
Algorithms Lecture 2: Fast Fourier Transforms [Fa’10]

Calvin: Here’s another math problem I can’t figure out. What’s 9+4?
Hobbes: Ooh, that’s a tricky one. You have to use calculus and imaginary

numbers for this.
Calvin: IMAGINARY NUMBERS?!
Hobbes: You know, eleventeen, thirty-twelve, and all those. It’s a little

confusing at first.
Calvin: How did YOU learn all this? You’ve never even gone to school!
Hobbes: Instinct. Tigers are born with it.

— “Calvin and Hobbes” (January 6, 1998)

It needs evaluation
So let the games begin
A heinous crime, a show of force
A murder would be nice, of course

— “Bad Horse’s Letter”, Dr. Horrible’s Sing-Along Blog (2008)

2 Fast Fourier Transforms?

2.1 Polynomials

In this lecture we’ll talk about algorithms for manipulating polynomials: functions of one variable built
from additions subtractions, and multiplications (but no divisions). The most common representation
for a polynomial p(x) is as a sum of weighted powers of a variable x:

p(x) =
n
∑

j=0

a j x
j .

The numbers a j are called coefficients. The degree of the polynomial is the largest power of x; in the
example above, the degree is n. Any polynomial of degree n can be specified by a sequence of n+ 1
coefficients. Some of these coefficients may be zero, but not the nth coefficient, because otherwise the
degree would be less than n.

Here are three of the most common operations that are performed with polynomials:

• Evaluate: Give a polynomial p and a number x , compute the number p(x).

• Add: Give two polynomials p and q, compute a polynomial r = p+ q, so that r(x) = p(x) + q(x)
for all x . If p and q both have degree n, then their sum p+ q also has degree n.

• Multiply: Give two polynomials p and q, compute a polynomial r = p ·q, so that r(x) = p(x) ·q(x)
for all x . If p and q both have degree n, then their product p · q has degree 2n.

Suppose we represent a polynomial of degree n as an array of n+ 1 coefficients P[0 .. n], where
P[j] is the coefficient of the x j term. We learned simple algorithms for all three of these operations in
high-school algebra:

EVALUATE(P[0 .. n], x):
X ← 1 〈〈X = x j〉〉
y ← 0
for j← 0 to n

y ← y + P[j] · X
X ← X · x

return y

ADD(P[0 .. n],Q[0 .. n]):
for j← 0 to n

R[j]← P[j] +Q[j]
return R[0 .. n]

MULTIPLY(P[0 .. n],Q[0 .. m]):
for j← 0 to n+m

R[j]← 0
for j← 0 to n

for k← 0 to m
R[j+ k]← R[j+ k] + P[j] ·Q[k]

return R[0 .. n+m]

c© Copyright 2010 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

Algorithms Lecture 2: Fast Fourier Transforms [Fa’10]

EVALUATE uses O(n) arithmetic operations.1 This is the best we can hope for, but we can cut the
number of multiplications in half using Horner’s rule:

p(x) = a0+ x(a1+ x(a2+ . . .+ xan)).

HORNER(P[0 .. n], x):
y ← P[n]
for i← n− 1 downto 0

y ← x · y + P[i]
return y

The addition algorithm also runs in O(n) time, and this is clearly the best we can do.
The multiplication algorithm, however, runs in O(n2) time. In the previous lecture, we saw a

divide and conquer algorithm (due to Karatsuba) for multiplying two n-bit integers in only O(nlg 3)
steps; precisely the same algorithm can be applied here. Even cleverer divide-and-conquer strategies
lead to multiplication algorithms whose running times are arbitrarily close to linear—O(n1+ε) for your
favorite value e > 0—but with great cleverness comes great confusion. These algorithms are difficult to
understand, even more difficult to implement correctly, and not worth the trouble in practice thanks to
large constant factors.

2.2 Alternate Representations

Part of what makes multiplication so much harder than the other two operations is our input representa-
tion. Coefficients vectors are the most common representation for polynomials, but there are at least
two other useful representations.

