	0 secs	0 secs	111 mins	never
200,000	0 secs	3 secs	7 days	never
2,000,000	0 secs	53 mins	202.943 years	never
10 ⁸	4 secs	12.6839 years	10^9 years	never
10 ⁹	6 mins	12683.9 years	10^{13} years	never

Sariel (UIUC)

<u>CS573</u>

Fall 2013



What about before 2002?

Primality testing a key part of cryptography. What was the algorithm being used before 2002?

Miller-Rabin *randomized* algorithm:

- runs in polynomial time: $O(\log^3 N)$ time
- (2) if **N** is prime correctly says "yes".
- (a) if **N** is composite it says "yes" with probability at most $1/2^{100}$ (can be reduced further at the expense of more running time).

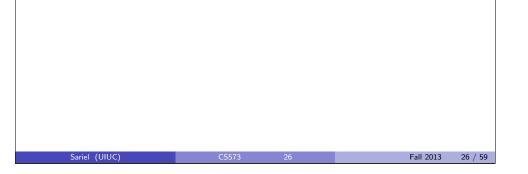
Based on Fermat's little theorem and some basic number theory.

Primes is in P!

Theorem (Agrawal-Kayal-Saxena'02)

There is a polynomial time algorithm for primality.

First polynomial time algorithm for testing primality. Running time is $O(\log^{12} N)$ further improved to about $O(\log^{6} N)$ by others. In terms of input size $n = \log N$, time is $O(n^{6})$.



Factoring

- Modern public-key cryptography based on RSA (Rivest-Shamir-Adelman) system.
- Relies on the difficulty of factoring a composite number into its prime factors.
- There is a polynomial time algorithm that decides whether a given number *N* is prime or not (hence composite or not) but no known polynomial time algorithm to factor a given number.

Lesson

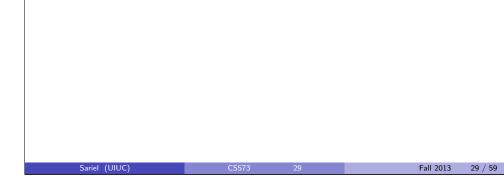
Intractability can be useful!

CS573

Unit-Cost RAM Model

Informal description:

- Basic data type is an integer/floating point number
- Numbers in input fit in a word
- S Arithmetic/comparison operations on words take constant time
- S Arrays allow random access (constant time to access **A**[i])
- **⑤** Pointer based data structures via storing addresses in a word



Caveats of RAM Model

Unit-Cost RAM model is applicable in wide variety of settings in practice. However it is not a proper model in several important situations so one has to be careful.

- For some problems such as basic arithmetic computation, unit-cost model makes no sense. Examples: multiplication of two *n*-digit numbers, primality etc.
- 2 Input data is very large and does not satisfy the assumptions that individual numbers fit into a word or that total memory is bounded by 2^k where k is word length.
- Assumptions valid only for certain type of algorithms that do not create large numbers from initial data. For example, exponentiation creates very big numbers from initial numbers.

Example

Sorting: input is an array of *n* numbers

- input size is n (ignore the bits in each number),
- comparing two numbers takes O(1) time,
- random access to array elements,
- addition of indices takes constant time,
- basic arithmetic operations take constant time,
- reading/writing one word from/to memory takes constant time.

We will usually not allow (or be careful about allowing):

- bitwise operations (and, or, xor, shift, etc).
- Iloor function.

Sariel (11111C

Iimit word size (usually assume unbounded word size).

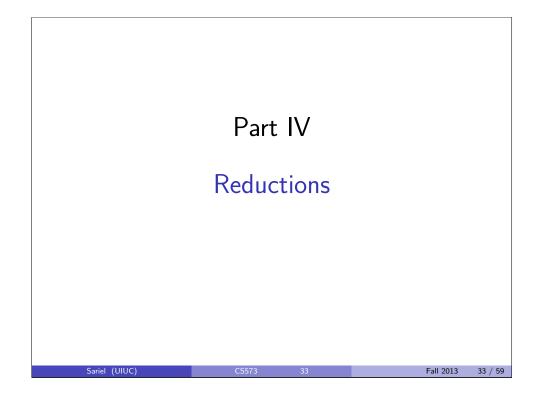
Models used in class

In this course:

- Assume unit-cost RAM by default.
- We will explicitly point out where unit-cost RAM is not applicable for the problem at hand.

