
Algorithms Lecture 18: Extensions of Maximum Flow [Fa’10]

“Who are you?" said Lunkwill, rising angrily from his seat. “What do you want?"
“I am Majikthise!" announced the older one.
“And I demand that I am Vroomfondel!" shouted the younger one.
Majikthise turned on Vroomfondel. “It’s alright," he explained angrily, “you don’t need to

demand that."
“Alright!" bawled Vroomfondel banging on an nearby desk. “I am Vroomfondel, and that is

not a demand, that is a solid fact! What we demand is solid facts!"
“No we don’t!" exclaimed Majikthise in irritation. “That is precisely what we don’t demand!"
Scarcely pausing for breath, Vroomfondel shouted, “We don’t demand solid facts! What we

demand is a total absence of solid facts. I demand that I may or may not be Vroomfondel!"

— Douglas Adams, The Hitchhiker’s Guide to the Galaxy (1979)

18 Extensions of Maximum Flow?

18.1 Maximum Flows with Edge Demands

Now suppose each directed edge e in has both a capacity c(e) and a demand d(e)≤ c(e), and we want a
flow f of maximum value that satisfies d(e)≤ f (e)≤ c(e) at every edge e. We call a flow that satisfies
these constraints a feasible flow. In our original setting, where d(e) = 0 for every edge e, the zero flow
is feasible; however, in this more general setting, even determining whether a feasible flow exists is a
nontrivial task.

Perhaps the easiest way to find a feasible flow (or determine that none exists) is to reduce the
problem to a standard maximum flow problem, as follows. The input consists of a directed graph
G = (V, E), nodes s and t, demand function d : E → R, and capacity function c : E → R. Let D denote
the sum of all edge demands in G:

D :=
∑

u�v∈E

d(u�v).

We construct a new graph G′ = (V ′, E′) from G by adding new source and target vertices s′ and t ′,
adding edges from s′ to each vertex in V , adding edges from each vertex in V to t ′, and finally adding
an edge from t to s. We also define a new capacity function c′ : E′→ R as follows:

• For each vertex v ∈ V , we set c′(s′�v) =
∑

u∈V d(u�v) and c′(v�t ′) =
∑

w∈V d(v�w).

• For each edge u�v ∈ E, we set c′(u�v) = c(u�v)− d(u�v).

• Finally, we set c′(t�s) =∞.

Intuitively, we construct G′ by replacing any edge u�v in G with three edges: an edge u�v with
capacity c(u�v)−d(u�v), an edge s′�v with capacity d(u�v), and an edge u�t ′ with capacity d(u�v).
If this construction produces multiple edges from s′ to the same vertex v (or to t ′ from the same vertex v),
we merge them into a single edge with the same total capacity.

In G′, the total capacity out of s′ and the total capacity into t ′ are both equal to D. We call a flow
with value exactly D a saturating flow, since it saturates all the edges leaving s′ or entering t ′. If G′ has a
saturating flow, it must be a maximum flow, so we can find it using any max-flow algorithm.

Lemma 1. G has a feasible (s, t)-flow if and only if G′ has a saturating (s′, t ′)-flow.
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A flow network G with demands and capacities (written d .. c), and the transformed network G′.

Proof: Let f : E→ R be a feasible (s, t)-flow in the original graph G. Consider the following function
f ′ : E′→ R:

f ′(u�v) = f (u�v)− d(u�v) for all u�v ∈ E

f ′(s′�v) =
∑

u∈V

d(u�v) for all v ∈ V

f ′(v�t ′) =
∑

w∈V

d(u→ w) for all v ∈ V

f ′(t�s) = | f |

We easily verify that f ′ is a saturating (s′, t ′)-flow in G. The admissibility of f implies that f (e)≥ d(e)
for every edge e ∈ E, so f ′(e) ≥ 0 everywhere. Admissibility also implies f (e) ≤ c(e) for every edge
e ∈ E, so f ′(e)≤ c′(e) everywhere. Tedious algebra implies that

∑

u∈V ′
f ′(u�v) =
∑

w∈V ′
f (v�w)

for every vertex v ∈ V (including s and t). Thus, f ′ is a legal (s′, t ′)-flow, and every edge out of s′

or into t ′ is clearly saturated. Intuitively, f ′ diverts d(u�v) units of flow from u directly to the new
target t ′, and injects the same amount of flow into v directly from the new source s′.

