
Algorithms Lecture 10: Treaps and Skip Lists [Fa’10]

I thought the following four [rules] would be enough, provided that I made a firm and constant
resolution not to fail even once in the observance of them. The first was never to accept anything
as true if I had not evident knowledge of its being so. . . . The second, to divide each problem I
examined into as many parts as was feasible, and as was requisite for its better solution. The
third, to direct my thoughts in an orderly way. . . establishing an order in thought even when the
objects had no natural priority one to another. And the last, to make throughout such complete
enumerations and such general surveys that I might be sure of leaving nothing out.

— René Descartes, Discours de la Méthode (1637)

What is luck?
Luck is probability taken personally.
It is the excitement of bad math.

— Penn Jillette (2001), quoting Chip Denman (1998)

10 Randomized Binary Search Trees

In this lecture, we consider two randomized alternatives to balanced binary search tree structures such
as AVL trees, red-black trees, B-trees, or splay trees, which are arguably simpler than any of these
deterministic structures.

10.1 Treaps

10.1.1 Definitions

A treap is a binary tree in which every node has both a search key and a priority, where the inorder
sequence of search keys is sorted and each node’s priority is smaller than the priorities of its children.1

In other words, a treap is simultaneously a binary search tree for the search keys and a (min-)heap for
the priorities. In our examples, we will use letters for the search keys and numbers for the priorities.

I’ll assume from now on that all the keys and priorities are distinct. Under this assumption, we can
easily prove by induction that the structure of a treap is completely determined by the search keys and
priorities of its nodes. Since it’s a heap, the node v with highest priority must be the root. Since it’s also
a binary search tree, any node u with key(u)< key(v) must be in the left subtree, and any node w with
key(w)> key(v) must be in the right subtree. Finally, since the subtrees are treaps, by induction, their
structures are completely determined. The base case is the trivial empty treap.

Another way to describe the structure is that a treap is exactly the binary tree that results by inserting
the nodes one at a time into an initially empty tree, in order of increasing priority, using the usual
insertion algorithm. This is also easy to prove by induction.

A third description interprets the keys and priorities as the coordinates of a set of points in the plane.
The root corresponds to a T whose joint lies on the topmost point. The T splits the plane into three parts.
The top part is (by definition) empty; the left and right parts are split recursively. This interpretation has
some interesting applications in computational geometry, which (unfortunately) we probably won’t have
time to talk about.

Treaps were first discovered by Jean Vuillemin in 1980, but he called them Cartesian trees.2 The word
‘treap’ was first used by Edward McCreight around 1980 to describe a slightly different data structure,

1Sometimes I hate English. Normally, ‘higher priority’ means ‘more important’, but ‘first priority’ is also more important
than ‘second priority’. Maybe ‘posteriority’ would be better; one student suggested ‘unimportance’.

2J. Vuillemin, A unifying look at data structures. Commun. ACM 23:229–239, 1980.

c© Copyright 2010 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

Algorithms Lecture 10: Treaps and Skip Lists [Fa’10]

5

A L

G

O

RI

TH

M
1

2 3

7

9 8

4

6

A treap. The top half of each node shows its search key and the bottom half shows its priority.

A LG O RI TH M

1

2

3

4

5

6

7

8

9

A geometric interpretation of the same treap.

but he later switched to the more prosaic name priority search trees.3 Treaps were rediscovered and used
to build randomized search trees by Cecilia Aragon and Raimund Seidel in 1989.4 A different kind of
randomized binary search tree, which uses random rebalancing instead of random priorities, was later
discovered and analyzed by Conrado Martínez and Salvador Roura in 1996.5

10.1.2 Treap Operations

The search algorithm is the usual one for binary search trees. The time for a successful search is
proportional to the depth of the node. The time for an unsuccessful search is proportional to the depth
of either its successor or its predecessor.

To insert a new node z, we start by using the standard binary search tree insertion algorithm to
insert it at the bottom of the tree. At the point, the search keys still form a search tree, but the priorities
may no longer form a heap. To fix the heap property, as long as z has smaller priority than its parent,
perform a rotation at z, a local operation that decreases the depth of z by one and increases its parent’s
depth by one, while maintaining the search tree property. Rotations can be performed in constant time,
since they only involve simple pointer manipulation.

