
Chapter 25

Huffman Coding
By Sariel Har-Peled, December 7, 2009¬

25.1 Huffman coding

(This portion of the class notes is based on Jeff Erickson class notes.)
A binary code assigns a string of 0s and 1s to each character in the alphabet. A code assigns

for each symbol in the input a codeword over some other alphabet. Such a coding is necessary, for
example, for transmitting messages over a wire, were you can send only 0 or 1 on the wire (i.e.,
for example, consider the good old telegraph and Morse code). The receiver gets a binary stream
of bits and needs to decode the message sent. A prefix code, is a code where one can decipher the
message, a character by character, by just reading a prefix of the input binary string, matching it to
an original character, and continuing to decipher the rest of the stream. Such a code is known as a
prefix code.

A binary code (or a prefix code) is prefix-free if no code is a prefix of any other. ASCII and
Unicode’s UTF-8 are both prefix-free binary codes. Morse code is a binary code (and also a prefix
code), but it is not prefix-free; for example, the code for S (· · ·) includes the code for E (·) as a
prefix. (Hopefully the receiver knows that when it gets · · · that it is extremely unlikely that this
should be interpreted as EEE, but rather S. Any prefix-free binary code can be visualized as a binary
tree with the encoded characters stored at the leaves. The code word for any symbol is given by the
path from the root to the corresponding leaf; 0 for left, 1 for right. The length of a codeword for a
symbol is the depth of the corresponding leaf. Such trees are usually referred to as prefix trees or
code treestree!code trees.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

newline 16, 492
space 130,376

‘!’ 955
‘"’ 5,681
‘$’ 2
‘%’ 1
‘” 1,174
‘(’ 151
‘)’ 151
‘*’ 70
‘,’ 13,276
‘–’ 2,430
‘.’ 6,769

‘0’ 20
‘1’ 61
‘2’ 10
‘3’ 12
‘4’ 10
‘5’ 14
‘6’ 11
‘7’ 13
‘8’ 13
‘9’ 14
‘:’ 267
‘;’ 1,108
‘?’ 913

‘A’ 48,165
‘B’ 8,414
‘C’ 13,896
‘D’ 28,041
‘E’ 74,809
‘F’ 13,559
‘G’ 12,530
‘H’ 38,961
‘I’ 41,005
‘J’ 710
‘K’ 4,782
‘L’ 22,030
‘M’ 15,298

‘N’ 42,380
‘O’ 46,499
‘P’ 9,957
‘Q’ 667
‘R’ 37,187
‘S’ 37,575
‘T’ 54,024
‘U’ 16,726
‘V’ 5,199
‘W’ 14,113
‘X’ 724
‘Y’ 12,177
‘Z’ 215

‘_’ 182
’‘’ 93

‘@’ 2
‘/’ 26

Figure 25.1: Frequency of characters in the book “A tale of two cities” by Dickens. For the sake
of brevity, small letters were counted together with capital letters.

a

b c

d
0

0

0

1

1

1The beauty of prefix trees (and thus of prefix odes) is that decoding is
very easy. As a concrete example, consider the tree on the right. Given
a string ’010100’, we can traverse down the tree from the root, going left
if get a ’0’ and right if we get ’1’. Whenever we get to a leaf, we output
the character output in the leaf, and we jump back to the root for the next
character we are about to read. For the example ’010100’, after reading
’010’ our traversal in the tree leads us to the leaf marked with ’b’, we jump
back to the root and read the next input digit, which is ’1’, and this leads us to the leaf marked with
’d’, which we output, and jump back to the root. Finally, ’00’ leads us to the leaf marked by ’a’,
which the algorithm output. Thus, the binary string ’010100’ encodes the string “bda”.

Suppose we want to encode messages in an n-character alphabet so that the encoded message
is as short as possible. Specifically, given an array frequency counts f [1 . . . n], we want to compute
a prefix-free binary code that minimizes the total encoded length of the message. That is we would
like to compute a tree T that minimizes

cost(T) =

n∑
i=1

f [i] ∗ len(code(i)) , (25.1)

where code(i) is the binary string encoding the ith character and len(s) is the length (in bits) of the
binary string s.

As a concrete example, consider Figure 25.1, which shows the frequency of characters in the
book “A tale of two cities”, which we would like to encode. Consider the characters ‘E’ and ‘Q’.
The first appears > 74, 000 times in the text, and other appears only 667 times in the text. Clearly,
it would be logical to give ‘E’, the most frequent letter in English, a very short prefix code, and a
very long (as far as number of bits) code to ‘Q’.

