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The word “algorithm” comes from...
Muhammad ibn Musa al-Khwarizmi
780-850 AD
The word “algebra” is taken from the title of one of his books.
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Part I

Administrivia
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Instructional Staff
1 Instructor:

I Sariel Har-Peled (sariel)
2 Teaching Assistants:

1 Ben Raichel (raichel2)
2 David Holcomb (dholcom2)

3 Office hours: See course webpage
4 Email: See course webpage
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Online resources
1 Webpage: courses.engr.illinois.edu/cs573/fa2013/

General information, homeworks, etc.
2 Moodle: Quizzes, solutions to homeworks.
3 Online questions/announcements: Piazza

Online discussions, etc.
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Textbooks
1 Prerequisites: CS 173 (discrete math), CS 225 (data structures)

and CS 373 (theory of computation)
2 Recommended books:

1 Algorithms by Dasgupta, Papadimitriou & Vazirani.
Available online for free!

2 Algorithm Design by Kleinberg & Tardos
3 Lecture notes: Available on the web-page before/during/after

every class.
4 Additional References

1 Previous class notes of Jeff Erickson, Sariel Har-Peled and the
instructor.

2 Introduction to Algorithms: Cormen, Leiserson, Rivest, Stein.
3 Computers and Intractability: Garey and Johnson.
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Prerequisites
1 Asymptotic notation: O(), Ω(), o().
2 Discrete Structures: sets, functions, relations, equivalence classes, partial orders, trees, graphs
3 Logic: predicate logic, boolean algebra
4 Proofs: by induction, by contradiction
5 Basic sums and recurrences: sum of a geometric series, unrolling of recurrences, basic calculus
6 Data Structures: arrays, multi-dimensional arrays, linked lists, trees, balanced search trees, heaps
7 Abstract Data Types: lists, stacks, queues, dictionaries, priority queues
8 Algorithms: sorting (merge, quick, insertion), pre/post/in order traversal of trees, depth/breadth first search of trees

(maybe graphs)
9 Basic analysis of algorithms: loops and nested loops, deriving recurrences from a recursive program

10 Concepts from Theory of Computation: languages, automata, Turing machine, undecidability, non-determinism
11 Programming: in some general purpose language
12 Elementary Discrete Probability: event, random variable, independence
13 Mathematical maturity

Sariel (UIUC) CS573 8 Fall 2013 8 / 59



Grading Policy: Overview
1 Attendance/clickers: 5%
2 Quizzes: 5%
3 Homeworks: 15%
4 Midterm: 30%
5 Finals: 45% (covers the full course content)
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Homeworks
1 One quiz every 1-2-3 weeks: Due by midnight on Sunday.
2 One homework every 1-2-3 weeks.
3 Homeworks can be worked on in groups of up to 3 and each

group submits one written solution (except Homework 0).
1 Short quiz-style questions to be answered individually on

Moodle.
4 Groups can be changed a few times only.
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More on Homeworks
1 No extensions or late homeworks accepted.
2 To compensate, the homework with the least score will be

dropped in calculating the homework average.
3 Important: Read homework faq/instructions on website.

Sariel (UIUC) CS573 11 Fall 2013 11 / 59

Advice
1 Attend lectures, please ask plenty of questions.
2 Clickers...
3 Attend discussion sessions.
4 Don’t skip homework and don’t copy homework solutions.
5 Study regularly and keep up with the course.
6 Ask for help promptly. Make use of office hours.
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Homeworks
1 HW 0 is posted on the class website. Quiz 0 available
2 HW 0 to be submitted in individually.
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Part II

Course Goals and Overview
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Topics
1 Some fundamental algorithms
2 Broadly applicable techniques in algorithm design

1 Understanding problem structure
2 Brute force enumeration and backtrack search
3 Reductions
4 Recursion

1 Divide and Conquer
2 Dynamic Programming

5 Greedy methods
6 Network Flows and Linear/Integer Programming (optional)

3 Analysis techniques
1 Correctness of algorithms via induction and other methods
2 Recurrences
3 Amortization and elementary potential functions

4 Polynomial-time Reductions, NP-Completeness, Heuristics
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Goals
1

2 Learn/remember some basic tricks, algorithms, problems, ideas
3 Understand/appreciate limits of computation (intractability)
4 Appreciate the importance of algorithms in computer science

and beyond (engineering, mathematics, natural sciences, social
sciences, ...)

5 Have fun!!!
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Part III

Algorithms and efficiency
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Primality testing
Problem
Given an integer N > 0, is N a prime?

SimpleAlgorithm:
for i = 2 to b

√
Nc do

if i divides N then
return ‘‘COMPOSITE’’

return ‘‘PRIME’’

Correctness? If N is composite, at least one factor in {2, . . . ,
√

N}
Running time? O(

√
N) divisions? Sub-linear in input size! Wrong!
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Primality testing
...Polynomial means... in input size
How many bits to represent N in binary? dlog Ne bits.