2.2.1 Roots

The Fundamental Theorem of Algebra states that every polynomial p of degree n has exactly n roots
r1, r2, . . . rn such that p(r j) = 0 for all j. Some of these roots may be irrational; some of these roots may
by complex; and some of these roots may be repeated. Despite these complications, this theorem implies
a unique representation of any polynomial of the form

p(x) = s
n
∏

j=1

(x − r j)

where the r j ’s are the roots and s is a scale factor. Once again, to represent a polynomial of degree n, we
need a list of n+ 1 numbers: one scale factor and n roots.

Given a polynomial in this root representation, we can clearly evaluate it in O(n) time. Given two
polynomials in root representation, we can easily multiply them in O(n) time by multiplying their scale
factors and just concatenating the two root sequences.

Unfortunately, if we want to add two polynomials in root representation, we’re out of luck. There’s
essentially no correlation between the roots of p, the roots of q, and the roots of p + q. We could

1I’m going to assume in this lecture that each arithmetic operation takes O(1) time. This may not be true in practice; in fact,
one of the most powerful applications of FFTs is fast integer multiplication. One of the fastest integer multiplication algorithms,
due to Schönhage and Strassen, multiplies two n-bit binary numbers using O(n log n log log n log log log n · · ·2O(log∗ n)) bit
operations. The algorithm uses an n-element Fast Fourier Transform, which requires several O(log n)-nit integer multiplications,
which are carried out recursively (of course!), leading to the cascade of logs in the running time. The 2O(log∗ n) factor accounts
for the constant factors accumulated at each of the O(log∗ n) levels of recursion. The fastest algorithm known for integer
multiplication, published by Martin Fürer in 2007, uses O(n log n 2O(log∗ n)) bit operations.

2

Algorithms Lecture 2: Fast Fourier Transforms [Fa’10]

convert the polynomials to the more familiar coefficient representation first—this takes O(n2) time
using the high-school algorithms—but there’s no easy way to convert the answer back. In fact, for most
polynomials of degree 5 or more in coefficient form, it’s impossible to compute roots exactly.2

2.2.2 Samples

Our third representation for polynomials comes from a different consequence of the Fundamental
Theorem of Algebra. Given a list of n+ 1 pairs {(x0, y0), (x1, y1), . . . , (xn, yn) }, there is exactly one
polynomial p of degree n such that p(x j) = y j for all j. This is just a generalization of the fact that any
two points determine a unique line, because a line is the graph of a polynomial of degree 1. We say that
the polynomial p interpolates the points (x j , y j). As long as we agree on the sample locations x j in
advance, we once again need exactly n+ 1 numbers to represent a polynomial of degree n.

Adding or multiplying two polynomials in this sample representation is easy, as long as they use
the same sample locations x j. To add the polynomials, just add their sample values. To multiply
two polynomials, just multiply their sample values; however, if we’re multiplying two polynomials of
degree n, we must start with 2n+ 1 sample values for each polynomial, because that’s how many we
need to uniquely represent their product. Both algorithms run in O(n) time.

Unfortunately, evaluating a polynomial in this representation is no longer straightforward. The
following formula, due to Lagrange, allows us to compute the value of any polynomial of degree n at
any point, given a set of n+ 1 samples.

p(x) =
n−1
∑

j=0

y j
∏

k 6= j(x j − xk)

∏

k 6= j

(x − xk)

Hopefully it’s clear that formula actually describes a polynomial function of x , since each term in the
rightmost sum is a scaled product of monomials. It’s also not hard to verify that p(x j) = y j for every
index j; most of the terms of the sum vanish. As I mentioned earlier, the Fundamental Theorem of
Algebra implies that p is the only polynomial that interpolates the points {(x j , y j)}. Lagrange’s formula
can be translated mechanically into an O(n2)-time algorithm.

