Chapter 36

Exercises - Approximation Algorithms

By Sariel Har-Peled, October 3, 2013™ Version: 1.0

‘T his chapter include problems that are realted to approximation algorithms. ‘

36.1 Greedy algorithms as approximation algorithms

36.1.1 Greedy algorithm does not work for TSP with the triangle inequal-
ity.

(20 pTS.)
In the greedy Traveling Salesman algorithm, the algorithm starts from a starting vertex v; = s, and
in ¢-th stage, it goes to the closest vertex to v; that was not visited yet.

1. (10 pTs.) Show an example that prove that the greedy traveling salesman does not provide any
constant factor approximation to the TSP.

Formally, for any constant ¢ > 0, provide a complete graph G and positive weights on its edges,
such that the length of the greedy TSP is by a factor of (at least) ¢ longer than the length of the
shortest TSP of G.

2. (10 prs.) Show an example, that prove that the greedy traveling salesman does not provide any
constant factor approximation to the TSP with triangle inequality.

Formally, for any constant ¢ > 0, provide a complete graph G, and positive weights on its edges,
such that the weights obey the triangle inequality, and the length of the greedy TSP is by a factor
of (at least) ¢ longer than the length of the shortest TSP of G. (In particular, prove that the
triangle inequality holds for the weights you assign to the edges of G.)

36.1.2 Greedy algorithm does not work for VertexCover.
(10 pTs.)

®This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

http://creativecommons.org/licenses/by-nc/3.0/

Extend the example shown in class for the greedy algorithm for Vertex Cover. Namely, for any n,
show a graph G,,, with n vertices, for which the greedy Vertex Cover algorithm, outputs a vertex cover
which is of size Q(Opt(G,,) logn), where Opt(G,,) is the cardinality of the smallest Vertex Cover of G,,.

36.1.3 Greedy algorithm does not work for independent set.

(20 pTS.)

A natural algorithm, GREEDYINDEPENDENT, for computing maximum independent set in a graph,
is to repeatedly remove the vertex of lowest degree in the graph, and add it to the independent set, and
remove all its neighbors.

1. (5 pTs.) Show an example, where this algorithm fails to output the optimal solution.

2. (5 pTs.) Let G be a (k, k+ 1)-uniform graph (this is a graph where every vertex has degree either
k or k+ 1). Show that the above algorithm outputs an independent set of size Q(n/k), where n
is the number of vertices in G.

3. (b pTs.) Let G be a graph with average degree 0 (i.e., d = 2|E(G)|/|V(G)]). Prove that the
above algorithm outputs an independent set of size Q(n/0d).

4. (5 prTS.) For any integer k, present an example of a graph Gy, such that GREEDYINDEPENDENT
outputs an independent set of size < |OPT(G})| /k, where OPT(Gy,) is the largest independent
set in G. How many vertices and edges does G has? What it the average degree of Gi?

36.1.4 Greedy algorithm does not work for coloring. Really.

(20 pTS.)
Let G be a graph defined over n vertices, and let the vertices be ordered: vy,...,v,. Let G; be the
induced subgraph of G on vy, ..., v;. Formally, G; = (V;, E;), where V; = {vy,...,v;} and

Ei:{uUEE ’u,vGVianduveE(G)}.

The greedy coloring algorithm, colors the vertices, one by one, according to their ordering. Let k;
denote the number of colors the algorithm uses to color the first ¢ vertices.

In the i-th iteration, the algorithm considers v; in the graph G;. If all the neighbors of v; in G; are
using all the k;_; colors used to color G;_1, the algorithm introduces a new color (i.e., k; = k;_1 + 1)
and assigns it to v;. Otherwise, it assign v; one of the colors 1,... k;_q (i.e., k; = k;_1).

Give an example of a graph G with n vertices, and an ordering of its vertices, such that even if G
can be colored using O(1) (in fact, it is possible to do this with two) colors, the greedy algorithm would
color it with €(n) colors. (Hint: consider an ordering where the first two vertices are not connected.)

36.1.5 Greedy coloring does not work even if you do it in the right order.

(20 pPTS.)

Given a graph G, with n vertices, let us define an ordering on the vertices of G where the min degree
vertex in the graph is last. Formally, we set v, to be a vertex of minimum degree in G (breaking ties
arbitrarily), define the ordering recursively, over the graph G \ v,, which is the graph resulting from
removing v, from G. Let vy, ..., v, be the resulting ordering, which is known as MIN LAST ORDERING.

1. (10 pTs.) Prove that the greedy coloring algorithm, if applied to a planar graph G, which uses
the min last ordering, outputs a coloring that uses 6 colors.?

2. (10 pts.) Give an example of a graph G,, with O(n) vertices which is 3-colorable, but nevertheless,
when colored by the greedy algorithm using min last ordering, the number of colors output is n.

36.2 Approxiamtion for hard problems

36.2.1 Even More on Vertex Cover

1. (3 pTs.) Give an example of a graph for which APPROX-VERTEX-COVER always yields a subop-
timal solution.

