Chapter 26

Entropy, Randomness, and Information

By Sariel Har-Peled, December 7, 20097

“If only once - only once - no matter where, no matter before what audience - I could better the record
of the great Rastelli and juggle with thirteen balls, instead of my usual twelve, I would feel that I had
truly accomplished something for my country. But I am not getting any younger, and although I am still
at the peak of my powers there are moments - why deny it? - when I begin to doubt - and there is a time
limit on all of us.”

——Romain Gary, The talent scout.

26.1 Entropy

Definition 26.1.1 The entropy in bits of a discrete random variable X is given by

H(X) = — Z Pr[X = x]1gPr[X = x].

Equivalently, H(X) = E[lg ﬁ]
The binary entropy function H(p) for a random binary variable that is 1 with probability p, is
H(p) = -plgp -1 — p)lg(1 — p). We define H(0) = H(1) =

The function H(p) is a concave symmetric around 1/2 on the interval [0, 1] and achieves its maxi-
mum at 1/2. For a concrete example, consider H(3/4) = 0.8113 and H(7/8) ~ 0.5436. Namely, a
coin that has 3/4 probably to be heads have higher amount of “randomness” in it than a coin that
has probability 7/8 for heads.

We have H'(p) = —lgp + 1g(1 — p) = 1g—p and H'(p) = & (—# = - (]1 - Thus,
H”(p) < 0, for all p € (0,1), and the H(-) is concave in this range Also, H'(1/2) = 0, which
implies that H(1/2) = 1 is a maximum of the binary entropy. Namely, a balanced coin has the
largest amount of randomness in it.

Example 26.1.2 A random variable X that has probability 1/ntobe i, fori = 1,...,n, has entropy
HX) =-X1, %lg}l =lgn.
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Note, that the entropy is oblivious to the exact values that the random variable can have, and it
is sensitive only to the probability distribution. Thus, a random variables that accepts —1, +1 with
equal probability has the same entropy (i.e., 1) as a fair coin.

Lemma 26.1.3 Let X and Y be two independent random variables, and let Z be the random vari-
able (X,Y). Then H(Z) = H(X) + H(Y).

Proof: In the following, summation are over all possible values that the variables can have. By
the independence of X and Y we have

1
Pr((X,Y) = (x,y)]

1
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H(Z)

D Pl Y) = (ny)]lg
X,y
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ZPI‘[X Mg 5o +ZPrY y]1 [Yl_y]_H(X)+H(Y).

nH(q)
Lemma 26.1.4 Suppose that nq is integer in the range [0, n]. Then 7 < ( " ) < 2"E@,
n ng

Proof: This trivially holds if g = 0 or ¢ = 1, so assume 0 < g < 1. We know that
n ng n—nq n _
(-9 <(g+0-q)" =1.
ng
As such, since g™(1 — g)~1=n = 2n(~alea-(1-9)1e(1-9) = 2mH@) we have
) na ~(l=qin _ HnH(g)
<gqg ™M1 -gq) = 2"
nq

As for the other direction, let u(k) = ( ) k(1 — g)"*. We claim that u(ng) = ( ) (] — g)t is
the largest term in };_, u(k) = 1. Indeed,

n—k q
k+11-gq)’

n -
Ak=mm—um+D:(J¢a—qf%1—
and the sign of this quantity is the sign of the last term, which is

(n - byg }ﬂg%m+na—@—m—mﬂ
(k+ D1 = q) k+Di-q) )

sign(Ay) = sign(l —

Now,
k+1D)(1-qg—-(n—-kg=k+1-kg—qg—nqg+kqg=1+k—-qg—ng.
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Namely, Ay > 0 when k > ng + g — 1, and A, < 0 otherwise. Namely, u(k) < u(k + 1), for k < ng,
and p(k) > u(k + 1) for k > nq. Namely, u(ng) is the largest term in ) ;_, u(k) = 1, and as such it
is larger than the average. We have u(ng) = (n'; )q”q (1 - ¢)"™ > - which implies

n+l’

n 1 1
> “nqe| — —(n-nq) _ _2nH(q).
(nq)_n+lq (-9 n+1
]

Lemma can be extended to handle non-integer values of g. This is straightforward, and
we omit the easy details.