Simple Algorithm takes
√

N = 2(log N)/2 time.
Exponential in the input size n = log N.

1 Modern cryptography: binary numbers with 128, 256, 512 bits.
2 Simple Algorithm will take 264, 2128, 2256 steps!
3 Fastest computer today about 3 petaFlops/sec: 3× 250 floating

point ops/sec.

Lesson:
Pay attention to representation size in analyzing efficiency of
algorithms. Especially in number problems.
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Efficient algorithms
So, is there an efficient/good/effective algorithm for primality?

Question:
What does efficiency mean?

In this class efficiency is broadly equated to polynomial time.
O(n), O(n log n), O(n2), O(n3), O(n100), . . . where n is size of
the input.

Why? Is n100 really efficient/practical? Etc.

Short answer: polynomial time is a robust, mathematically sound way
to define efficiency. Has been useful for several decades.

Sariel (UIUC) CS573 20 Fall 2013 20 / 59



TSP problem
Lincoln’s tour
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1 Circuit court - ride through
counties staying a few days in
each town.

2 Lincoln was a lawyer traveling
with the Eighth Judicial
Circuit.

3 Picture: travel during 1850.
1 Very close to optimal tour.
2 Might have been optimal

at the time..
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Solving TSP by a Computer
Is it hard?

1 n = number of cities.
2 n2: size of input.
3 Number of possible solutions is

n ∗ (n − 1) ∗ (n − 2) ∗ ... ∗ 2 ∗ 1 = n!.

4 n! grows very quickly as n grows.
n = 10: n! ≈ 3628800
n = 50: n! ≈ 3 ∗ 1064

n = 100: n! ≈ 9 ∗ 10157
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Solving TSP by a Computer
Fastest computer...

1 Fastest super computer can do (roughly)

2.5 ∗ 1015

operations a second.
2 Assume: computer checks 2.5 ∗ 1015 solutions every second,

then...
1 n = 20 =⇒ 2 hours.
2 n = 25 =⇒ 200 years.
3 n = 37 =⇒ 2 ∗ 1020 years!!!
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What is a good algorithm?
Running time...

Input size n2 ops n3 ops n4 ops n! ops
5 0 secs 0 secs 0 secs 0 secs

20 0 secs 0 secs 0 secs 16 mins
30 0 secs 0 secs 0 secs 3 · 109 years

100 0 secs 0 secs 0 secs never
8000 0 secs 0 secs 1 secs never

16000 0 secs 0 secs 26 secs never
32000 0 secs 0 secs 6 mins never
64000 0 secs 0 secs 111 mins never

200,000 0 secs 3 secs 7 days never
2,000,000 0 secs 53 mins 202.943 years never

108 4 secs 12.6839 years 109 years never
109 6 mins 12683.9 years 1013 years never
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What is a good algorithm?
Running time...
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Primes is in P!
Theorem (Agrawal-Kayal-Saxena’02)
There is a polynomial time algorithm for primality.

First polynomial time algorithm for testing primality. Running time is
O(log12 N) further improved to about O(log6 N) by others. In
terms of input size n = log N, time is O(n6).
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What about before 2002?
Primality testing a key part of cryptography. What was the algorithm
being used before 2002?
Miller-Rabin randomized algorithm:

1 runs in polynomial time: O(log3 N) time
2 if N is prime correctly says “yes”.
3 if N is composite it says “yes” with probability at most 1/2100

(can be reduced further at the expense of more running time).
Based on Fermat’s little theorem and some basic number theory.
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Factoring
1 Modern public-key cryptography based on RSA

(Rivest-Shamir-Adelman) system.
2 Relies on the difficulty of factoring a composite number into its

prime factors.
3 There is a polynomial time algorithm that decides whether a

given number N is prime or not (hence composite or not) but no
known polynomial time algorithm to factor a given number.

Lesson
Intractability can be useful!
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Unit-Cost RAM Model
Informal description:

1 Basic data type is an integer/floating point number
2 Numbers in input fit in a word
3 Arithmetic/comparison operations on words take constant time
4 Arrays allow random access (constant time to access A[i ])
5 Pointer based data structures via storing addresses in a word
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Example
Sorting: input is an array of n numbers

1 input size is n (ignore the bits in each number),
2 comparing two numbers takes O(1) time,
3 random access to array elements,
4 addition of indices takes constant time,
5 basic arithmetic operations take constant time,
6 reading/writing one word from/to memory takes constant time.