CS573

Fall 2013

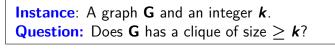


The Independent Set and Clique Problems

Independent Set

Instance: A graph **G** and an integer k. **Question**: Does **G** has an independent set of size > k?

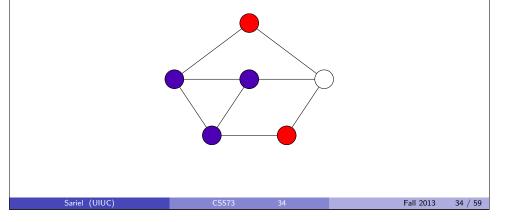
Clique



Independent Sets and Cliques

Given a graph G, a set of vertices V' is:

- An *independent set*: if no two vertices of V' are connected by an edge of G.
- clique: every pair of vertices in V' is connected by an edge of G.



Types of Problems

Decision, Search, and Optimization

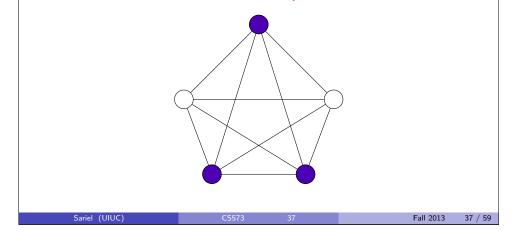
- **Decision problem**. Example: given *n*, is *n* prime?.
- Search problem. Example: given n, find a factor of n if it exists.
- **Optimization problem**. Example: find the smallest prime factor of **n**.

CS573

Reducing Independent Set to Clique

An instance of **Independent Set** is a graph **G** and an integer **k**.

Convert **G** to \overline{G} , in which (u, v) is an edge iff (u, v) is not an edge of **G**. (\overline{G} is the *complement* of **G**.) We use \overline{G} and **k** as the instance of Clique.



Independent Set and Clique

Independent Set ≤ Clique. What does this mean?

Sariel (UIUC

If have an algorithm for Clique, then we have an algorithm for Independent Set.

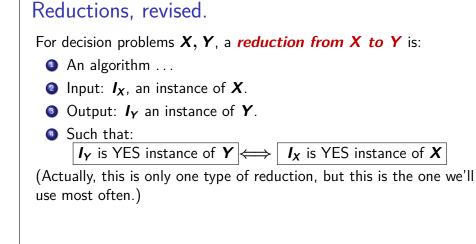
Fall 2013

38 / 59

- **Olique** is at least as hard as **Independent Set**.
- Solution Also... Independent Set is at least as hard as Clique.

CS57

Using reductions \mathcal{R} : Reduction X \mathcal{A}_{Y} : algorithm for $\mathcal{A}_{X}(I_{X})$: $I_{Y} \leftarrow \mathcal{R}$ return I_{X}	$\rightarrow \mathbf{Y}$ or \mathbf{Y} : ithm for \mathbf{X} : instance of \mathbf{X} $\mathcal{C}(I_X)$		YES	
		Ay	NO	
In particular, if ${\cal R}$ and	\mathcal{A}_{Y} are polyn	iomial-time	e algorithms, $\mathcal{A}_{m{x}}$ i	s
also polynomial-time.				
Sariel (UIUC)	CS573	40	Fall 2013	40 / 5



Fall 2013

Comparing Problems

- Reductions allow us to formalize the notion of "Problem X is no harder to solve than Problem Y".
- **2** If Problem **X** reduces to Problem **Y** (we write $X \leq Y$), then **X** cannot be harder to solve than **Y**.
- So More generally, if $X \leq Y$, we can say that X is no harder than Y, or Y is at least as hard as X.