The same tedious algebra implies that for any saturating (s′, t ′)-flow f ′ : E′→ R for G′, the function
f = f ′|E + d is a feasible (s, t)-flow in G. �

Thus, we can compute a feasible (s, t)-flow for G, if one exists, by searching for a maximum (s′, t ′)-
flow in G′ and checking that it is saturating. Once we’ve found a feasible (s, t)-flow in G, we can
transform it into a maximum flow using an augmenting-path algorithm, but with one small change.
To ensure that every flow we consider is feasible, we must redefine the residual capacity of an edge as
follows:

c f (u�v) =







c(u�v)− f (u�v) if u�v ∈ E,

f (v�u)− d(v�u) if v�u ∈ E,

0 otherwise.

Otherwise, the algorithm is unchanged. If we use the Dinitz/Edmonds-Karp fat-pipe algorithm, we get
an overall running time of O(VE2).
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A saturating flow f ′ in G′, the corresponding feasible flow f in G, and the corresponding residual network G f .

18.2 Node Supplies and Demands

Another useful variant to consider allows flow to be injected or extracted from the flow network at
vertices other than s or t. Let x : (V \ {s, t})→ R be an excess function describing how much flow is to
be injected (or extracted if the value is negative) at each vertex. We now want a maximum ‘flow’ that
satisfies the variant balance condition

∑

u∈V

f (u�v)−
∑

w∈V

f (v�w) = x(v)

for every node v except s and t, or prove that no such flow exists. As above, call such a function f a
feasible flow.

As for flows with edge demands, the only real difficulty in finding a maximum flow under these
modified constraints is finding a feasible flow (if one exists). We can reduce this problem to a standard
max-flow problem, just as we did for edge demands.

To simplify the transformation, let us assume without loss of generality that the total excess in the
network is zero:

∑

v x(v) = 0. If the total excess is positive, we add an infinite capacity edge t� t̃,
where t̃ is a new target node, and set x(t) =−

∑

v x(v). Similarly, if the total excess is negative, we add
an infinite capacity edge s̃�s, where s̃ is a new source node, and set x(s) =−

∑

v x(v). In both cases,
every feasible flow in the modified graph corresponds to a feasible flow in the original graph.

As before, we modify G to obtain a new graph G′ by adding a new source s′, a new target t ′, an
infinite-capacity edge t�s from the old target to the old source, and several edges from s′ and to t ′.
Specifically, for each vertex v, if x(v)> 0, we add a new edge s′�v with capacity x(v), and if x(v)< 0,
we add an edge v�t ′ with capacity −x(v). As before, we call an (s′, t ′)-flow in G′ saturating if every
edge leaving s′ or entering t ′ is saturated; any saturating flow is a maximum flow. It is easy to check
that saturating flows in G′ are in direct correspondence with feasible flows in G; we leave details as an
exercise (hint, hint).
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Similar reductions allow us to several other variants of the maximum flow problem using the same
path-augmentation techniques. For example, we could associate capacities and demands with the
vertices instead of (or in addition to) the edges, as well as a range of excesses with every vertex, instead
of a single excess value.

18.3 Minimum-Cost Flows

Now imagine that each edge e in the network has both a capacity c(e) and a cost $(e). The cost function
describes the cost of sending a unit of flow through the edges; thus, the cost any flow f is defined as
follows:

$( f ) =
∑

e∈E

$(e) · f (e).

