
Chapter 26

Entropy, Randomness, and Information
By Sariel Har-Peled, December 7, 2009¬

“If only once - only once - no matter where, no matter before what audience - I could better the record
of the great Rastelli and juggle with thirteen balls, instead of my usual twelve, I would feel that I had
truly accomplished something for my country. But I am not getting any younger, and although I am still
at the peak of my powers there are moments - why deny it? - when I begin to doubt - and there is a time
limit on all of us.”

– –Romain Gary, The talent scout.

26.1 Entropy
Definition 26.1.1 The entropy in bits of a discrete random variable X is given by

H(X) = −
∑

x

Pr[X = x] lg Pr[X = x] .

Equivalently, H(X) = E
[
lg 1

Pr[X]

]
.

The binary entropy function H(p) for a random binary variable that is 1 with probability p, is
H(p) = −p lg p − (1 − p) lg(1 − p). We define H(0) = H(1) = 0.

The function H(p) is a concave symmetric around 1/2 on the interval [0, 1] and achieves its maxi-
mum at 1/2. For a concrete example, consider H(3/4) ≈ 0.8113 and H(7/8) ≈ 0.5436. Namely, a
coin that has 3/4 probably to be heads have higher amount of “randomness” in it than a coin that
has probability 7/8 for heads.

We have H′(p) = − lg p + lg(1 − p) = lg 1−p
p and H′′(p) =

p
1−p ·

(
− 1

p2

)
= − 1

p(1−p) . Thus,
H′′(p) ≤ 0, for all p ∈ (0, 1), and the H(·) is concave in this range. Also, H′(1/2) = 0, which
implies that H(1/2) = 1 is a maximum of the binary entropy. Namely, a balanced coin has the
largest amount of randomness in it.

Example 26.1.2 A random variable X that has probability 1/n to be i, for i = 1, . . . , n, has entropy
H(X) = −

∑n
i=1

1
n lg 1

n = lg n.
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this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons,
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Note, that the entropy is oblivious to the exact values that the random variable can have, and it
is sensitive only to the probability distribution. Thus, a random variables that accepts −1,+1 with
equal probability has the same entropy (i.e., 1) as a fair coin.

Lemma 26.1.3 Let X and Y be two independent random variables, and let Z be the random vari-
able (X,Y). Then H(Z) = H(X) + H(Y).

Proof: In the following, summation are over all possible values that the variables can have. By
the independence of X and Y we have

H(Z) =
∑
x,y

Pr
[
(X,Y) = (x, y)

]
lg

1
Pr

[
(X,Y) = (x, y)

]
=

∑
x,y

Pr[X = x] Pr
[
Y = y

]
lg

1
Pr[X = x] Pr

[
Y = y

]
=

∑
x

∑
y

Pr[X = x] Pr
[
Y = y

]
lg

1
Pr[X = x]

+
∑

y

∑
x

Pr[X = x] Pr
[
Y = y

]
lg

1
Pr

[
Y = y

]
=

∑
x

Pr[X = x] lg
1

Pr[X = x]
+

∑
y

Pr
[
Y = y

]
lg

1
Pr

[
Y = y

] = H(X) + H(Y) .

Lemma 26.1.4 Suppose that nq is integer in the range [0, n]. Then
2nH(q)

n + 1
≤

(
n

nq

)
≤ 2nH(q).

Proof: This trivially holds if q = 0 or q = 1, so assume 0 < q < 1. We know that(
n

nq

)
qnq(1 − q)n−nq ≤ (q + (1 − q))n = 1.

As such, since q−nq(1 − q)−(1−q)n = 2n(−q lg q−(1−q) lg(1−q)) = 2nH(q), we have(
n
nq

)
≤ q−nq(1 − q)−(1−q)n = 2nH(q).

As for the other direction, let µ(k) =
(

n
k

)
qk(1− q)n−k. We claim that µ(nq) =

(
n
nq

)
qnq(1− q)n−nq is

the largest term in
∑n

k=0 µ(k) = 1. Indeed,

∆k = µ(k) − µ(k + 1) =

(
n
k

)
qk(1 − q)n−k

(
1 −

n − k
k + 1

q
1 − q

)
,

and the sign of this quantity is the sign of the last term, which is

sign(∆k) = sign
(
1 −

(n − k)q
(k + 1)(1 − q)

)
= sign

(
(k + 1)(1 − q) − (n − k)q

(k + 1)(1 − q)

)
.

Now,
(k + 1)(1 − q) − (n − k)q = k + 1 − kq − q − nq + kq = 1 + k − q − nq.
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Namely, ∆k ≥ 0 when k ≥ nq + q − 1, and ∆k < 0 otherwise. Namely, µ(k) < µ(k + 1), for k < nq,
and µ(k) ≥ µ(k + 1) for k ≥ nq. Namely, µ(nq) is the largest term in

∑n
k=0 µ(k) = 1, and as such it

is larger than the average. We have µ(nq) =
(

n
nq

)
qnq(1 − q)n−nq ≥ 1

n+1 , which implies(
n
nq

)
≥

1
n + 1

q−nq(1 − q)−(n−nq) =
1

n + 1
2nH(q).

Lemma 26.1.4 can be extended to handle non-integer values of q. This is straightforward, and
we omit the easy details.