Sariel (UIUC) C5573 41 Fall 2013 41 / 59					
Savid (1111C) (SE72 41 Eal 2012 41 / 50					
Savid (11111C) (SE72 41 Eail 2012 41 / 50					
Savid (11111C) (SE72 41 Eail 2012 41 / 50					
Savid (11111C) (S572 41 Eail 2012 41 / 50					
Savid (11111C) CS572 41 Esil 2012 41 / 50					
Savid (11111C) CS572 41 Esil 2012 41 / 50					
Savid (11111C) CS572 41 Esil 2012 41 / 50					
Savid (11111C) CS572 41 Esil 2012 41 / 50					
Savid (11111C) CSE72 41 E-11 2012 41 / 50					
Savid (1111C) CSE72 41 E-11 2012 41 / 50					
		CC172	4.1	E 11 0010	41 / 50
Salier (00C) C3513 41 1aii 2013 41 / 39	Sariel (UIUC)	CS573	41	Fall 2013	41 / 59

Polynomial-time reductions and hardness

Lemma

For decision problems X and Y, if $X \leq_P Y$, and Y has an efficient algorithm, X has an efficient algorithm.

- **Independent Set**: "believe" there is no efficient algorithm.
- What about Clique?
- **③** Showed: **Independent Set** \leq_P Clique.
- If Clique had an efficient algorithm, so would Independent Set!

Observation

If $X \leq_P Y$ and X does not have an efficient algorithm, Y cannot have an efficient algorithm!

<section-header><section-header><equation-block><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Polynomial-time reductions and instance sizes

Proposition

 \mathcal{R} : a polynomial-time reduction from X to Y. Then, for any instance I_X of X, the size of the instance I_Y of Y produced from I_X by \mathcal{R} is polynomial in the size of I_X .

Proof.

 \mathcal{R} is a polynomial-time algorithm and hence on input I_X of size $|I_X|$ it runs in time $p(|I_X|)$ for some polynomial p(). I_Y is the output of \mathcal{R} on input I_X . \mathcal{R} can write at most $p(|I_X|)$ bits and hence $|I_Y| \leq p(|I_X|)$.

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

43

Fall 2013 43 / 59

Polynomial-time Reduction

Definition

A **polynomial time reduction** from a *decision* problem X to a *decision* problem Y is an *algorithm* A such that:

- **(**) Given an instance I_X of X, A produces an instance I_Y of Y.
- A runs in time polynomial in |I_X|. This implies that |I_Y| (size of I_Y) is polynomial in |I_X|.
- **③** Answer to I_X YES *iff* answer to I_Y is YES.

Proposition

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

This is a *Karp reduction*.

Sariel (UIU

Fall 2013

45 / 59

Transitivity of Reductions

Proposition

 $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

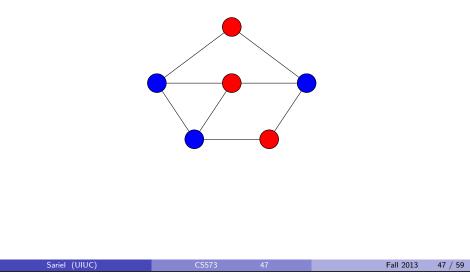
- Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.
- So To prove $X \leq_P Y$ you need to show a reduction FROM X TO Y

 \bigcirc ...show that an algorithm for **Y** implies an algorithm for **X**.

Vertex Cover

Given a graph G = (V, E), a set of vertices **S** is:

• A vertex cover if every $e \in E$ has at least one endpoint in S.



The Vertex Cover Problem

Problem (Vertex Cover)

Sariel (UIUC

Input: A graph **G** and integer k. **Goal:** Is there a vertex cover of size $\leq k$ in **G**?

Can we relate Independent Set and Vertex Cover?

CS573

Fall 2013

Relationship between...

Vertex Cover and Independent Set

Proposition

Let G = (V, E) be a graph. S is an independent set if and only if $V \setminus S$ is a vertex cover.