The minimum-cost maximum-flow problem is to compute a maximum flow of minimum cost. If the
network has only one maximum flow, that’s what we want, but if there is more than one maximum flow,
we want the maximum flow whose cost is as small as possible. Costs can either be positive, negative, or
zero. However, if an edge u�v and its reversal v�u both appear in the graph, their costs must sum to
zero: $(u�v) =−$(v�u). Otherwise, we could make an infinite profit by pushing flow back and forth
along the edge!

Each augmentation step in the standard Ford-Fulkerson algorithm both increases the value of the
flow and changes its cost. If the total cost of the augmenting path is positive, the cost of the flow
decreases; conversely, if the total cost of the augmenting path is negative, the cost of the flow decreases.
We can also change the cost of the flow without changing its value, by augmenting along a directed cycle
in the residual graph. Again, augmenting along a negative-cost cycle decreases the cost of the flow, and
augmenting along a positive-cost cycle increases the cost of the flow.

It follows immediately that a flow f is a minimum-cost maximum flow in G if and only if the residual
graph G f has no directed paths from s to t and no negative-cost cycles.

We can compute a min-cost max-flow using the so-called cycle cancelling algorithm first proposed by
Morton Klein in 1967. The algorithm has two phases; in the first, we compute an arbitrary maximum
flow f , using any method we like. The second phase repeatedly decreases the cost of f , by augmenting
f along a negative-cost cycle in the residual graph G f , until no such cycle exists. As in Ford-Fulkerson,
the amount of flow we push around each cycle is equal to the minimum residual capacity of any edge on
the cycle.

In each iteration of the second phase, we can use a modification of Shimbel’s shortest path algorithm
(often called “Bellman-Ford”) to find a negative-cost cycle in O(V E) time. To bound the number of
iterations in the second phase, we assume that both the capacity and the cost of each edge is an integer,
and we define

C =max
e∈E

c(e) and D =max
e∈E
|$(e)|.

The cost of any feasible flow is clearly between −EC D and EC D, and each augmentation step decreases
the cost of the flow by a positive integer, and therefore by at least 1. We conclude that the second phase
requires at most 2EC D iterations, and therefore runs in O(VE2CD) time. As with the raw Ford-Fulkerson
algorithm, this running time is exponential in the complexity of the input, and it may never terminate if
the capacities and/or costs are irrational.

Like Ford-Fulkerson, more careful choices of which cycle to cancel can lead to more efficient
algorithms. Unfortunately, some obvious choices are NP-hard to compute, including the cycle with most
negative cost and the negative cycle with the fewest edges. In the late 1980s, Andrew Goldberg and Bob
Tarjan developed a min-cost flow algorithm that repeatedly cancels the so-called minimum-mean cycle,
which is the cycle whose average cost per edge is smallest. By combining an algorithm of Karp to compute
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minimum-mean cycles in O(EV ) time, efficient dynamic tree data structures, and other sophisticated
techniques that are (unfortunately) beyond the scope of this class, their algorithm achieves a running
time of O(E2V log2 V). The fastest min-cost max-flow algorithm currently known,1 due to James Orlin,
reduces the problem to O(E log V ) iterations of Dijkstra’s shortest-path algorithm; Orlin’s algorithm runs
in O(E2 log V + EV log2 V) time.

18.4 Maximum-Weight Matchings

Recall from the previous lecture that we can find a maximum-cardinality matching in any bipartite graph
in O(V E) time by reduction to the standard maximum flow problem.

Now suppose the input graph has weighted edges, and we want to find the matching with maximum
total weight. Given a bipartite graph G = (U ×W, E) and a non-negative weight function w : E → R,
the goal is to compute a matching M whose total weight w(M) =

∑

uw∈M w(uw) is as large as possible.
Max-weight matchings can’t be found directly using standard max-flow algorithms2, but we can modify
the algorithm for maximum-cardinality matchings described above.