2.2.3 Summary

We find ourselves in the following frustrating situation. We have three representations for polynomials
and three basic operations. Each representation allows us to almost trivially perform a different pair of
operations in linear time, but the third takes at least quadratic time, if it can be done at all!

evaluate add multiply

coefficients O(n) O(n) O(n2)
roots + scale O(n) ∞ O(n)

samples O(n2) O(n) O(n)

2.3 Converting Between Representations

What we need are fast algorithms to convert quickly from one representation to another. That way,
when we need to perform an operation that’s hard for our default representation, we can switch to a

2This is where numerical analysis comes from.

3

Algorithms Lecture 2: Fast Fourier Transforms [Fa’10]

different representation that makes the operation easy, perform that operation, and then switch back.
This strategy immediately rules out the root representation, since (as I mentioned earlier) finding roots
of polynomials is impossible in general, at least if we’re interested in exact results.

So how do we convert from coefficients to samples and back? Clearly, once we choose our sample
positions x j, we can compute each sample value y j = p(x j) in O(n) time from the coefficients using
Horner’s rule. So we can convert a polynomial of degree n from coefficients to samples in O(n2) time.
Lagrange’s formula can be used to convert the sample representation back to the more familiar coefficient
form. If we use the naïve algorithms for adding and multiplying polynomials (in coefficient form), this
conversion takes O(n3) time.

We can improve the cubic running time by observing that both conversion problems boil down to
computing the product of a matrix and a vector. The explanation will be slightly simpler if we assume
the polynomial has degree n− 1, so that n is the number of coefficients or samples. Fix a sequence
x0, x1, . . . , xn−1 of sample positions, and let V be the n× n matrix where vi j = x j

i (indexing rows and
columns from 0 to n− 1):

V =

1 x0 x2
0 · · · xn−1

0

1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2
...

...
...

. . .
...

1 xn−1 x2
n−1 · · · xn−1

n−1

.

The matrix V is called a Vandermonde matrix. The vector of coefficients ~a = (a0, a1, . . . , an−1) and the
vector of sample values ~y = (y0, y1, . . . , yn−1) are related by the matrix equation

V~a = ~y ,

or in more detail,

1 x0 x2
0 · · · xn−1

0

1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2
...

...
...

. . .
...

1 xn−1 x2
n−1 · · · xn−1

n−1

a0

a1

a2
...

an−1

=

y0

y1

y2
...

yn−1

.

Given this formulation, we can clearly transform any coefficient vector ~a into the corresponding
sample vector ~y in O(n2) time.

Conversely, if we know the sample values ~y , we can recover the coefficients by solving a system of
n linear equations in n unknowns; this takes O(n3) time if we use Gaussian elimination.3 But we can
speed this up by implicitly hard-coding the sample positions into the algorithm, To convert from samples
to coefficients, we can simply multiply the sample vector by the inverse of V , again in O(n2) time.

~a = V−1~y

Computing V−1 would take O(n3) time if we had to do it from scratch using Gaussian elimination, but
because we fixed the set of sample positions in advance, the matrix V−1 can be hard-coded directly into
the algorithm.4

3In fact, Lagrange’s formula is just a special case of Cramer’s rule for solving linear systems.
4Actually, it is possible to invert an n× n matrix in o(n3) time, using fast matrix multiplication algorithms that closely

resemble Karatsuba’s sub-quadratic divide-and-conquer algorithm for integer/polynomial multiplication. On the other hand,
my numerical-analysis colleagues have reasonable cause to shoot me for daring to suggest, even in passing, that anyone
actually invert a matrix at all, ever.

4

http://en.wikipedia.org/wiki/Vandermonde_matrix

Algorithms Lecture 2: Fast Fourier Transforms [Fa’10]

So we can convert from coefficients to samples and back in O(n2) time. At first lance, this result
seems pointless; we can already add, multiply, or evaluate directly in either representation in O(n2) time,
so why bother? But there’s a degree of freedom we haven’t exploited—We get to choose the sample
positions! Our conversion algorithm may be slow only because we’re trying to be too general. If we
choose a set of sample positions with the right recursive structure, we can perform this conversion more
quickly.

2.4 Divide and Conquer

Any polynomial of degree n−1 can be expressed as a combination of two polynomials of degree (n/2)−1
as follows:

p(x) = peven(x
2) + x · podd(x

2).

