
CS 573: Algorithms

Sariel Har-Peled
sariel@illinois.edu

3306 SC

University of Illinois, Urbana-Champaign

Fall 2013

Sariel (UIUC) CS573 1 Fall 2013 1 / 59

CS 573: Algorithms, Fall 2013

Administrivia, Introduction
Lecture 1
August 27, 2013

Sariel (UIUC) CS573 2 Fall 2013 2 / 59

The word “algorithm” comes from...
Muhammad ibn Musa al-Khwarizmi
780-850 AD
The word “algebra” is taken from the title of one of his books.

Sariel (UIUC) CS573 3 Fall 2013 3 / 59

Part I

Administrivia

Sariel (UIUC) CS573 4 Fall 2013 4 / 59

Instructional Staff
1 Instructor:

I Sariel Har-Peled (sariel)
2 Teaching Assistants:

1 Ben Raichel (raichel2)
2 David Holcomb (dholcom2)

3 Office hours: See course webpage
4 Email: See course webpage

Sariel (UIUC) CS573 5 Fall 2013 5 / 59

Online resources
1 Webpage: courses.engr.illinois.edu/cs573/fa2013/

General information, homeworks, etc.
2 Moodle: Quizzes, solutions to homeworks.
3 Online questions/announcements: Piazza

Online discussions, etc.

Sariel (UIUC) CS573 6 Fall 2013 6 / 59

Textbooks
1 Prerequisites: CS 173 (discrete math), CS 225 (data structures)

and CS 373 (theory of computation)
2 Recommended books:

1 Algorithms by Dasgupta, Papadimitriou & Vazirani.
Available online for free!

2 Algorithm Design by Kleinberg & Tardos
3 Lecture notes: Available on the web-page before/during/after

every class.
4 Additional References

1 Previous class notes of Jeff Erickson, Sariel Har-Peled and the
instructor.

2 Introduction to Algorithms: Cormen, Leiserson, Rivest, Stein.
3 Computers and Intractability: Garey and Johnson.

Sariel (UIUC) CS573 7 Fall 2013 7 / 59

Prerequisites
1 Asymptotic notation: O(), Ω(), o().
2 Discrete Structures: sets, functions, relations, equivalence classes, partial orders, trees, graphs
3 Logic: predicate logic, boolean algebra
4 Proofs: by induction, by contradiction
5 Basic sums and recurrences: sum of a geometric series, unrolling of recurrences, basic calculus
6 Data Structures: arrays, multi-dimensional arrays, linked lists, trees, balanced search trees, heaps
7 Abstract Data Types: lists, stacks, queues, dictionaries, priority queues
8 Algorithms: sorting (merge, quick, insertion), pre/post/in order traversal of trees, depth/breadth first search of trees

(maybe graphs)
9 Basic analysis of algorithms: loops and nested loops, deriving recurrences from a recursive program

10 Concepts from Theory of Computation: languages, automata, Turing machine, undecidability, non-determinism
11 Programming: in some general purpose language
12 Elementary Discrete Probability: event, random variable, independence
13 Mathematical maturity

Sariel (UIUC) CS573 8 Fall 2013 8 / 59

Grading Policy: Overview
1 Attendance/clickers: 5%
2 Quizzes: 5%
3 Homeworks: 15%
4 Midterm: 30%
5 Finals: 45% (covers the full course content)

Sariel (UIUC) CS573 9 Fall 2013 9 / 59

Homeworks
1 One quiz every 1-2-3 weeks: Due by midnight on Sunday.
2 One homework every 1-2-3 weeks.
3 Homeworks can be worked on in groups of up to 3 and each

group submits one written solution (except Homework 0).
1 Short quiz-style questions to be answered individually on

Moodle.
4 Groups can be changed a few times only.

Sariel (UIUC) CS573 10 Fall 2013 10 / 59

More on Homeworks
1 No extensions or late homeworks accepted.
2 To compensate, the homework with the least score will be

dropped in calculating the homework average.
3 Important: Read homework faq/instructions on website.

Sariel (UIUC) CS573 11 Fall 2013 11 / 59

Advice
1 Attend lectures, please ask plenty of questions.
2 Clickers...
3 Attend discussion sessions.
4 Don’t skip homework and don’t copy homework solutions.
5 Study regularly and keep up with the course.
6 Ask for help promptly. Make use of office hours.

Sariel (UIUC) CS573 12 Fall 2013 12 / 59

Homeworks
1 HW 0 is posted on the class website. Quiz 0 available
2 HW 0 to be submitted in individually.