It will be helpful to reinterpret the behavior of our earlier algorithm directly in terms of the original
bipartite graph instead of the derived flow network. Our algorithm maintains a matching M , which is
initially empty. We say that a vertex is matched if it is an endpoint of an edge in M . At each iteration, we
find an alternating path π that starts and ends at unmatched vertices and alternates between edges in
E \M and edges in M . Equivalently, let GM be the directed graph obtained by orienting every edge in M
from W to U , and every edge in E \M from U to W . An alternating path is just a directed path in GM
between two unmatched vertices. Any alternating path has odd length and has exactly one more edge in
E \M than in M . The iteration ends by setting M ← M ⊕π, thereby increasing the number of edges
in M by one. The max-flow/min-cut theorem implies that when there are no more alternating paths, M
is a maximum matching.

A matching M with 5 edges, an alternating path π, and the augmented matching M ⊕π with 6 edges.

If the edges of G are weighted, we only need to make two changes to the algorithm. First, instead of
looking for an arbitrary alternating path at each iteration, we look for the alternating path π such that
M ⊕π has largest weight. Suppose we weight the edges in the residual graph GM as follows:

w′(u�w) =−w(uw) for all uw 6∈ M

w′(w�u) = w(uw) for all uw ∈ M

We now have w(M ⊕π) = w(M)−w′(π). Thus, the correct augmenting path π must be the directed
path in GM with minimum total residual weight w ′(π). Second, because the matching with the

1at least, among algorithms whose running times do not depend on C and D
2However, max-flow algorithms can be modified to compute maximum weighted flows, where every edge has both a capacity

and a weight, and the goal is to maximize
∑

u�v w(u�v) f (u�v).
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A maximum-weight matching is not necessarily a maximum-cardinality matching.

Before we determine the running time of the algorithm, we need to check that it actually finds the
maximum-weight matching. After all, it’s a greedy algorithm, and greedy algorithms don’t work unless
you prove them into submission! Let Mi denote the maximum-weight matching in G with exactly i
edges. In particular, M0 = ∅, and the global maximum-weight matching is equal to Mi for some i.
(The figure above show M1 and M2 for the same graph.) Let Gi denote the directed residual graph
for Mi , let wi denote the residual weight function for Mi as defined above, and let πi denote the directed
path in Gi such that wi(πi) is minimized. To simplify the proof, I will assume that there is a unique
maximum-weight matching Mi of any particular size; this assumption can be enforced by applying a
consistent tie-breaking rule. With this assumption in place, the correctness of our algorithm follows
inductively from the following lemma.

Lemma 2. If G contains a matching with i+ 1 edges, then Mi+1 = Mi ⊕πi .

Proof: I will prove the equivalent statement Mi+1 ⊕Mi = πi−1. To simplify notation, call an edge in
Mi+1⊕Mi red if it is an edge in Mi+1, and blue if it is an edge in Mi .

The graph Mi+1⊕Mi has maximum degree 2, and therefore consists of pairwise disjoint paths and
cycles, each of which alternates between red and blue edges. Since G is bipartite, every cycle must have
even length. The number of edges in Mi+1 ⊕Mi is odd; specifically, Mi+1 ⊕Mi has 2i + 1− 2k edges,
where k is the number of edges that are in both matchings. Thus, Mi+1⊕Mi contains an odd number of
paths of odd length, some number of paths of even length, and some number of cycles of even length.

Let γ be a cycle in Mi+1⊕Mi . Because γ has an equal number of edges from each matching, Mi ⊕ γ
is another matching with i edges. The total weight of this matching is exactly w(Mi)−wi(γ), which
must be less than w(Mi), so wi(γ) must be positive. On the other hand, Mi+1 ⊕ γ is a matching with
i + 1 edges whose total weight is w(Mi+1) +wi(γ)< w(Mi+1), so wi(γ) must be negative! We conclude
that no such cycle γ exists; Mi+1⊕Mi consists entirely of disjoint paths.