Proof.

(\Rightarrow) Let S be an independent set • Consider any edge $uv \in E$. • Since S is an independent set, either $u \notin S$ or $v \notin S$. • Thus, either $u \in V \setminus S$ or $v \in V \setminus S$. • $V \setminus S$ is a vertex cover. • $V \setminus S$ is a vertex cover: • Consider $u, v \in S$ • uv is not an edge of G, as otherwise $V \setminus S$ does not cover uv. • $\Rightarrow S$ is thus an independent set.

Independent Set \leq_P Vertex Cover

- G: graph with *n* vertices, and an integer *k* be an instance of the Independent Set problem.
- **② G** has an independent set of size $\geq k$ iff **G** has a vertex cover of size $\leq n k$
- **(**G, k**)** is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.
- Therefore, Independent Set ≤_P Vertex Cover. Also Vertex Cover ≤_P Independent Set.

The Set Cover Problem Problem (Set Cover) Input: Given a set U of n elements, a collection $S_1, S_2, ..., S_m$ of subsets of U, and an integer k. Goal: Is there a collection of at most k of these sets S_i whose union is equal to U? Example Let $U = \{1, 2, 3, 4, 5, 6, 7\}, k = 2$ with $S_1 = \{3, 7\}, S_2 = \{3, 4, 5\}$ $S_1 = \{1, 2, 3, 4, 5, 6, 7\}, S_2 = \{2, 4\}$

$$S_3 = \{1\}$$
 $S_4 = \{2, 4\}$
 $S_5 = \{5\}$ $S_6 = \{1, 2, 6, 7\}$

 $\{S_2, S_6\}$ is a set cover

Vertex Cover \leq_P Set Cover

Given graph G = (V, E) and integer k as instance of Vertex Cover, construct an instance of Set Cover as follows:

- Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.
- U = E.

Sariel (11111C

• We will have one set corresponding to each vertex; $S_{\nu} = \{e \mid e \text{ is incident on } \nu\}.$

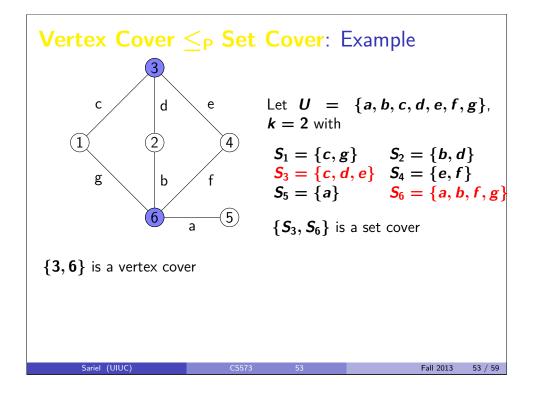
Observe that **G** has vertex cover of size **k** if and only if $U, \{S_v\}_{v \in V}$ has a set cover of size **k**. (Exercise: Prove this.)

Sariel (UIUC)

CS573

Fall 2013 52 / 59

Fall 2013



Summary

We looked at polynomial-time reductions.

Using polynomial-time reductions

- If $X \leq_P Y$, and we have an efficient algorithm for Y, we have an efficient algorithm for X.
- **2** If $X \leq_P Y$, and there is no efficient algorithm for X, there is no efficient algorithm for Y.

We looked at some examples of reductions between **Independent Set**, **Clique**, **Vertex Cover**, and **Set Cover**.

Fall 2013

55 / 59

Proving Reductions

To prove that $X \leq_P Y$ you need to give an algorithm \mathcal{A} that:

- **1** Transforms an instance I_X of X into an instance I_Y of Y.
- **2** Satisfies the property that answer to I_X is YES iff I_Y is YES.
 - typical easy direction to prove: answer to I_Y is YES if answer to I_X is YES
 - typical difficult direction to prove: answer to I_X is YES if answer to I_Y is YES (equivalently answer to I_X is NO if answer to I_Y is NO).
- Runs in *polynomial* time.