Corollary 26.1.5 We have:
(i) q ∈ [0, 1/2]⇒

(
n
bnqc

)
≤ 2nH(q). (ii) q ∈ [1/2, 1]

(
n
dnqe

)
≤ 2nH(q).

(iii) q ∈ [1/2, 1]⇒ 2nH(q)

n+1 ≤
(

n
bnqc

)
. (iv) q ∈ [0, 1/2]⇒ 2nH(q)

n+1 ≤
(

n
dnqe

)
.

The bounds of Lemma 26.1.4 and Corollary 26.1.5 are loose but sufficient for our purposes. As
a sanity check, consider the case when we generate a sequence of n bits using a coin with proba-
bility q for head, then by the Chernoff inequality, we will get roughly nq heads in this sequence.
As such, the generated sequence Y belongs to

(
n

nq

)
≈ 2nH(q) possible sequences that have similar

probability. As such, H (Y) ≈ lg
(

n
nq

)
= nH (q), by Example 26.1.2, a fact that we already know

from Lemma 26.1.3.

26.1.1 Extracting randomness

Entropy can be interpreted as the amount of unbiased random coin flips can be extracted from a
random variable.

Definition 26.1.6 An extraction function Ext takes as input the value of a random variable X and

outputs a sequence of bits y, such that Pr
[
Ext(X) = y

∣∣∣∣ |y| = k
]

= 1
2k , whenever Pr

[
|y| = k

]
> 0,

where |y| denotes the length of y.

As a concrete (easy) example, consider X to be a uniform random integer variable out of
0, . . . , 7. All that Ext(X) has to do in this case, is to compute the binary representation of x. How-
ever, note that Definition 26.1.6 is somewhat more subtle, as it requires that all extracted sequence
of the same length would have the same probability.

Thus, for X a uniform random integer variable in the range 0, . . . , 11, the function Ext(x) can
output the binary representation for x if 0 ≤ x ≤ 7. However, what do we do if x is between 8
and 11? The idea is to output the binary representation of x − 8 as a two bit number. Clearly,

Definition 26.1.6 holds for this extraction function, since Pr
[
Ext(X) = 00

∣∣∣∣ |Ext(X)| = 2
]

= 1
4 , as

required. This scheme can be of course extracted for any range.
The following is obvious, but we provide a proof anyway.

Lemma 26.1.7 Let x/y be a faction, such that x/y < 1. Then, for any i, we have x/y < (x+i)/(y+i).

Proof: We need to prove that x(y + i)− (x + i)y < 0. The left size is equal to i(x− y), but since y > x
(as x/y < 1), this quantity is negative, as required.
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Theorem 26.1.8 Suppose that the value of a random variable X is chosen uniformly at random
from the integers {0, . . . ,m − 1}. Then there is an extraction function for X that outputs on average
at least

⌊
lg m

⌋
− 1 = bH (X)c − 1 independent and unbiased bits.

Proof: We represent m as a sum of unique powers of 2, namely m =
∑

i ai2i, where ai ∈ {0, 1}.
Thus, we decomposed {0, . . . ,m − 1} into a disjoint union of blocks that have sizes which are
distinct powers of 2. If a number falls inside such a block, we output its relative location in the
block, using binary representation of the appropriate length (i.e., k if the block is of size 2k). The
fact that this is an extraction function, fulfilling Definition 26.1.6, is obvious.

Now, observe that the claim holds trivially if m is a power of two. Thus, consider the case
that m is not a power of 2. If X falls inside a block of size 2k then the entropy is k. Thus, for the
inductive proof, assume that are looking at the largest block in the decomposition, that is m < 2k+1,
and let u =

⌊
lg(m − 2k)

⌋
< k. There must be a block of size u in the decomposition of m. Namely,

we have two blocks that we known in the decomposition of m, of sizes 2k and 2u. Note, that these
two blocks are the largest blocks in the decomposition of m. In particular, 2k +2∗2u > m, implying
that 2u+1 + 2k − m > 0.

Let Y be the random variable which is the number of bits output by the extractor algorithm.
By Lemma 26.1.7, since m−2k

m < 1, we have

m − 2k

m
≤

m − 2k +
(
2u+1 + 2k − m

)
m +

(
2u+1 + 2k − m

) =
2u+1

2u+1 + 2k .

Thus, by induction (we assume the claim holds for all integers smaller than m), we have

E[Y] ≥
2k

m
k +

m − 2k

m

( ⌊
lg(m − 2k)

⌋︸        ︷︷        ︸
u

−1
)

=
2k

m
k +

m − 2k

m
( k − k︸︷︷︸

=0

+u − 1) = k +
m − 2k

m
(u − k − 1)

≥ k +
2u+1

2u+1 + 2k
(u − k − 1) = k −

2u+1

2u+1 + 2k
(1 + k − u) ,

since u − k − 1 ≤ 0 as k > u. If u = k − 1, then E[Y] ≥ k − 1
2 · 2 = k − 1, as required. If u = k − 2

then E[Y] ≥ k − 1
3 · 3 = k − 1. Finally, if u < k − 2 then

E[Y] ≥ k −
2u+1

2k
(1 + k − u) = k −

k − u + 1
2k−u−1 = k −

2 +(k − u − 1)
2k−u−1 ≥ k − 1,

since (2 + i) /2i ≤ 1 for i ≥ 2.
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