The overall time to insert z is proportional to the depth of z before the rotations—we have to walk
down the treap to insert z, and then walk back up the treap doing rotations. Another way to say this is
that the time to insert z is roughly twice the time to perform an unsuccessful search for key(z).

Deleting a node is exactly like inserting a node, but in reverse order. Suppose we want to delete
node z. As long as z is not a leaf, perform a rotation at the child of z with smaller priority. This moves z

3E. M. McCreight. Priority search trees. SIAM J. Comput. 14(2):257–276, 1985.
4R. Seidel and C. R. Aragon. Randomized search trees. Algorithmica 16:464–497, 1996.
5C. Martínez and S. Roura. Randomized binary search trees. J. ACM 45(2):288-323, 1998. The results in this paper are

virtually identical (including the constant factors!) to the corresponding results for treaps, although the analysis techniques are
quite different.

2

Algorithms Lecture 10: Treaps and Skip Lists [Fa’10]

left

right
x

yx

y

A right rotation at x and a left rotation at y are inverses.

A L

G
5
RI

O

T

H S

M

O

A L

G

R

I

TH

S

M

O SA L

G
5
RI

TH

M

O

5
R

T

A

G

L

I

H

S

M

1

2

7

9

3

4 −1

8 5

6

1

2

7

9

4

8 6

3

−1

1

2 −1

7 4 3

9 8 6

1

2

7

9 8

4 6

3

−1

Left to right: After inserting (S,−1), rotate it up to fix the heap property.
Right to left: Before deleting (S,−1), rotate it down to make it a leaf.

down a level and its smaller-priority child up a level. The choice of which child to rotate preserves the
heap property everywhere except at z. When z becomes a leaf, chop it off.

We sometimes also want to split a treap T into two treaps T< and T> along some pivot key π, so
that all the nodes in T< have keys less than π and all the nodes in T> have keys bigger then π. A simple
way to do this is to insert a new node z with key(z) = π and priority(z) =−∞. After the insertion, the
new node is the root of the treap. If we delete the root, the left and right sub-treaps are exactly the trees
we want. The time to split at π is roughly twice the time to (unsuccessfully) search for π.

Similarly, we may want to merge two treaps T< and T>, where every node in T< has a smaller search
key than any node in T>, into one super-treap. Merging is just splitting in reverse—create a dummy root
whose left sub-treap is T< and whose right sub-treap is T>, rotate the dummy node down to a leaf, and
then cut it off.

The cost of each of these operations is proportional to the depth of some node v in the treap.

• Search: A successful search for key k takes O(depth(v)) time, where v is the node with key(v) = k.
For an unsuccessful search, let v− be the inorder predecessor of k (the node whose key is just barely
smaller than k), and let v+ be the inorder successor of k (the node whose key is just barely larger
than k). Since the last node examined by the binary search is either v− or v+, the time for an
unsuccessful search is either O(depth(v+)) or O(depth(v−)).

• Insert/Delete: Inserting a new node with key k takes either O(depth(v+)) time or O(depth(v−))
time, where v+ and v− are the predecessor and successor of the new node. Deletion is just
insertion in reverse.

• Split/Merge: Splitting a treap at pivot value k takes either O(depth(v+)) time or O(depth(v−))
time, since it costs the same as inserting a new dummy root with search key k and priority −∞.
Merging is just splitting in reverse.

Since the depth of a node in a treap is Θ(n) in the worst case, each of these operations has a
worst-case running time of Θ(n).

10.1.3 Random Priorities

A randomized treap is a treap in which the priorities are independently and uniformly distributed continuous
random variables. That means that whenever we insert a new search key into the treap, we generate a

3

Algorithms Lecture 10: Treaps and Skip Lists [Fa’10]

random real number between (say) 0 and 1 and use that number as the priority of the new node. The
only reason we’re using real numbers is so that the probability of two nodes having the same priority is
zero, since equal priorities make the analysis slightly messier. In practice, we could just choose random
integers from a large range, like 0 to 231−1, or random floating point numbers. Also, since the priorities
are independent, each node is equally likely to have the smallest priority.