2. (2 prs.) Give an efficient algorithm that finds an optimal vertex cover for a tree in linear time.

3. (5 prs.) (Based on CLRS 35.1-3)

Professor Nixon proposes the following heuristic to solve the vertex-cover problem. Repeatedly
select a vertex of highest degree, and remove all of its incident edges. Give an example to show
that the professor’s heuristic does not have an approximation ratio of 2. [Hint: Try a bipartite
graph with vertices of uniform degree on the left and vertices of varying degree on the right.|

36.2.2 Maximum Clique

(10 pT8.)

Let G = (V, E) be an undirected graph. For any k > 1, define G*) to be the undirected graph
(V) E®) where V) is the set of all ordered k-tuples of vertices from V and E® is defined so that
(v1, Vg, ..., v) is adjacent to (wy, we, ..., wy) if and only if for each i (1 < i < k) either vertex v; is adjacent
to w; in G, or else v; = w;.

1. (5 PTS.) Prove that the size of the maximum clique in G*) is equal to the k-th power of the size
of the maximum clique in G.

2. (5 pPTS.) Argue that if there is an approximation algorithm that has a constant approximation ratio
for finding a maximume-size clique, then there is a fully polynomial time approximation scheme for
the problem.

36.2.3 Pack these squares.

(10 pT8.)

Let R be a set of squares. You need to pack them inside the unit square in the plane (i.e., place them
inside the square), such that all the squares are interior disjoint. Provide a polynomial time algorithm
that outputs a packing that covers at least O PT'/4 fraction of the unit square, where O PT is the fraction
of the unit square covered by the optimal solution.

®There is a quadratic time algorithm for coloring planar graphs using 4 colors (i.e., follows from a constructive proof
of the four color theorem). Coloring with 5 colors requires slightly more cleverness.

36.2.4 Smallest Interval

(20 pTS.)
Given a set X of n real numbers xq,...,z, (no necessarily given in sorted order), and k£ > 0 a
parameter (which is not necessarily small). Let I, = [a,b] be the shortest interval that contains k

numbers of X.
1. (5 pTs.) Give a O(nlog (n) time algorithm that outputs I.

2. (5 PTS.) An interval J is called 2-cover, if it contains at least k points of X, and |J| < 2|I;],
where |J| denote the length of J. Give a O(nlog (n/k)) expected time algorithm that computes a
2-cover.

3. (10 pts.) (hard) Give an expected linear time algorithm that outputs a 2-cover of X with high
probability.

36.2.5 Rectangles are Forever.

(20 pTS.)

A rectangle in the plane r is called neat, if the ratio between its longest edge and shortest edge is
bounded by a constant a. Given a set of rectangles R, the induced graph Gg, has the rectangles of R
as vertices, and it connect two rectangles if their intersection is not empty.

1. (5 prs.) (hard?) Given a set R of n neat rectangles in the plane (not necessarily axis parallel),
describe a polynomial time algorithm for computing an independent set [in the graph Gg, such
that |I| > |X|, where X is the largest independent set in G, and 3 is a constant that depends
only on «a. Give an explicit formula for the dependency of § on . What is the running time of
your algorithm?

2. (b p1S.) Let R be a set of rectangles which are axis parallel. Show a polynomial time algorithm
for finding the largest independent set in G if all the rectangles of R intersects the y-axis.

3. (10 pts.) Let R be a set of axis parallel rectangles. Using (b), show to compute in polynomial
time an independent set of rectangles of size Q(k°), where k is the size of the largest independent
set in G and ¢ is an absolute constant. (Hint: Consider all vertical lines through vertical edges
of rectangles of R. Next, show that by picking one of them “cleverly” and using (b), one can
perform a divide and conquer to find a large independent set. Define a recurrence on the size of
the independent set, and prove a lower bound on the solution of the recurrence.)

36.2.6 Graph coloring revisited

1. (5 pTs.) Prove that a graph G with a chromatic number k (i.e., k is the minimal number of colors
needed to color G), must have Q(k?) edges.

2. (5 prs.) Prove that a graph G with m edges can be colored using 4 v/m colors.

3. (10 prs.) Describe a polynomial time algorithm that given a graph G, which is 3-colorable, it
computes a coloring of G using, say, at most O(+/n) colors.

	36 Exercises - Approximation Algorithms
	36.1 Greedy algorithms as approximation algorithms
	36.1.1 Greedy algorithm does not work for TSP with the triangle inequality.
	36.1.2 Greedy algorithm does not work for VertexCover.
	36.1.3 Greedy algorithm does not work for independent set.
	36.1.4 Greedy algorithm does not work for coloring. Really.
	36.1.5 Greedy coloring does not work even if you do it in the right order.

	36.2 Approxiamtion for hard problems
	36.2.1 Even More on Vertex Cover
	36.2.2 Maximum Clique
	36.2.3 Pack these squares.
	36.2.4 Smallest Interval
	36.2.5 Rectangles are Forever.
	36.2.6 Graph coloring revisited