The coefficients of peven are just the even-degree coefficients of p, and the coefficients of podd are just
the odd-degree coefficients of p. Thus, we can evaluate p(x) by recursively evaluating peven(x2) and
podd(x2) and performing O(1) additional arithmetic operations.

Now call a set X of n values collapsing if either of the following conditions holds:

• X has one element.

• The set X 2 = {x2 | x ∈ X } has exactly n/2 elements and is (recursively) collapsing.

Clearly the size of any collapsing set is a power of 2. Given a polynomial p of degree n− 1, and a
collapsing set X of size n, we can compute the set {p(x) | x ∈ X } of sample values as follows:

1. Recursively compute {peven(x2) | x ∈ X }= {peven(y) | y ∈ X 2}.

2. Recursively compute {podd(x2) | x ∈ X }= {podd(y) | y ∈ X 2}.

3. For each x ∈ X , compute p(x) = peven(x2) + x · podd(x2).

The running time of this algorithm satisfies the familiar recurrence T(n) = 2T(n/2) +Θ(n), which as
we all know solves to T (n) = Θ(n log n).

Great! Now all we need is a sequence of arbitrarily large collapsible sets. The simplest method to
construct such sets is just to invert the recursive definition: If X is a collapsible set of size n that does not
contain the number 0, then

p
X = {±

p
x | x ∈ X } is a collapsible set of size 2n. This observation gives us

an infinite sequence of collapsible sets, starting as follows:5

X1 := {1}
X2 := {1, −1}
X4 := {1, −1, i, −i}

X8 :=

¨

1, −1, i, −i,

p
2

2
+

p
2

2
i, −
p

2

2
−
p

2

2
i,

p
2

2
−
p

2

2
i, −
p

2

2
+

p
2

2
i

«

5In this lecture, i always represents the square root of −1. Computer scientists are used to thinking of i as an integer index
into a sequence, an array, or a for-loop, but we obviously can’t do that here. The physicist’s habit of using j =

p
−1 just delays

the problem (How do physicists write quaternions?), and typographical tricks like I or i or Mathematica’s ıı◦ are just stupid.

5

Algorithms Lecture 2: Fast Fourier Transforms [Fa’10]

2.5 The Discrete Fourier Transform

For any n, the elements of Xn are called the complex nth roots of unity; these are the roots of the
polynomial xn− 1= 0. These n complex values are spaced exactly evenly around the unit circle in the
complex plane. Every nth root of unity is a power of the primitive nth root

ωn = e2πi/n = cos
2π

n
+ i sin

2π

n
.

A typical nth root of unity has the form

ωk
n = e(2πi/n)k = cos

�

2π

n
k
�

+ i sin
�

2π

n
k
�

.

These complex numbers have several useful properties for any integers n and k:

• There are exactly n different nth roots of unity: ωk
n =ω

k mod n
n .

• If n is even, then ωk+n/2
n =−ωk

n; in particular, ωn/2
n =−ω0

n =−1.

• 1/ωk
n =ω

−k
n =ω

k
n = (ωn)k, where the bar represents complex conjugation: a+ bi = a− bi

• ωn =ωk
kn. Thus, every nth root of unity is also a (kn)th root of unity.

These properties imply immediately that if n is a power of 2, then the set of all nth roots of unity is
collapsible!

If we sample a polynomial of degree n−1 at the nth roots of unity, the resulting list of sample values
is called the discrete Fourier transform of the polynomial (or more formally, of its coefficient vector).
Thus, given an array P[0 .. n− 1] of coefficients, its discrete Fourier transform is the vector P∗[0 .. n− 1]
defined as follows:

P∗[j] := p(ω j
n) =

n−1
∑

k=0

P[k] ·ω jk
n

As we already observed, the fact that sets of roots of unity are collapsible implies that we can compute the
discrete Fourier transform in O(n log n) time. The resulting algorithm, called the fast Fourier transform,
was popularized by Cooley and Tukey in 1965.6 The algorithm assumes that n is a power of two; if
necessary, we can just pad the coefficient vector with zeros.