The cost of all the operations we discussed—search, insert, delete, split, join—is proportional to the
depth of some node in the tree. Here we’ll see that the expected depth of any node is O(log n), which
implies that the expected running time for any of those operations is also O(log n).

Let xk denote the node with the kth smallest search key. To analyze the expected depth, we define
an indicator variable

Ai
k =
�

x i is a proper ancestor of xk
�

.

(The superscript doesn’t mean power in this case; it just a reminder of which node is supposed to be
further up in the tree.) Since the depth of v is just the number of proper ancestors of v, we have the
following identity:

depth(xk) =
n
∑

i=1

Ai
k.

Now we can express the expected depth of a node in terms of these indicator variables as follows.

E[depth(xk)] =
n
∑

i=1

Pr[Ai
k = 1]

(Just as in our analysis of matching nuts and bolts, we’re using linearity of expectation and the fact that
E[X] = Pr[X = 1] for any indicator variable X .) So to compute the expected depth of a node, we just
have to compute the probability that some node is a proper ancestor of some other node.

Fortunately, we can do this easily once we prove a simple structural lemma. Let X (i, k) denote either
the subset of treap nodes {x i , x i+1, . . . , xk} or the subset {xk, xk+1, . . . , x i}, depending on whether i < k
or i > k. The order of the arguments is unimportant; the subsets X (i, k) and X (k, i) are identical. The
subset X (1, n) = X (n, 1) contains all n nodes in the treap.

Lemma 1. For all i 6= k, node x i is a proper ancestor of xk if and only if x i has the smallest priority
among all nodes in X (i, k).

Proof: If x i is the root, then it is an ancestor of xk, and by definition, it has the smallest priority of any
node in the treap, so it must have the smallest priority in X (i, k).

On the other hand, if xk is the root, then x i is not an ancestor of xk, and indeed x i does not have
the smallest priority in X (i, k)— xk does.

On the gripping hand6, suppose some other node x j is the root. If x i and xk are in different subtrees,
then either i < j < k or i > j > k, so x j ∈ X (i, k). In this case, x i is not an ancestor of xk, and indeed x i
does not have the smallest priority in X (i, k)— x j does.

Finally, if x i and xk are in the same subtree, the lemma follows inductively (or, if you prefer,
recursively), since the subtree is a smaller treap. The empty treap is the trivial base case. �

Since each node in X (i, k) is equally likely to have smallest priority, we immediately have the
probability we wanted:

6See Larry Niven and Jerry Pournelle, The Gripping Hand, Pocket Books, 1994.

4

Algorithms Lecture 10: Treaps and Skip Lists [Fa’10]

Pr[Ai
k = 1] =

[i 6= k]
|k− i|+ 1

=

1

k− i+ 1
if i < k

0 if i = k

1

i− k+ 1
if i > k

To compute the expected depth of a node xk, we just plug this probability into our formula and grind
through the algebra.

E[depth(xk)] =
n
∑

i=1

Pr[Ai
k = 1] =

k−1
∑

i=1

1

k− i+ 1
+

n
∑

i=k+1

1

i− k+ 1

=
k
∑

j=2

1

j
+

n−k+1
∑

i=2

1

j

= Hk − 1+Hn−k+1− 1

< ln k+ ln(n− k+ 1)− 2

< 2 ln n− 2.

In conclusion, every search, insertion, deletion, split, and merge operation in an n-node randomized
binary search tree takes O(log n) expected time.

Since a treap is exactly the binary tree that results when you insert the keys in order of increasing
priority, a randomized treap is the result of inserting the keys in random order. So our analysis also
automatically gives us the expected depth of any node in a binary tree built by random insertions
(without using priorities).

10.1.4 Randomized Quicksort (Again!)

We’ve already seen two completely different ways of describing randomized quicksort. The first is the
familiar recursive one: choose a random pivot, partition, and recurse. The second is a less familiar
iterative version: repeatedly choose a new random pivot, partition whatever subset contains it, and
continue. But there’s a third way to describe randomized quicksort, this time in terms of binary search
trees.