A nice property of this problem is that given two trees for some parts of the alphabet, we can
easily put them together into a larger tree by just creating a new node and hanging the trees from
this common node. For example, putting two characters together, we have the following.

2

char frequency code
‘A’ 48165 1110
‘B’ 8414 101000
‘C’ 13896 00100
‘D’ 28041 0011
‘E’ 74809 011
‘F’ 13559 111111
‘G’ 12530 111110
‘H’ 38961 1001

char frequency code
‘I’ 41005 1011
‘J’ 710 1111011010
‘K’ 4782 11110111
‘L’ 22030 10101
‘M’ 15298 01000
‘N’ 42380 1100
‘O’ 46499 1101
‘P’ 9957 101001
‘Q’ 667 1111011001

char frequency code
‘R’ 37187 0101
‘S’ 37575 1000
‘T’ 54024 000
‘U’ 16726 01001
‘V’ 5199 1111010
‘W’ 14113 00101
‘X’ 724 1111011011
‘Y’ 12177 111100
‘Z’ 215 1111011000

Figure 25.2: The resulting prefix code for the frequencies of Figure 25.1. Here, for the sake of
simplicity of exposition, the code was constructed only for the A—Z characters.

M U ⇒

•

M

..

U

..

Similarly, we can put together two subtrees.

A

.

... .

..

B

.

... .

.. ⇒

•

A

.

... .

..

...
B

.

... .

..

..

25.1.1 The algorithm to build Hoffman’s code
This suggests a simple algorithm that takes the two least frequent characters in the current fre-
quency table, merge them into a tree, and put the merged tree back into the table (instead of the
two old trees). The algorithm stops when there is a single tree. The intuition is that infrequent
characters would participate in a large number of merges, and as such would be low in the tree –
they would be assigned a long code word.

This algorithm is due to David Huffman, who developed it in 1952. Shockingly, this code is the
best one can do. Namely, the resulting code is asymptotically gives the best possible compression
of the data (of course, one can do better compression in practice using additional properties of the
data and careful hacking). This Huffman coding is used widely and is the basic building block
used by numerous other compression algorithms.

To see how such a resulting tree (and the associated code) looks like, see Figure 25.2 and
Figure 25.3.

25.1.2 Analysis
Lemma 25.1.1 Let T be an optimal code tree. Then T is a full binary tree (i.e., every node of T

has either 0 or 2 children).
In particular, if the height of T is d, then there are leafs nodes of height d that are sibling.

3

•

•

•

T

...

•

•

C

..

W

..

... D

...

..

.. •

•

•

M

...

U

..

.. R

..

... E

..

..

.. •

•

•

S

..

H

..

.. •

•

•

B

..

P

..

... L

...

... I

...

..

... •

•

N

..

O

..

.. •

A

...
•

•

Y

..

•

V

..

•

•

•

Z

..

Q

..

... •

J

..

X

..

...

.. K

...

..

...

... •

G

..

F

..

...

...

..

...

..

Figure 25.3: The Huffman tree generating the code of Figure 25.2.

Proof: If there is an internal node in T that has one child, we can remove this node from T,
by connecting its only child directly with its parent. The resulting code tree is clearly a better
compressor, in the sense of Eq. (25.1).

As for the second claim, consider a leaf u with maximum depth d in T, and consider it parent
v = p(u). The node v has two children, and they are both leafs (otherwise u would not be the
deepest node in the tree), as claimed.

Lemma 25.1.2 Let x and y be the two least frequent characters (breaking ties between equally
frequent characters arbitrarily). There is an optimal code tree in which x and y are siblings.

Proof: In fact, there is an optimal code in which x and y are siblings and have the largest depth
of any leaf. Indeed, let T be an optimal code tree with depth d. The tree T has at least two leaves
at depth d that are siblings, by Lemma 25.1.1.

Now, suppose those two leaves are not x and y, but some other characters α and β. Let T′ be
the code tree obtained by swapping x and α. The depth of x increases by some amount ∆, and the
depth of α decreases by the same amount. Thus,

cost
(
T′

)
= cost(T) −

(
f [α] − f [x]

)
∆.

By assumption, x is one of the two least frequent characters, but α is not, which implies that
f [α] > f [x]. Thus, swapping x and α does not increase the total cost of the code. Since T was an

4

optimal code tree, swapping x and α does not decrease the cost, either. Thus, T′ is also an optimal
code tree (and incidentally, f [α] actually equals f [x]). Similarly, swapping y and b must give yet
another optimal code tree. In this final optimal code tree, x and y as maximum-depth siblings, as
required.