6Actually, Cooley and Tukey’s FFT algorithm was previously published by Runge and König in 1924, and again by Yates in
1932, and again by Stumpf in 1937, and again by Danielson and Lanczos in 1942. So of course it’s often called the Cooley-Tukey
algorithm. But the algorithm was first used by Gauss in the 1800s for calculating the paths of asteroids from a finite number of
equally-spaced observations. By hand. Fourier himself always did it the hard way.

Tukey apparently developed the algorithm to help detect Soviet nuclear tests without actually visiting Soviet nuclear facilities,
by interpolating off-shore seismic readings. Without their rediscovery of the FFT algorithm, the nuclear test ban treaty would
never have been ratified, and we’d all be speaking Russian, or more likely, whatever language radioactive glass speaks.

6

http://en.wikipedia.org/wiki/Root_of_unity
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Fast_Fourier_transform
http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm
http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm

Algorithms Lecture 2: Fast Fourier Transforms [Fa’10]

FFT(P[0 .. n− 1]):
if n= 1

return P

for j← 0 to n/2− 1
U[j]← P[2 j]
V[j]← P[2 j+ 1]

U∗← FFT(U[0 .. n/2− 1])
V ∗← FFT(V[0 .. n/2− 1])

ωn← cos(2π
n
) + i sin(2π

n
)

ω← 1

for j← 0 to n/2− 1
P∗[j] ← U∗[j] +ω · V ∗[j]
P∗[j+ n/2]← U∗[j]−ω · V ∗[j]
ω←ω ·ωn

return P∗[0 .. n− 1]

2.6 Inverting the FFT

We also need to recover the coefficients of the product from the new sample values. Recall that the
transformation from coefficients to sample values is linear; the sample vector is the product of a
Vandermonde matrix V and the coefficient vector. For the discrete Fourier transform, each entry in V is
an nth root of unity; specifically,

v jk =ω
jk
n

for all integers j and k. Thus,

V =

1 1 1 1 · · · 1

1 ωn ω2
n ω3

n · · · ωn−1
n

1 ω2
n ω4

n ω6
n · · · ω2(n−1)

n

1 ω3
n ω6

n ω9
n · · · ω3(n−1)

n
...

...
...

...
. . .

...

1 ωn−1
n ω2(n−1)

n ω3(n−1)
n · · · ω(n−1)2

n

To invert the discrete Fourier transform, converting sample values back to coefficients, we just have
to multiply P∗ by the inverse matrix V−1. The following amazing fact implies that this is almost the
same as multiplying by V itself:

Claim: V−1 = V/n

Proof: Let W = V/n. We just have to show that M = VW is the identity matrix. We can compute a
single entry in M as follows:

m jk =
n−1
∑

l=0

v jl ·wlk =
n−1
∑

l=0

ω jl
n ·ωn

lk/n=
1

n

n−1
∑

l=0

ω jl−lk
n =

1

n

n−1
∑

l=0

(ω j−k
n)l

If j = k, then ω j−k
n =ω0

n = 1, so

m jk =
1

n

n−1
∑

l=0

1=
n

n
= 1,

7

Algorithms Lecture 2: Fast Fourier Transforms [Fa’10]

and if j 6= k, we have a geometric series

m jk =
n−1
∑

l=0

(ω j−k
n)l =

(ω j−k
n)n− 1

ω
j−k
n − 1

=
(ωn

n)
j−k − 1

ω
j−k
n − 1

=
1 j−k − 1

ω
j−k
n − 1

= 0.

That’s it! �

In other words, if W = V−1 then w jk = v jk/n=ω
jk
n /n=ω

− jk
n /n. What this means for us computer

scientists is that any algorithm for computing the discrete Fourier transform can be easily modified to
compute the inverse transform as well.