RANDOMIZEDQUICKSORT:
T ← an empty binary search tree
insert the keys into T in random order
output the inorder sequence of keys in T

Our treap analysis tells us is that this algorithm will run in O(n log n) expected time, since each key is
inserted in O(log n) expected time.

Why is this quicksort? Just like last time, all we’ve done is rearrange the order of the comparisons.
Intuitively, the binary tree is just the recursion tree created by the normal version of quicksort. In the
recursive formulation, we compare the initial pivot against everything else and then recurse. In the
binary tree formulation, the first “pivot” becomes the root of the tree without any comparisons, but
then later as each other key is inserted into the tree, it is compared against the root. Either way, the
first pivot chosen is compared with everything else. The partition splits the remaining items into a left
subarray and a right subarray; in the binary tree version, these are exactly the items that go into the left

5

Algorithms Lecture 10: Treaps and Skip Lists [Fa’10]

subtree and the right subtree. Since both algorithms define the same two subproblems, by induction,
both algorithms perform the same comparisons.

We even saw the probability 1
|k−i|+1

before, when we were talking about sorting nuts and bolts
with a variant of randomized quicksort. In the more familiar setting of sorting an array of numbers,
the probability that randomized quicksort compares the ith largest and kth largest elements is exactly

2
|k−i|+1

. The binary tree version compares x i and xk if and only if x i is an ancestor of xk or vice versa, so
the probabilities are exactly the same.

10.2 Skip Lists

Skip lists, which were first discovered by Bill Pugh in the late 1980’s,7 have many of the usual desirable
properties of balanced binary search trees, but their structure is very different.

At a high level, a skip list is just a sorted linked list with some random shortcuts. To do a search in a
normal singly-linked list of length n, we obviously need to look at n items in the worst case. To speed
up this process, we can make a second-level list that contains roughly half the items from the original
list. Specifically, for each item in the original list, we duplicate it with probability 1/2. We then string
together all the duplicates into a second sorted linked list, and add a pointer from each duplicate back
to its original. Just to be safe, we also add sentinel nodes at the beginning and end of both lists.

−∞ +∞

−∞ +∞

1 2 3 4 5 6 7 8 90

1 6 7 90 3

A linked list with some randomly-chosen shortcuts.

Now we can find a value x in this augmented structure using a two-stage algorithm. First, we scan
for x in the shortcut list, starting at the −∞ sentinel node. If we find x , we’re done. Otherwise, we
reach some value bigger than x and we know that x is not in the shortcut list. Let w be the largest item
less than x in the shortcut list. In the second phase, we scan for x in the original list, starting from w.
Again, if we reach a value bigger than x , we know that x is not in the data structure.

−∞ +∞

−∞ +∞

1 2 3 4 5 6 7 8 90

1 6 7 90 3

Searching for 5 in a list with shortcuts.

Since each node appears in the shortcut list with probability 1/2, the expected number of nodes
examined in the first phase is at most n/2. Only one of the nodes examined in the second phase has
a duplicate. The probability that any node is followed by k nodes without duplicates is 2−k, so the
expected number of nodes examined in the second phase is at most 1+

∑

k≥0 2−k = 2. Thus, by adding
these random shortcuts, we’ve reduced the cost of a search from n to n/2+ 2, roughly a factor of two in
savings.

10.2.1 Recursive Random Shortcuts

Now there’s an obvious improvement—add shortcuts to the shortcuts, and repeat recursively. That’s
exactly how skip lists are constructed. For each node in the original list, we flip a coin over and over
until we get tails. For each heads, we make a duplicate of the node. The duplicates are stacked up in
levels, and the nodes on each level are strung together into sorted linked lists. Each node v stores a

7William Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun. ACM 33(6):668–676, 1990.

6

Algorithms Lecture 10: Treaps and Skip Lists [Fa’10]

search key (key(v)), a pointer to its next lower copy (down(v)), and a pointer to the next node in its
level (right(v)).

−∞ +∞

−∞ +∞

−∞ +∞

−∞ +∞

−∞ +∞

−∞ +∞

1 2 3 4 5 6 7 8 90

1 6 7 90

1 6 7

3

1 7

7

A skip list is a linked list with recursive random shortcuts.