We will usually not allow (or be careful about allowing):
1 bitwise operations (and, or, xor, shift, etc).
2 floor function.
3 limit word size (usually assume unbounded word size).
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Caveats of RAM Model
Unit-Cost RAM model is applicable in wide variety of settings in
practice. However it is not a proper model in several important
situations so one has to be careful.

1 For some problems such as basic arithmetic computation,
unit-cost model makes no sense. Examples: multiplication of
two n-digit numbers, primality etc.

2 Input data is very large and does not satisfy the assumptions
that individual numbers fit into a word or that total memory is
bounded by 2k where k is word length.

3 Assumptions valid only for certain type of algorithms that do not
create large numbers from initial data. For example,
exponentiation creates very big numbers from initial numbers.
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Models used in class
In this course:

1 Assume unit-cost RAM by default.
2 We will explicitly point out where unit-cost RAM is not

applicable for the problem at hand.
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Part IV

Reductions

Sariel (UIUC) CS573 33 Fall 2013 33 / 59

Independent Sets and Cliques
Given a graph G, a set of vertices V ′ is:

1 An independent set: if no two vertices of V ′ are connected
by an edge of G.

2 clique: every pair of vertices in V ′ is connected by an edge of
G.
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The Independent Set and Clique Problems

Independent Set
Instance: A graph G and an integer k.
Question: Does G has an independent set of size ≥ k?

Clique
Instance: A graph G and an integer k.
Question: Does G has a clique of size ≥ k?
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Types of Problems
Decision, Search, and Optimization

1 Decision problem. Example: given n, is n prime?.
2 Search problem. Example: given n, find a factor of n if it

exists.
3 Optimization problem. Example: find the smallest prime

factor of n.
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Reducing Independent Set to Clique
An instance of Independent Set is a graph G and an integer k.

Convert G to G, in which (u, v) is an edge iff (u, v) is not an edge
of G. (G is the complement of G.)
We use G and k as the instance of Clique.
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Independent Set and Clique
1 Independent Set ≤ Clique.

What does this mean?
2 If have an algorithm for Clique, then we have an algorithm for

Independent Set.
3 Clique is at least as hard as Independent Set.
4 Also... Independent Set is at least as hard as Clique.
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Reductions, revised.
For decision problems X, Y , a reduction from X to Y is:

1 An algorithm . . .
2 Input: IX , an instance of X .
3 Output: IY an instance of Y .
4 Such that:

IY is YES instance of Y ⇐⇒ IX is YES instance of X
(Actually, this is only one type of reduction, but this is the one we’ll
use most often.)
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Using reductions to solve problems
1 R: Reduction X → Y
2 AY : algorithm for Y :
3 =⇒ New algorithm for X :
AX (IX ):

// IX: instance of X.
IY ⇐R(IX )
return AY (IY )

AY

IY
YES

NO

IX
R

AX

In particular, if R and AY are polynomial-time algorithms, AX is
also polynomial-time.
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Comparing Problems
1 Reductions allow us to formalize the notion of “Problem X is no

harder to solve than Problem Y ”.
2 If Problem X reduces to Problem Y (we write X ≤ Y ), then X

cannot be harder to solve than Y .
3 More generally, if X ≤ Y , we can say that X is no harder than

Y , or Y is at least as hard as X .
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Polynomial-time reductions

AY

IY
YES

NO

IX
R

AX

1 Algorithm is efficient if it runs in polynomial-time.
2 Interested only in polynomial-time reductions.
3 X ≤P Y : Have polynomial-time reduction from problem X to

problem Y .
4 AY : poly-time algorithm for Y .
5 =⇒ Polynomial-time/efficient algorithm for X .
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Polynomial-time reductions and hardness
Lemma
For decision problems X and Y , if X ≤P Y , and Y has an efficient
algorithm, X has an efficient algorithm.

1 Independent Set: “believe” there is no efficient algorithm.
2 What about Clique?
3 Showed: Independent Set ≤P Clique.
4 If Clique had an efficient algorithm, so would Independent

Set!

Observation
If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm!
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Polynomial-time reductions and instance sizes
Proposition
R: a polynomial-time reduction from X to Y .
Then, for any instance IX of X , the size of the instance IY of Y
produced from IX by R is polynomial in the size of IX .

Proof.
R is a polynomial-time algorithm and hence on input IX of size |IX |
it runs in time p(|IX |) for some polynomial p().
IY is the output of R on input IX .
R can write at most p(|IX |) bits and hence |IY | ≤ p(|IX |).

Note: Converse is not true. A reduction need not be polynomial-time
even if output of reduction is of size polynomial in its input.
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Polynomial-time Reduction
Definition
A polynomial time reduction from a decision problem X to a
decision problem Y is an algorithm A such that:

1 Given an instance IX of X , A produces an instance IY of Y .
2 A runs in time polynomial in |IX |. This implies that |IY | (size of

IY ) is polynomial in |IX |.
3 Answer to IX YES iff answer to IY is YES.