(i) g €10,1/2] = () < 2759, (ii) g € [1/2,1] (i) < 2759

[nq]

(iii) g € [1/2.11= 22 < (1) (v)gel0.1/21= 22 < (")

Corollary 26.1.5 We have:

The bounds of Lemma([26.1.4]and Corollary[26.1.5]are loose but sufficient for our purposes. As
a sanity check, consider the case when we generate a sequence of n bits using a coin with proba-
bility g for head, then by the Chernoff inequality, we will get roughly ng heads in this sequence.
As such, the generated sequence Y belongs to (n"q) ~ 2"@ possible sequences that have similar
probability. As such, H(Y) =~ Ig (n”q) = nH (g), by Example [26.1.2} a fact that we already know
from Lemma

26.1.1 Extracting randomness

Entropy can be interpreted as the amount of unbiased random coin flips can be extracted from a
random variable.

Definition 26.1.6 An extraction function Ext takes as input the value of a random variable X and

outputs a sequence of bits y, such that Pr|Ext(X) =y ‘ Iyl = k] = 2—1,(, whenever Pr[|y| = k] > 0,

where |y| denotes the length of y.

As a concrete (easy) example, consider X to be a uniform random integer variable out of
0,...,7. All that Ext(X) has to do in this case, is to compute the binary representation of x. How-
ever, note that Definition [26.1.6]is somewhat more subtle, as it requires that all extracted sequence
of the same length would have the same probability.

Thus, for X a uniform random integer variable in the range 0, ..., 11, the function Ext(x) can
output the binary representation for x if 0 < x < 7. However, what do we do if x is between 8
and 11?7 The idea is to output the binary representation of x — 8 as a two bit number. Clearly,

Definition [26.1.6| holds for this extraction function, since Pr[Ext(X) =00 | |[Ext(X)| = 2] = }‘, as

required. This scheme can be of course extracted for any range.
The following is obvious, but we provide a proof anyway.

Lemma 26.1.7 Let x/y be a faction, such that x/y < 1. Then, for any i, we have x|y < (x+1)/(y+1i).

Proof: We need to prove that x(y + i) — (x +i)y < 0. The left size is equal to i(x —y), but since y > x
(as x/y < 1), this quantity is negative, as required. ]
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Theorem 26.1.8 Suppose that the value of a random variable X is chosen uniformly at random
from the integers {0, . ..,m — 1}. Then there is an extraction function for X that outputs on average
at least |lgm] — 1 = |H(X)] — 1 independent and unbiased bits.

Proof: We represent m as a sum of unique powers of 2, namely m = 3, a;2, where a; € {0, 1}.
Thus, we decomposed {0, ...,m — 1} into a disjoint union of blocks that have sizes which are
distinct powers of 2. If a number falls inside such a block, we output its relative location in the
block, using binary representation of the appropriate length (i.e., k if the block is of size 2¥). The
fact that this is an extraction function, fulfilling Definition [26.1.6] is obvious.

Now, observe that the claim holds trivially if m is a power of two. Thus, consider the case
that m is not a power of 2. If X falls inside a block of size 2* then the entropy is k. Thus, for the
inductive proof, assume that are looking at the largest block in the decomposition, that is m < 2!,
and let u = |_1g(m - 2")J < k. There must be a block of size u in the decomposition of m. Namely,
we have two blocks that we known in the decomposition of m, of sizes 2¢ and 2*. Note, that these
two blocks are the largest blocks in the decomposition of m. In particular, 2f +2 %2 > m, implying
that 2“1 + 2k —m > 0.

Let Y be the random variable which is the number of bits output by the extractor algorithm.

By Lemma since ”’ffk < 1, we have

m — 2k 3 m — 2k +(2“+1 +2k—m) Qu+l

m o om +@ +2k—m) 2Tk

Thus, by induction (we assume the claim holds for all integers smaller than m), we have

k

_2 ok ok Py
([1g(m—2k)J—1):—k+m k=k+u-1=k+ "= u—k—1)
k 2 m m ta" m

2k
E[Y]> —k+ 2
m

2u+1 u+1

Zk+m(u—k—1):k 2k(1+k—1/t),

- 2Lt+] +

sinceu—k—1<0ask>u. Ifu:k—l,thenE[Y]Zk—%-Z:k—l,asrequired. fu=kk-2
thenE[Y]zk—%~3:k—l.Finally,ifu<k—2then

Qu+l k—u+1 2+k—-u-1)
since (2 +1i) /2 <1 fori> 2. m
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