The search algorithm for skip lists is very simple. Starting at the leftmost node L in the highest level,
we scan through each level as far as we can without passing the target value x , and then proceed down
to the next level. The search ends when we either reach a node with search key x or fail to find x on the
lowest level.

SKIPLISTFIND(x , L):
v← L
while (v 6= NULL and key(v) 6= x)

if key(right(v))> x
v← down(v)

else
v← right(v)

return v

−∞ +∞1 2 3 4 5 6 7 8 90

−∞ +∞1 6 7 90

−∞ +∞1 6 7

3

−∞ +∞1 7

−∞ +∞7

−∞ +∞

Searching for 5 in a skip list.

Intuitively, since each level of the skip lists has about half the number of nodes as the previous level,
the total number of levels should be about O(log n). Similarly, each time we add another level of random
shortcuts to the skip list, we cut the search time roughly in half, except for a constant overhead, so after
O(log n) levels, we should have a search time of O(log n). Let’s formalize each of these two intuitive
observations.

10.2.2 Number of Levels

The actual values of the search keys don’t affect the skip list analysis, so let’s assume the keys are the
integers 1 through n. Let L(x) be the number of levels of the skip list that contain some search key x , not

7

Algorithms Lecture 10: Treaps and Skip Lists [Fa’10]

counting the bottom level. Each new copy of x is created with probability 1/2 from the previous level,
essentially by flipping a coin. We can compute the expected value of L(x) recursively—with probability
1/2, we flip tails and L(x) = 0; and with probability 1/2, we flip heads, increase L(x) by one, and
recurse:

E[L(x)] =
1

2
· 0+

1

2

�

1+ E[L(x)]
�

Solving this equation gives us E[L(x)] = 1.
In order to analyze the expected worst-case cost of a search, however, we need a bound on the

number of levels L =maxx L(x). Unfortunately, we can’t compute the average of a maximum the way we
would compute the average of a sum. Instead, we will derive a stronger result, showing that the depth is
O(log n) with high probability. ‘High probability’ is a technical term that means the probability is at
least 1− 1/nc for some constant c ≥ 1; the hidden constant in the O(log n) bound could depend on c.

In order for a search key x to appear on level `, it must have flipped ` heads in a row when it was
inserted, so Pr[L(x) ≥ `] = 2−`. The skip list has at least ` levels if and only if L(x)≥ ` for at least one
of the n search keys.

Pr[L ≥ `] = Pr
�

(L(1)≥ `) ∨ (L(2)≥ `) ∨ · · · ∨ (L(n)≥ `)
�

Using the union bound — Pr[A∨ B]≤ Pr[A] + Pr[B] for any random events A and B — we can simplify
this as follows:

Pr[L ≥ `] ≤
n
∑

x=1

Pr[L(x)≥ `] = n · Pr[L(x)≥ `] =
n

2`
.

When `≤ lg n, this bound is trivial. However, for any constant c > 1, we have a strong upper bound

Pr[L ≥ c lg n]≤
1

nc−1 .

We conclude that with high probability, a skip list has O(logn) levels.
This high-probability bound indirectly implies a bound on the expected number of levels. Some

simple algebra gives us the following alternate definition for expectation:

E[L] =
∑

`≥0

` · Pr[L = `] =
∑

`≥1

Pr[L ≥ `]

Clearly, if ` < `′, then Pr[L(x)≥ `]> Pr[L(x)≥ `′]. So we can derive an upper bound on the expected
number of levels as follows:

E[L(x)] =
∑

`≥1

Pr[L ≥ `]

=
lg n
∑

`=1

Pr[L ≥ `] +
∑

`≥lg n+1

Pr[L ≥ `]

≤
lg n
∑

`=1

1 +
∑

`≥lg n+1

n

2`

= lg n+
∑

i≥1

1

2i [i = `− lg n]

= lgn + 2

So in expectation, a skip list has at most two more levels than an ideal version where each level contains
exactly half the nodes of the next level below.