Sariel (UIUC) CS573 13 Fall 2013 13 / 59

Part II

Course Goals and Overview

Sariel (UIUC) CS573 14 Fall 2013 14 / 59

Topics
1 Some fundamental algorithms
2 Broadly applicable techniques in algorithm design

1 Understanding problem structure
2 Brute force enumeration and backtrack search
3 Reductions
4 Recursion

1 Divide and Conquer
2 Dynamic Programming

5 Greedy methods
6 Network Flows and Linear/Integer Programming (optional)

3 Analysis techniques
1 Correctness of algorithms via induction and other methods
2 Recurrences
3 Amortization and elementary potential functions

4 Polynomial-time Reductions, NP-Completeness, Heuristics
Sariel (UIUC) CS573 15 Fall 2013 15 / 59

Goals
1

2 Learn/remember some basic tricks, algorithms, problems, ideas
3 Understand/appreciate limits of computation (intractability)
4 Appreciate the importance of algorithms in computer science

and beyond (engineering, mathematics, natural sciences, social
sciences, ...)

5 Have fun!!!

Sariel (UIUC) CS573 16 Fall 2013 16 / 59

Part III

Algorithms and efficiency

Sariel (UIUC) CS573 17 Fall 2013 17 / 59

Primality testing
Problem
Given an integer N > 0, is N a prime?

SimpleAlgorithm:
for i = 2 to b

√
Nc do

if i divides N then
return ‘‘COMPOSITE’’

return ‘‘PRIME’’

Correctness? If N is composite, at least one factor in {2, . . . ,
√

N}
Running time? O(

√
N) divisions? Sub-linear in input size! Wrong!

Sariel (UIUC) CS573 18 Fall 2013 18 / 59

Primality testing
...Polynomial means... in input size
How many bits to represent N in binary? dlog Ne bits.

Simple Algorithm takes
√

N = 2(log N)/2 time.
Exponential in the input size n = log N.

1 Modern cryptography: binary numbers with 128, 256, 512 bits.
2 Simple Algorithm will take 264, 2128, 2256 steps!
3 Fastest computer today about 3 petaFlops/sec: 3× 250 floating

point ops/sec.

Lesson:
Pay attention to representation size in analyzing efficiency of
algorithms. Especially in number problems.

Sariel (UIUC) CS573 19 Fall 2013 19 / 59

Efficient algorithms
So, is there an efficient/good/effective algorithm for primality?

Question:
What does efficiency mean?

In this class efficiency is broadly equated to polynomial time.
O(n), O(n log n), O(n2), O(n3), O(n100), . . . where n is size of
the input.

Why? Is n100 really efficient/practical? Etc.

Short answer: polynomial time is a robust, mathematically sound way
to define efficiency. Has been useful for several decades.

Sariel (UIUC) CS573 20 Fall 2013 20 / 59

TSP problem
Lincoln’s tour

Paris

DanvilleUrbana

Monticello

Clinton

Bloomington

Metamora

P
ek
in

S
p
rin

gfi
eld

Taylorville

Sullivan

Shelbyville

Mt.

Pu
las

ki

D
ecator

1 Circuit court - ride through
counties staying a few days in
each town.

2 Lincoln was a lawyer traveling
with the Eighth Judicial
Circuit.

3 Picture: travel during 1850.
1 Very close to optimal tour.
2 Might have been optimal

at the time..

Sariel (UIUC) CS573 21 Fall 2013 21 / 59

Solving TSP by a Computer
Is it hard?

1 n = number of cities.
2 n2: size of input.
3 Number of possible solutions is

n ∗ (n − 1) ∗ (n − 2) ∗ ... ∗ 2 ∗ 1 = n!.

4 n! grows very quickly as n grows.
n = 10: n! ≈ 3628800
n = 50: n! ≈ 3 ∗ 1064

n = 100: n! ≈ 9 ∗ 10157

Sariel (UIUC) CS573 22 Fall 2013 22 / 59

Solving TSP by a Computer
Fastest computer...

1 Fastest super computer can do (roughly)

2.5 ∗ 1015

operations a second.
2 Assume: computer checks 2.5 ∗ 1015 solutions every second,

then...
1 n = 20 =⇒ 2 hours.
2 n = 25 =⇒ 200 years.
3 n = 37 =⇒ 2 ∗ 1020 years!!!

Sariel (UIUC) CS573 23 Fall 2013 23 / 59

What is a good algorithm?
Running time...