Exactly the same reasoning implies that no path in Mi+1⊕Mi has an even number of edges.
Finally, since the number of red edges in Mi+1⊕Mi is one more than the number of blue edges, the

number of paths that start with a red edge is exactly one more than the number of paths that start with
a blue edge. The same reasoning as above implies that Mi+1 ⊕Mi does not contain a blue-first path,
because we can pair it up with a red-first path.

We conclude that Mi+1 ⊕Mi consists of a single alternating path π whose first edge is red. Since
w(Mi+1) = w(Mi)−wi(π), the path π must be the one with minimum weight wi(π). �

We can find the alternating path πi using a single-source shortest path algorithm. Modify the
residual graph Gi by adding zero-weight edges from a new source vertex s to every unmatched node
in U , and from every unmatched node in W to a new target vertex t, exactly as in out unweighted
matching algorithm. Then πi is the shortest path from s to t in this modified graph. Since Mi is the
maximum-weight matching with i vertices, Gi has no negative cycles, so this shortest path is well-defined.

6



Algorithms Lecture 18: Extensions of Maximum Flow [Fa’10]

We can compute the shortest path in Gi in O(V E) time using Shimbel’s algorithm, so the overall running
time our algorithm is O(V2E).

The residual graph Gi has negative-weight edges, so we can’t speed up the algorithm by replacing
Shimbel’s algorithm with Dijkstra’s. However, we can use a variant of Johnson’s all-pairs shortest path
algorithm to improve the running time to O(VE + V2 log V). Let di(v) denote the distance from s to v
in the residual graph Gi, using the distance function wi. Let w̃i denote the modified distance function
w̃i(u�v) = di−1(u)+wi(u�v)−di−1(v). As we argued in the discussion of Johnson’s algorithm, shortest
paths with respect to wi are still shortest paths with respect to w̃i. Moreover, w̃i(u�v) > 0 for every
edge u�v in Gi:

• If u�v is an edge in Gi−1, then wi(u�v) = wi−1(u�v) and di−1(v)≤ di−1(u) +wi−1(u�v).

• If u�v is not in Gi−1, then wi(u�v) =−wi−1(v�u) and v�u is an edge in the shortest path πi−1,
so di−1(u) = di−1(v) +wi−1(v�u).

Let d̃i(v) denote the shortest path distance from s to v with respect to the distance function w̃i.
Because w̃i is positive everywhere, we can quickly compute d̃i(v) for all v using Dijkstra’s algorithm.
This gives us both the shortest alternating path πi and the distances di(v) = d̃i(v) + di−1(v) needed for
the next iteration.

Exercises

1. Suppose we are given a directed graph G = (V, E), two vertices s an t, and a capacity function
c : V → R+. A flow f is feasible if the total flow into every vertex v is at most c(v):

∑

u
f (u�v)≤ c(v) for every vertex v.

Describe and analyze an efficient algorithm to compute a feasible flow of maximum value.

2. Suppose we are given an n× n grid, some of whose cells are marked; the grid is represented by
an array M[1 .. n, 1 .. n] of booleans, where M[i, j] = TRUE if and only if cell (i, j) is marked. A
monotone path through the grid starts at the top-left cell, moves only right or down at each step,
and ends at the bottom-right cell. Our goal is to cover the marked cells with as few monotone
paths as possible.

Greedily covering the marked cells in a grid with four monotone paths.

(a) Describe an algorithm to find a monotone path that covers the largest number of marked
cells.

(b) There is a natural greedy heuristic to find a small cover by monotone paths: If there are
any marked cells, find a monotone path π that covers the largest number of marked cells,
unmark any cells covered by π those marked cells, and recurse. Show that this algorithm
does not always compute an optimal solution.
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(c) Describe and analyze an efficient algorithm to compute the smallest set of monotone paths
that covers every marked cell.

3. Let G be a directed flow network whose edges have costs, but which contains no negative-cost
cycles. Prove that one can compute a minimum-cost maximum flow in G using a variant of
Ford-Fulkerson that repeatedly augments the (s, t)-path of minimum total cost in the current
residual graph. What is the running time of this algorithm?
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