8

Algorithms Lecture 10: Treaps and Skip Lists [Fa’10]

10.2.3 Logarithmic Search Time

It’s a little easier to analyze the cost of a search if we imagine running the algorithm backwards.
SKIPLISTFIND takes the output from SKIPLISTFIND as input and traces back through the data structure to

the upper left corner. Skip lists don’t really have up and left pointers, but we’ll pretend that they do so
we don’t have to write ‘ v←down(v) ’ or ‘ v←right(v) ’.8

SKIPLISTFIND (v):
while (v 6= L)

if up(v) exists
v← up(v)

else
v← left(v)

Now for every node v in the skip list, up(v) exists with probability 1/2. So for purposes of analysis,
SKIPLISTFIND is equivalent to the following algorithm:

FLIPWALK(v):
while (v 6= L)

if COINFLIP = HEADS

v← up(v)
else

v← left(v)

Obviously, the expected number of heads is exactly the same as the expected number of TAILs. Thus,
the expected running time of this algorithm is twice the expected number of upward jumps. Since we
already know that the number of upward jumps is O(log n) with high probability, we can conclude that
the worst-case search time is O(log n) with high probability (and therefore in expectation).

Exercises

1. (a) The left spine of a binary tree is a path starting at the root and following only left-child
pointers down to a leaf. What is the expected number of nodes in the left spine of an n-node
treap?

(b) What is the expected number of leaves in an n-node treap? [Hint: What is the probability
that in an n-node treap, the node with kth smallest search key is a leaf?]

(c) Prove that the expected number of proper descendants of any node in a treap is exactly equal
to the expected depth of that node.

2. Consider an n-node treap T . As in the lecture notes, we identify nodes in T by the ranks of their
search keys. Thus, ‘node 5’ means the node with the 5th smallest search key. Let i, j, k be integers
such that 1≤ i ≤ j ≤ k ≤ n.

(a) What is the exact probability that node j is a common ancestor of node i and node k?

(b) What is the exact expected length of the unique path from node i to node k in T?

8 LeonardodaVinciwroteallhisnotesusingmirror-writing,butnotbecausehewantedtokeephisdiscoveriessecret.
Hejusthadreallybadarthritisinhisrighthand!

9

Algorithms Lecture 10: Treaps and Skip Lists [Fa’10]

3. Recall that a priority search tree is a binary tree in which every node has both a search key and
a priority, arranged so that the tree is simultaneously a binary search tree for the keys and a
min-heap for the priorities. A heater is a priority search tree in which the priorities are given by
the user, and the search keys are distributed uniformly and independently at random in the real
interval [0, 1]. Intuitively, a heater is a sort of dual treap.

The following problems consider an n-node heater T whose node priorities are the integers
from 1 to n. We identify nodes in T by their priorities; thus, ‘node 5’ means the node in T with
priority 5. The min-heap property implies that node 1 is the root of T . Finally, let i and j be
integers with 1≤ i < j ≤ n.

(a) Prove that in a random permutation of the (i+1)-element set {1, 2, . . . , i, j}, elements i and j
are adjacent with probability 2/(i+ 1).

(b) Prove that node i is an ancestor of node j with probability 2/(i+ 1). [Hint: Use part (a)!]

(c) What is the probability that node i is a descendant of node j? [Hint: Don’t use part (a)!]

(d) What is the exact expected depth of node j?

(e) Describe and analyze an algorithm to insert a new item into a heater. Express the expected
running time of the algorithm in terms of the rank of the newly inserted item.

(f) Describe an algorithm to delete the minimum-priority item (the root) from an n-node heater.
What is the expected running time of your algorithm?

?4. In the usual theoretical presentation of treaps, the priorities are random real numbers chosen
uniformly from the interval [0,1], but in practice, computers only have access to random bits.
This problem asks you to analyze a modification of treaps that takes this limitation into account.

Suppose the priority of a node v is abstractly represented as an infinite sequence πv[1 ..∞] of
random bits, which is interpreted as the rational number

priority(v) =
∞
∑

i=1

πv[i] · 2−i .