INVERSEFFT(P∗[0 .. n− 1]):
if n= 1

return P

for j← 0 to n/2− 1
U∗[j]← P∗[2 j]
V ∗[j]← P∗[2 j+ 1]

U ← INVERSEFFT(U[0 .. n/2− 1])
V ← INVERSEFFT(V[0 .. n/2− 1])

ωn← cos(2π
n
)− i sin(2π

n
)

ω← 1

for j← 0 to n/2− 1
P[j] ← 2(U[j] +ω · V[j])
P[j+ n/2]← 2(U[j]−ω · V[j])
ω←ω ·ωn

return P[0 .. n− 1]

2.7 Fast Multiplication

Finally, given two polynomials p and q, each represented by an array of coefficients, we can multiply
them in Θ(n log n) arithmetic operations as follows. First, pad the coefficient vectors and with zeros
until the size is a power of two greater than or equal to the sum of the degrees. Then compute the DFTs
of each coefficient vector, multiply the sample values one by one, and compute the inverse DFT of the
resulting sample vector.

FFTMULTIPLY(P[0 .. n− 1],Q[0 .. m− 1]):
`← dlg(n+m)e
for j← n to 2` − 1

P[j]← 0
for j← m to 2` − 1

Q[j]← 0

P∗← F F T (P)
Q∗← F F T (Q)
for j← 0 to 2` − 1

R∗[j]← P∗[j] ·Q∗[j]
return INVERSEFFT(R∗)

8

Algorithms Lecture 2: Fast Fourier Transforms [Fa’10]

2.8 Inside the FFT

FFTs are often implemented in hardware as circuits. To see the recursive structure of the circuit, let’s
connect the top-level inputs and outputs to the inputs and outputs of the recursive calls. On the left we
split the input P into two recursive inputs U and V . On the right, we combine the outputs U∗ and V ∗ to
obtain the final output P∗.

FFT(n/2)

FFT(n/2)

U U*

V V*

P P*

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0010

0100

0110

1000

1010

1100

1110

0001

0011

0101

0111

1001

1011

1101

1111

0000

0100

1000

1100

0010

0110

1010

1110

0001

0101

1001

1101

0011

0111

1011

1111

0000

1000

0100

1100

0010

1010

0110

1110

0001

1001

0101

1101

0010

1011

0111

1111

Bit-reversal permutation Butterfly network

The recursive structure of the FFT algorithm.

If we expand this recursive structure completely, we see that the circuit splits naturally into two
parts. The left half computes the bit-reversal permutation of the input. To find the position of P[k] in
this permutation, write k in binary, and then read the bits backward. For example, in an 8-element
bit-reversal permutation, P[3] = P[0112] ends up in position 6 = 1102. The right half of the FFT circuit
is a butterfly network. Butterfly networks are often used to route between processors in massively-parallel
computers, because they allow any two processors to communicate in only O(log n) steps.

Exercises

1. For any two sets X and Y of integers, the Minkowski sum X + Y is the set of all pairwise sums
{x + y | x ∈ X , y ∈ Y }.

(a) Describe an analyze and algorithm to compute the number of elements in X+Y in O(n2 log n)
time. [Hint: The answer is not always n2.]

(b) Describe and analyze an algorithm to compute the number of elements in X+Y in O(M log M)
time, where M is the largest absolute value of any element of X ∪ Y . [Hint: What’s this
lecture about?]

2. (a) Describe an algorithm that determines whether a given set of n integers contains two elements
whose sum is zero, in O(n log n) time.

(b) Describe an algorithm that determines whether a given set of n integers contains three
elements whose sum is zero, in O(n2) time.

(c) Now suppose the input set X contains only integers between −10000n and 10000n. Describe
an algorithm that determines whether X contains three elements whose sum is zero, in
O(n log n) time. [Hint: Hint.]

c© Copyright 2010 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

9

http://en.wikipedia.org/wiki/Bit-reversal_permutation
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

	Fast Fourier Transforms
	Polynomials
	Alternate Representations
	Roots
	Samples
	Summary

	Converting Between Representations
	Divide and Conquer
	The Discrete Fourier Transform
	Inverting the FFT
	Fast Multiplication
	Inside the FFT