Proposition
If X ≤P Y then a polynomial time algorithm for Y implies a
polynomial time algorithm for X .

This is a Karp reduction.
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Transitivity of Reductions
Proposition
X ≤P Y and Y ≤P Z implies that X ≤P Z .

1 Note: X ≤P Y does not imply that Y ≤P X and hence it is
very important to know the FROM and TO in a reduction.

2 To prove X ≤P Y you need to show a reduction FROM X TO
Y

3 ...show that an algorithm for Y implies an algorithm for X .
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Vertex Cover
Given a graph G = (V , E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S.
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The Vertex Cover Problem
Problem (Vertex Cover)
Input: A graph G and integer k.
Goal: Is there a vertex cover of size ≤ k in G?

Can we relate Independent Set and Vertex Cover?
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Relationship between...
Vertex Cover and Independent Set

Proposition
Let G = (V , E) be a graph. S is an independent set if and only if
V \ S is a vertex cover.

Proof.
(⇒) Let S be an independent set

1 Consider any edge uv ∈ E .
2 Since S is an independent set, either u 6∈ S or v 6∈ S.
3 Thus, either u ∈ V \ S or v ∈ V \ S.
4 V \ S is a vertex cover.

(⇐) Let V \ S be some vertex cover:
1 Consider u, v ∈ S
2 uv is not an edge of G, as otherwise V \ S does not cover uv .
3 =⇒ S is thus an independent set.
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Independent Set ≤P Vertex Cover
1 G: graph with n vertices, and an integer k be an instance of the

Independent Set problem.
2 G has an independent set of size ≥ k iff G has a vertex cover of

size ≤ n − k
3 (G, k) is an instance of Independent Set , and (G, n − k) is

an instance of Vertex Cover with the same answer.
4 Therefore, Independent Set ≤P Vertex Cover. Also Vertex

Cover ≤P Independent Set.
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The Set Cover Problem
Problem (Set Cover)
Input: Given a set U of n elements, a collection S1, S2, . . . Sm of

subsets of U, and an integer k.
Goal: Is there a collection of at most k of these sets Si whose union

is equal to U?

Example
Let U = {1, 2, 3, 4, 5, 6, 7}, k = 2 with

S1 = {3, 7} S2 = {3, 4, 5}
S3 = {1} S4 = {2, 4}
S5 = {5} S6 = {1, 2, 6, 7}

{S2, S6} is a set cover
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Vertex Cover ≤P Set Cover
Given graph G = (V , E) and integer k as instance of Vertex
Cover, construct an instance of Set Cover as follows:

1 Number k for the Set Cover instance is the same as the
number k given for the Vertex Cover instance.

2 U = E .
3 We will have one set corresponding to each vertex;

Sv = {e | e is incident on v}.

Observe that G has vertex cover of size k if and only if U, {Sv}v∈V
has a set cover of size k. (Exercise: Prove this.)
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Vertex Cover ≤P Set Cover: Example

1 2

3

4

56 a

g

c

f

e

b

d

3

6

{3, 6} is a vertex cover

Let U = {a, b, c, d , e, f , g},
k = 2 with

S1 = {c, g} S2 = {b, d}
S3 = {c, d , e} S4 = {e, f }
S5 = {a} S6 = {a, b, f , g}

{S3, S6} is a set cover
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Proving Reductions
To prove that X ≤P Y you need to give an algorithm A that:

1 Transforms an instance IX of X into an instance IY of Y .
2 Satisfies the property that answer to IX is YES iff IY is YES.

1 typical easy direction to prove: answer to IY is YES if answer to
IX is YES

2 typical difficult direction to prove: answer to IX is YES if
answer to IY is YES (equivalently answer to IX is NO if answer
to IY is NO).

3 Runs in polynomial time.
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Summary
We looked at polynomial-time reductions.

Using polynomial-time reductions
1 If X ≤P Y , and we have an efficient algorithm for Y , we have

an efficient algorithm for X .
2 If X ≤P Y , and there is no efficient algorithm for X , there is no

efficient algorithm for Y .

We looked at some examples of reductions between Independent
Set, Clique, Vertex Cover, and Set Cover.

Sariel (UIUC) CS573 55 Fall 2013 55 / 59


	Administrivia, Introduction
	Administrivia
	Course Goals and Overview
	Algorithms and efficiency
	Primality Testing
	Primality testing
	TSP problem
	Solving TSP by a Computer
	Solving TSP by a Computer
	What is a good algorithm?
	What is a good algorithm?
	Primality
	Factoring

	Model of Computation

	I Reductions
	Independent Set and Clique
	Independent Set and Vertex Cover
	Relationship between...

	Vertex Cover and Set Cover