However, only a finite number `v of these bits are actually known at any given time. When a
node v is first created, none of the priority bits are known: `v = 0. We generate (or ‘reveal’)
new random bits only when they are necessary to compare priorities. The following algorithm
compares the priorities of any two nodes in O(1) expected time:

LARGERPRIORITY(v, w):
for i← 1 to∞

if i > `v
`v ← i; πv[i]← RANDOMBIT

if i > `w
`w ← i; πw[i]← RANDOMBIT

if πv[i]> πw[i]
return v

else if πv[i]< πw[i]
return w

Suppose we insert n items one at a time into an initially empty treap. Let L =
∑

v `v denote
the total number of random bits generated by calls to LARGERPRIORITY during these insertions.

10

Algorithms Lecture 10: Treaps and Skip Lists [Fa’10]

(a) Prove that E[L] = Θ(n).
(b) Prove that E[`v] = Θ(1) for any node v. [Hint: This is equivalent to part (a). Why?]

(c) Prove that E[`root] = Θ(log n). [Hint: Why doesn’t this contradict part (b)?]

?5. Any skip list L can be transformed into a binary search tree T (L) as follows. The root of T (L) is
the leftmost node on the highest non-empty level of L; the left and right subtrees are constructed
recursively from the nodes to the left and to the right of the root. Let’s call the resulting tree T (L)
a skip list tree.

(a) Show that any search in T(L) is no more expensive than the corresponding search in L.
(Searching in T (L) could be considerably cheaper—why?)

(b) Describe an algorithm to insert a new search key into a skip list tree in O(log n) expected
time. Inserting key x into T(L) should produce exactly the same tree as inserting x into L

and then transforming L into a tree. [Hint: You will need to maintain some additional
information in the tree nodes.]

(c) Describe an algorithm to delete a search key from a skip list tree in O(log n) expected time.
Again, deleting key x from T (L) should produce exactly the same tree as deleting x from L

and then transforming L into a tree.

6. A meldable priority queue stores a set of keys from some totally-ordered universe (such as the
integers) and supports the following operations:

• MAKEQUEUE: Return a new priority queue containing the empty set.

• FINDMIN(Q): Return the smallest element of Q (if any).

• DELETEMIN(Q): Remove the smallest element in Q (if any).

• INSERT(Q, x): Insert element x into Q, if it is not already there.

• DECREASEKEY(Q, x , y): Replace an element x ∈ Q with a smaller key y. (If y > x , the
operation fails.) The input is a pointer directly to the node in Q containing x .

• DELETE(Q, x): Delete the element x ∈ Q. The input is a pointer directly to the node in Q
containing x .

• MELD(Q1,Q2): Return a new priority queue containing all the elements of Q1 and Q2; this
operation destroys Q1 and Q2.

A simple way to implement such a data structure is to use a heap-ordered binary tree, where
each node stores a key, along with pointers to its parent and two children. MELD can be imple-
mented using the following randomized algorithm:

MELD(Q1,Q2):
if Q1 is empty return Q2
if Q2 is empty return Q1

if key(Q1)> key(Q2)
swap Q1↔Q2

with probability 1/2
left(Q1)←MELD(left(Q1),Q2)

else
right(Q1)←MELD(right(Q1),Q2)

return Q1

11

Algorithms Lecture 10: Treaps and Skip Lists [Fa’10]

(a) Prove that for any heap-ordered binary trees Q1 and Q2 (not just those constructed by the
operations listed above), the expected running time of MELD(Q1,Q2) is O(log n), where
n = |Q1|+ |Q2|. [Hint: How long is a random root-to-leaf path in an n-node binary tree if
each left/right choice is made with equal probability?]

(b) Prove that MELD(Q1,Q2) runs in O(log n) time with high probability.

(c) Show that each of the other meldable priority queue operations can be implemented with at
most one call to MELD and O(1) additional time. (This implies that every operation takes
O(log n) time with high probability.)

c© Copyright 2010 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

12

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

	Randomized Binary Search Trees
	Treaps
	Definitions
	Treap Operations
	Random Priorities
	Randomized Quicksort (Again!)

	Skip Lists
	Recursive Random Shortcuts
	Number of Levels
	Logarithmic Search Time