Input size n2 ops n3 ops n4 ops n! ops
5 0 secs 0 secs 0 secs 0 secs

20 0 secs 0 secs 0 secs 16 mins
30 0 secs 0 secs 0 secs 3 · 109 years

100 0 secs 0 secs 0 secs never
8000 0 secs 0 secs 1 secs never

16000 0 secs 0 secs 26 secs never
32000 0 secs 0 secs 6 mins never
64000 0 secs 0 secs 111 mins never

200,000 0 secs 3 secs 7 days never
2,000,000 0 secs 53 mins 202.943 years never

108 4 secs 12.6839 years 109 years never
109 6 mins 12683.9 years 1013 years never

Sariel (UIUC) CS573 24 Fall 2013 24 / 59

What is a good algorithm?
Running time...

Sariel (UIUC) CS573 25 Fall 2013 25 / 59

Primes is in P!
Theorem (Agrawal-Kayal-Saxena’02)
There is a polynomial time algorithm for primality.

First polynomial time algorithm for testing primality. Running time is
O(log12 N) further improved to about O(log6 N) by others. In
terms of input size n = log N, time is O(n6).

Sariel (UIUC) CS573 26 Fall 2013 26 / 59

What about before 2002?
Primality testing a key part of cryptography. What was the algorithm
being used before 2002?
Miller-Rabin randomized algorithm:

1 runs in polynomial time: O(log3 N) time
2 if N is prime correctly says “yes”.
3 if N is composite it says “yes” with probability at most 1/2100

(can be reduced further at the expense of more running time).
Based on Fermat’s little theorem and some basic number theory.

Sariel (UIUC) CS573 27 Fall 2013 27 / 59

Factoring
1 Modern public-key cryptography based on RSA

(Rivest-Shamir-Adelman) system.
2 Relies on the difficulty of factoring a composite number into its

prime factors.
3 There is a polynomial time algorithm that decides whether a

given number N is prime or not (hence composite or not) but no
known polynomial time algorithm to factor a given number.

Lesson
Intractability can be useful!

Sariel (UIUC) CS573 28 Fall 2013 28 / 59

Unit-Cost RAM Model
Informal description:

1 Basic data type is an integer/floating point number
2 Numbers in input fit in a word
3 Arithmetic/comparison operations on words take constant time
4 Arrays allow random access (constant time to access A[i])
5 Pointer based data structures via storing addresses in a word

Sariel (UIUC) CS573 29 Fall 2013 29 / 59

Example
Sorting: input is an array of n numbers

1 input size is n (ignore the bits in each number),
2 comparing two numbers takes O(1) time,
3 random access to array elements,
4 addition of indices takes constant time,
5 basic arithmetic operations take constant time,
6 reading/writing one word from/to memory takes constant time.

We will usually not allow (or be careful about allowing):
1 bitwise operations (and, or, xor, shift, etc).
2 floor function.
3 limit word size (usually assume unbounded word size).

Sariel (UIUC) CS573 30 Fall 2013 30 / 59

Caveats of RAM Model
Unit-Cost RAM model is applicable in wide variety of settings in
practice. However it is not a proper model in several important
situations so one has to be careful.

1 For some problems such as basic arithmetic computation,
unit-cost model makes no sense. Examples: multiplication of
two n-digit numbers, primality etc.

2 Input data is very large and does not satisfy the assumptions
that individual numbers fit into a word or that total memory is
bounded by 2k where k is word length.

3 Assumptions valid only for certain type of algorithms that do not
create large numbers from initial data. For example,
exponentiation creates very big numbers from initial numbers.

Sariel (UIUC) CS573 31 Fall 2013 31 / 59

Models used in class
In this course:

1 Assume unit-cost RAM by default.
2 We will explicitly point out where unit-cost RAM is not

applicable for the problem at hand.

Sariel (UIUC) CS573 32 Fall 2013 32 / 59

Part IV

Reductions

Sariel (UIUC) CS573 33 Fall 2013 33 / 59

Independent Sets and Cliques
Given a graph G, a set of vertices V ′ is:

1 An independent set: if no two vertices of V ′ are connected
by an edge of G.

2 clique: every pair of vertices in V ′ is connected by an edge of
G.

Sariel (UIUC) CS573 34 Fall 2013 34 / 59

The Independent Set and Clique Problems

Independent Set
Instance: A graph G and an integer k.
Question: Does G has an independent set of size ≥ k?

Clique
Instance: A graph G and an integer k.
Question: Does G has a clique of size ≥ k?

Sariel (UIUC) CS573 35 Fall 2013 35 / 59

Types of Problems
Decision, Search, and Optimization

1 Decision problem. Example: given n, is n prime?.
2 Search problem. Example: given n, find a factor of n if it

exists.
3 Optimization problem. Example: find the smallest prime

factor of n.