Theorem 25.1.3 Huffman codes are optimal prefix-free binary codes.

Proof: If the message has only one or two different characters, the theorem is trivial. Otherwise,
let f [1 . . . n] be the original input frequencies, where without loss of generality, f [1] and f [2] are
the two smallest. To keep things simple, let f [n + 1] = f [1] + f [2]. By the previous lemma, we
know that some optimal code for f [1..n] has characters 1 and 2 as siblings. Let Topt be this optimal
tree, and consider the tree formed by it by removing 1 and 2 as it leaves. We remain with a tree
T′opt that has as leafs the characters 3, . . . , n and a “special” character n + 1 (which is the parent of
1 and 2 in Topt) that has frequency f [n + 1]. Now, since f [n + 1] = f [1] + f [2], we have

cost
(
Topt

)
=

n∑
i=1

f [i]depthTopt
(i)

=

n+1∑
i=3

f [i]depthTopt
(i) + f [1]depthTopt

(1) + f [2]depthTopt
(2) − f [n + 1]depthTopt

(n + 1)

= cost
(
T′opt

)
+
(

f [1] + f [2]
)

depth
(
Topt

)
−
(

f [1] + f [2]
)(

depth
(
Topt

)
− 1

)
= cost

(
T′opt

)
+ f [1] + f [2]. (25.2)

This implies that minimizing the cost of Topt is equivalent to minimizing the cost of T′opt. In
particular, T′opt must be an optimal coding tree for f [3 . . . n + 1]. Now, consider the Huffman
tree T′H constructed for f [3, . . . , n + 1] and the overall Huffman tree TH constructed for f [1, . . . , n].
By the way the construction algorithm works, we have that T′H is formed by removing the leafs of
1 and 2 from T. Now, by induction, we know that the Huffman tree generated for f [3, . . . , n + 1] is
optimal; namely, cost

(
T′opt

)
= cost

(
T′H

)
. As such, arguing as above, we have

cost(TH) = cost
(
T′H

)
+ f [1] + f [2] = cost

(
T′opt

)
+ f [1] + f [2] = cost

(
Topt

)
,

by Eq. (25.2). Namely, the Huffman tree has the same cost as the optimal tree.

25.1.3 What do we get

For the book “A tale of two cities” which is made out of 779,940 bytes, and using the above
Huffman compression results in a compression to a file of size 439,688 bytes. A far cry from what
gzip can do (301,295 bytes) or bzip2 can do (220,156 bytes!), but still very impressive when you
consider that the Huffman encoder can be easily written in a few hours of work.

(This numbers ignore the space required to store the code with the file. This is pretty small,
and would not change the compression numbers stated above significantly.

5

25.1.4 A formula for the average size of a code word
Assume that our input is made out of n characters, where the ith character is pi fraction of the input
(one can think about pi as the probability of seeing the ith character, if we were to pick a random
character from the input).

Now, we can use these probabilities instead of frequencies to build a Huffman tree. The nat-
ural question is what is the length of the codewords assigned to characters as a function of their
probabilities?

In general this question does not have a trivial answer, but there is a simple elegant answer, if
all the probabilities are power of 2.

Lemma 25.1.4 Let 1, . . . , n be n symbols, such that the probability for the ith symbol is pi, and
furthermore, there is an integer li ≥ 0, such that pi = 1/2li . Then, in the Huffman coding for this
input, the code for i is of length li.

Proof: The proof is by easy induction of the Huffman algorithm. Indeed, for n = 2 the claim
trivially holds since there are only two characters with probability 1/2. Otherwise, let i and j be
the two characters with lowest probability. It must hold that pi = p j (otherwise,

∑
k pk can not

be equal to one). As such, Huffman’s merges this two letters, into a single “character” that have
probability 2pi, which would have encoding of length li − 1, by induction (on the remaining n − 1
symbols). Now, the resulting tree encodes i and j by code words of length (li − 1) + 1 = li, as
claimed.

In particular, we have that li = lg 1/pi. This implies that the average length of a code word is∑
i

pi lg
1
pi
.

If we consider X to be a random variable that takes a value i with probability pi, then this formula
is

H(X) =
∑

i

Pr[X = i] lg
1

Pr[X = i]
,

which is the entropy of X.

6

	Huffman Coding
	Huffman coding
	The algorithm to build Hoffman's code
	Analysis
	What do we get
	A formula for the average size of a code word

