CS 573: Graduate Algorithms, Fall 2011
HW 6 (will not be graded)

This homework is on approximation algorithms. Solve as many as you can as practice for the final
exam. Discuss the problems on the newsgroup and we will aid the process.

1. The input to the Bin Packing problem consists of n items where item ¢ has a given size
s; € [0,1]. The goal is to pack these items into the fewest possible number of bins each of
which is of size 1. You have seen that this problem is NP-Hard. Typical heuristics consider
the items in some (adaptive) order and pack the the current item into some existing bin or
open a new bin. A greedy heuristic is one which opens a new bin only if the current item
does not fit into an existing bin. Show that any greedy policy uses at most 20 PT" bins. Can
you prove a better approximation using a specific policy? Consider the First-Fit-Decreasing
policy that considers the items in non-increasing size order and places the item in the first
bin that it fits into. Show an approximation ratio strictly better than 2 for this policy. A
well-known result is that this policy uses at most %OPT + 4 bins.

2. The maximum independent set problem is NP-Hard and morever it is known that unless
P = NP one cannot obtain a 1/n!~¢-approximation for any fixed ¢ > 0. However, reasonable
results can be obtained in various special cases. Consider a simple greedy algorithm that picks
a vertex of minimum degree, removes it and its neighbors from the graph and continues as
long as the remaining graph is non-empty. Show that this heuristic always outputs a solution
of size Q(n/(1 + A)) where A is the average degree of the graph. First figure out the case
when A is the maximum degree. Show that the greedy algorithm gives a constant factor
approximation in planar graphs.

3. Vertex Cover.

(a) Consider the following algorithm that constructs a vertex cover C of a graph G.

VERTEXCOVER(G):
C+0
while C' is not a vertex cover
pick an arbitrary edge uv that is not covered by C
add either u or v to C
return C

Prove that VERTEXCOVER can return a vertex cover that is 2(n) times larger than the
optimal vertex cover. You need to describe both an input graph with n vertices, for any
integer n, and the sequence of edges and endpoints chosen by the algorithm.

(b) Now consider the following randomized variant of the previous algorithm.

RANDOMVERTEXCOVER(G):
C+ 0
while C' is not a vertex cover
pick an arbitrary edge uv that is not covered by C
with probability 1/2

add u to C
else

add v to C
return C

Prove that the expected size of the vertex cover returned by RANDOMVERTEXCOVER is
at most 20PT, where OPT is the size of the smallest vertex cover.

(c) Let G be a graph in which each vertex v has a weight w(v). Now consider the following
randomized algorithm that constructs a vertex cover.

RANDOMWEIGHTED VERTEXCOVER(G):
C+0
while C' is not a vertex cover
pick an arbitrary edge uv that is not covered by C
with probability w(v)/(w(u) + w(v))
add u to C
else
add v to C
return C

Prove that the expected weight of the vertex cover returned by RANDOMWEIGHTED VERTEXCOVER
is at most 20PT, where OPT is the weight of the minimum-weight vertex cover. A
correct answer to this part automatically earns full credit for part (b).

4. Let G = (V, A) be a directed graph with arc weights ¢ : A — R™. Define the density of a
directed cycle C' as) .~ c(a)/|V(C)| where V(C) is set of vertices in C.

(a) A cycle with the minimum density is called a minimum mean cycle and such a cycle can
be computed in polynomial time. How?
Hint: Given density A, give a polynomial-time algorithm to test if G contains a cycle of
density < A. Now use binary search.

(b) Consider the following algorithm for ATSP. Given G (with ¢ satisfying asymmetric tri-
angle inequality), compute a minimum mean cycle C. Pick an arbitrary vertex v from
C' and recurse on the graph G' = G[V — C U {v}]. A solution to the problem on G can
be computed by patching C' with a tour in the graph G’. Prove that the approximation
ratio for this heuristic is at most 2H,, where H,, = 1+1/24...41/n is the nth harmonic
number.

5. Consider the k-dimensional knapsack problem. We are given n non-negative k-dimensional
vectors v1,U9,...,U,. Each vector has a non-negative weight, w; for v;. We are also given
a k-dimensional knapsack V and the goal is to find a maximum weight subset of vectors
that pack in to V. A subset of vectors pack into V if their vector addition is less than V
(co-ordinate wise). Prove that there is a pseudo-polynomial time algorithm for this problem
when k is a fixed constant independent of n. What is the running time of your algorithm?

Prove that even for k = 2 and wunit weights the problem does not admit an FPTAS. (Hint:
use a reduction from the Partition problem.) Extra credit: Obtain a PTAS for this problem
when £ is a fixed constant independent of n (might need to use LP techniques).

. Multi-processor scheduling: given n jobs Ji,...,J, with processing times p1,p2,...,p, and
m machines My, Ms, ..., M,,. For identical machines greedy list scheduling that orders the
jobs in non-increasing sizes has an approximation ratio of 4/3. See Section 2.3 in the Shmoys-
Williamson book.

Now consider the problem where the machines are not identical. Machines M; has a speed s;.
Job J; with processing time p; takes p;/s; time to complete on machine M;. Give a constant
factor approximation for scheduling in this setting to minimize makespan (the maximum
completion time). (Hint: consider jobs in decreasing sizes. Assuming p; > py > ... > p, and
$1 > 82 > ...8m, show that OPT > maxi<m(D_;<; Pj/ D j<i 8j-)

. The input consists of a metric space (V,d) and k the goal is to find a subset S C V of at most
k centers to min max,cy d(v, S). We saw a simple 2-approximation algorithm for k-center in
class (do you recall the algorithm and its proof of correctness?). Here is another algorithm
that also gives a 2-approximation. First assume you know the optimal solution value R*.
While there are vertices left pick an arbitrary vertex v, add it to the solution and remove all
vertices at distance 2R* from v. Show that this algorithm terminates with at most k vertices

and gives a 2-approximation. How do you eliminate the assumption that you know the value
R*?

. In the Multiple Knapsack problem you are given n items each with a size and profit as in
the standard knapsack problem. However now you have m knapsacks each of the same size
B. Consider a greedy algorithm that iteratively packs the next knapsack with the remaining
items via some a-approximation for the single knapsack problem. Assuming o = 1, that
is, you have an exact algorithm for knapsack show that this algorithm gives a (1 — 1/e)-
approximation for the multiple knapsack problem. Extra Credit: Suppose now the knapsacks
are of different capacities By, ..., By,. Show that the algorithm gives a 1/2-approximation
(assuming « = 1) irrespective of the order in which the knapsacks are considered. Can you
analayze the approximation ratios if a > 17