Sariel (UIUC) CS573 36 Fall 2013 36 / 59

Reducing Independent Set to Clique
An instance of Independent Set is a graph G and an integer k.

Convert G to G, in which (u, v) is an edge iff (u, v) is not an edge
of G. (G is the complement of G.)
We use G and k as the instance of Clique.

Sariel (UIUC) CS573 37 Fall 2013 37 / 59

Independent Set and Clique
1 Independent Set ≤ Clique.

What does this mean?
2 If have an algorithm for Clique, then we have an algorithm for

Independent Set.
3 Clique is at least as hard as Independent Set.
4 Also... Independent Set is at least as hard as Clique.

Sariel (UIUC) CS573 38 Fall 2013 38 / 59

Reductions, revised.
For decision problems X, Y , a reduction from X to Y is:

1 An algorithm . . .
2 Input: IX , an instance of X .
3 Output: IY an instance of Y .
4 Such that:

IY is YES instance of Y ⇐⇒ IX is YES instance of X
(Actually, this is only one type of reduction, but this is the one we’ll
use most often.)

Sariel (UIUC) CS573 39 Fall 2013 39 / 59

Using reductions to solve problems
1 R: Reduction X → Y
2 AY : algorithm for Y :
3 =⇒ New algorithm for X :
AX (IX):

// IX: instance of X.
IY ⇐R(IX)
return AY (IY)

AY

IY
YES

NO

IX
R

AX

In particular, if R and AY are polynomial-time algorithms, AX is
also polynomial-time.

Sariel (UIUC) CS573 40 Fall 2013 40 / 59

Comparing Problems
1 Reductions allow us to formalize the notion of “Problem X is no

harder to solve than Problem Y ”.
2 If Problem X reduces to Problem Y (we write X ≤ Y), then X

cannot be harder to solve than Y .
3 More generally, if X ≤ Y , we can say that X is no harder than

Y , or Y is at least as hard as X .

Sariel (UIUC) CS573 41 Fall 2013 41 / 59

Polynomial-time reductions

AY

IY
YES

NO

IX
R

AX

1 Algorithm is efficient if it runs in polynomial-time.
2 Interested only in polynomial-time reductions.
3 X ≤P Y : Have polynomial-time reduction from problem X to

problem Y .
4 AY : poly-time algorithm for Y .
5 =⇒ Polynomial-time/efficient algorithm for X .

Sariel (UIUC) CS573 42 Fall 2013 42 / 59

Polynomial-time reductions and hardness
Lemma
For decision problems X and Y , if X ≤P Y , and Y has an efficient
algorithm, X has an efficient algorithm.

1 Independent Set: “believe” there is no efficient algorithm.
2 What about Clique?
3 Showed: Independent Set ≤P Clique.
4 If Clique had an efficient algorithm, so would Independent

Set!

Observation
If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm!

Sariel (UIUC) CS573 43 Fall 2013 43 / 59

Polynomial-time reductions and instance sizes
Proposition
R: a polynomial-time reduction from X to Y .
Then, for any instance IX of X , the size of the instance IY of Y
produced from IX by R is polynomial in the size of IX .

Proof.
R is a polynomial-time algorithm and hence on input IX of size |IX |
it runs in time p(|IX |) for some polynomial p().
IY is the output of R on input IX .
R can write at most p(|IX |) bits and hence |IY | ≤ p(|IX |).

Note: Converse is not true. A reduction need not be polynomial-time
even if output of reduction is of size polynomial in its input.

Sariel (UIUC) CS573 44 Fall 2013 44 / 59

Polynomial-time Reduction
Definition
A polynomial time reduction from a decision problem X to a
decision problem Y is an algorithm A such that:

1 Given an instance IX of X , A produces an instance IY of Y .
2 A runs in time polynomial in |IX |. This implies that |IY | (size of

IY) is polynomial in |IX |.
3 Answer to IX YES iff answer to IY is YES.

Proposition
If X ≤P Y then a polynomial time algorithm for Y implies a
polynomial time algorithm for X .

This is a Karp reduction.

Sariel (UIUC) CS573 45 Fall 2013 45 / 59

Transitivity of Reductions
Proposition
X ≤P Y and Y ≤P Z implies that X ≤P Z .

1 Note: X ≤P Y does not imply that Y ≤P X and hence it is
very important to know the FROM and TO in a reduction.

2 To prove X ≤P Y you need to show a reduction FROM X TO
Y

3 ...show that an algorithm for Y implies an algorithm for X .

Sariel (UIUC) CS573 46 Fall 2013 46 / 59

Vertex Cover
Given a graph G = (V , E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S.

Sariel (UIUC) CS573 47 Fall 2013 47 / 59

The Vertex Cover Problem
Problem (Vertex Cover)
Input: A graph G and integer k.
Goal: Is there a vertex cover of size ≤ k in G?

Can we relate Independent Set and Vertex Cover?

Sariel (UIUC) CS573 48 Fall 2013 48 / 59

Relationship between...
Vertex Cover and Independent Set

Proposition
Let G = (V , E) be a graph. S is an independent set if and only if
V \ S is a vertex cover.

Proof.
(⇒) Let S be an independent set

1 Consider any edge uv ∈ E .
2 Since S is an independent set, either u 6∈ S or v 6∈ S.
3 Thus, either u ∈ V \ S or v ∈ V \ S.
4 V \ S is a vertex cover.

(⇐) Let V \ S be some vertex cover:
1 Consider u, v ∈ S
2 uv is not an edge of G, as otherwise V \ S does not cover uv .
3 =⇒ S is thus an independent set.

Sariel (UIUC) CS573 49 Fall 2013 49 / 59

Independent Set ≤P Vertex Cover
1 G: graph with n vertices, and an integer k be an instance of the

Independent Set problem.
2 G has an independent set of size ≥ k iff G has a vertex cover of

size ≤ n − k
3 (G, k) is an instance of Independent Set , and (G, n − k) is

an instance of Vertex Cover with the same answer.
4 Therefore, Independent Set ≤P Vertex Cover. Also Vertex

Cover ≤P Independent Set.

Sariel (UIUC) CS573 50 Fall 2013 50 / 59

The Set Cover Problem
Problem (Set Cover)
Input: Given a set U of n elements, a collection S1, S2, . . . Sm of

subsets of U, and an integer k.
Goal: Is there a collection of at most k of these sets Si whose union

is equal to U?

Example
Let U = {1, 2, 3, 4, 5, 6, 7}, k = 2 with

S1 = {3, 7} S2 = {3, 4, 5}
S3 = {1} S4 = {2, 4}
S5 = {5} S6 = {1, 2, 6, 7}

{S2, S6} is a set cover
Sariel (UIUC) CS573 51 Fall 2013 51 / 59

Vertex Cover ≤P Set Cover
Given graph G = (V , E) and integer k as instance of Vertex
Cover, construct an instance of Set Cover as follows:

1 Number k for the Set Cover instance is the same as the
number k given for the Vertex Cover instance.

2 U = E .
3 We will have one set corresponding to each vertex;

Sv = {e | e is incident on v}.

Observe that G has vertex cover of size k if and only if U, {Sv}v∈V
has a set cover of size k. (Exercise: Prove this.)

Sariel (UIUC) CS573 52 Fall 2013 52 / 59

Vertex Cover ≤P Set Cover: Example

1 2

3

4

56 a

g

c

f

e

b

d

3

6

{3, 6} is a vertex cover

Let U = {a, b, c, d , e, f , g},
k = 2 with

S1 = {c, g} S2 = {b, d}
S3 = {c, d , e} S4 = {e, f }
S5 = {a} S6 = {a, b, f , g}

{S3, S6} is a set cover

Sariel (UIUC) CS573 53 Fall 2013 53 / 59

Proving Reductions
To prove that X ≤P Y you need to give an algorithm A that:

1 Transforms an instance IX of X into an instance IY of Y .
2 Satisfies the property that answer to IX is YES iff IY is YES.

1 typical easy direction to prove: answer to IY is YES if answer to
IX is YES

2 typical difficult direction to prove: answer to IX is YES if
answer to IY is YES (equivalently answer to IX is NO if answer
to IY is NO).

3 Runs in polynomial time.

Sariel (UIUC) CS573 54 Fall 2013 54 / 59

Summary
We looked at polynomial-time reductions.

Using polynomial-time reductions
1 If X ≤P Y , and we have an efficient algorithm for Y , we have

an efficient algorithm for X .
2 If X ≤P Y , and there is no efficient algorithm for X , there is no

efficient algorithm for Y .

We looked at some examples of reductions between Independent
Set, Clique, Vertex Cover, and Set Cover.

Sariel (UIUC) CS573 55 Fall 2013 55 / 59

	Administrivia, Introduction
	Administrivia
	Course Goals and Overview
	Algorithms and efficiency
	Primality Testing
	Primality testing
	TSP problem
	Solving TSP by a Computer
	Solving TSP by a Computer
	What is a good algorithm?
	What is a good algorithm?
	Primality
	Factoring

	Model of Computation

	I Reductions
	Independent Set and Clique
	Independent Set and Vertex Cover
	Relationship between...

	Vertex Cover and Set Cover

