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The Preceptron Algorithm
By Sariel Har-Peled, December 7, 2009¬

24.1 The Preceptron algorithm

Assume, that we are given examples, say a database of cars, and you would like to determine which
cars are sport cars, and which are regular cars. Each car record, can be interpreted as a point in
high dimensions. For example, a sport car with 4 doors, manufactured in 1997, by Quaky (with
manufacturer ID 6) will be represented by the point (4, 1997, 6), marked as a sport car. A tractor
made by General Mess (manufacturer ID 3) in 1998, would be stored as (0, 1997, 3) and would be
labeled as not a sport car.

Naturally, in a real database there might be hundreds of attributes in each record, for engine
size, to weight, price, maximum speed, cruising speed, etc, etc, etc.

We would like to automate this classification process, so that tagging the records whether they
correspond to race cars be done automatically without a specialist being involved. We would like to
have a learning algorithm, such that given several classified examples, develop its own conjecture
about what is the rule of the classification, and we can use it for classifying the data.

What are we learning?
f : IRd → {−1, 1}
Problem: f might have infinite complexity.

Solution: ????

Limit ourself to a set of functions that can be easily described.
For example, consider a set of red and blue points,
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`

Given the red and blue points, how to compute `?

This is a linear function:
f (−→x ) = −→a · −→x + b
Classification is sign( f (x)). If sign( f (x)) is negative, it outside the class, if it is positive it is

inside.
A set of examples is a set of pairs S = {(x1, y1) , . . . ,(xn, yn)} where xi ∈ IRd and yi ∈ {-1,1}.
A linear classifier h is a pair (w, b) where w ∈ IRd and b ∈ IR. The classification of x ∈ IRd is

sign(x · w + b). For a labeled example (x, y), h classifies (x, y) correctly if sign(x · w + b) = y.
Assume that the underlying space has linear classifier (problematic assumption), and you are

given “enough” examples (i.e., n). How to compute this linear classifier?

Of course, use linear programming, we are looking for (w, b) s.t. for a sample
(xi, yi) we have sign(xi · w + b) = yi which is

xi · w + b ≥ 0

if yi = 1 and
−→xi ·
−→w + b ≤ 0

if yi = −1.
Thus, we get a set of linear constraints, one for each sample, and we need to solve this linear

program.
Problem: Linear programming is noise sensitive.

Namely, if we have points misclassified, we would not find a solution, because no solution satisfy-
ing all of the constraints, exist.

Algorithm Preceptron(S : a set of l examples)
w0 ← 0,k ← 0
R = max(x,y)∈S

∥∥∥∥ x
∥∥∥∥ .

repeat
for (x, y) ∈ S do

if sign(〈wk, x〉) , y then
wk+1 ← wk + y ∗ −→x
k ← k + 1

until no mistakes are made in the classification
return wk and k
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Why does this work? Assume that we made a mistake on a sample (x, y) and y = 1. Then,
u = wk · x < 0, and

〈wk+1, x〉 = 〈wk, x〉 + y 〈x, x〉 > u.

Namely, we are “walking” in the right direction.

Theorem 24.1.1 Let S be a training set, and let R = max(x,y)∈S

∥∥∥∥ x
∥∥∥∥ . Suppose that there exists a

vector wopt such that
∥∥∥∥wopt

∥∥∥∥ = 1 and

y
〈
wopt, x

〉
≥ γ ∀(x, y) ∈ S .

Then, the number of mistakes made by the online Preceptron algorithm on S is at most(
R
γ

)2

.

Proof: Intuitively, the Preceptron algorithm weight vector converges to wopt, To see that, let us
define the distance between wopt and the weight vector in the k-th update:

αk =

∥∥∥∥∥∥wk −
R2

γ
wopt

∥∥∥∥∥∥2

.

We next quantify the change between αk and αk+1 (the example being misclassified is (x, y)):

αk+1 =

∥∥∥∥∥∥wk+1 −
R2

γ
wopt

∥∥∥∥∥∥2

=

∥∥∥∥∥∥wk + yx −
R2

γ
wopt

∥∥∥∥∥∥2

=

∥∥∥∥∥∥
(
wk −

R2

γ
wopt

)
+ yx

∥∥∥∥∥∥2

=

〈(
wk −

R2

γ
wopt

)
+ yx ,

(
wk −

R2

γ
wopt

)
+ yx

〉
.

Expanding this we get:

αk+1 =

〈(
wk −

R2

γ
wopt

)
,

(
wk −

R2

γ
wopt

)〉
+2y

〈(
wk −

R2

γ
wopt

)
, x

〉
+ 〈x, x〉

= αk + 2y
〈(

wk −
R2

γ
wopt

)
, x

〉
+

∥∥∥∥ x
∥∥∥∥2
.
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Since ||x|| ≤ R,we have

αk+1 ≤ αk + R2 + 2y 〈wk, x〉 − 2y
〈

R2

γ
wopt, x

〉
≤ αk + R2 + −2

R2

γ
y
〈
wopt,x

〉
.

Next, since y
〈
wopt , x

〉
≥ γ for ∀(x, y) ∈ S , we have that

αk+1 ≤ αk + R2 − 2
R2

γ
γ

≤ αk + R2 − 2R2

≤ αk − R2.

We have: αk+1 ≤ αk − R2, and

α0 =

∥∥∥∥∥∥0 −
R2

γ
wopt

∥∥∥∥∥∥2

=
R4

γ2

∥∥∥∥wopt

∥∥∥∥2
=

R4

γ2 .

Finally, observe that αi ≥ 0 for all i. Thus, what is the maximum number of classification errors
the algorithm can make? (

R2

γ2

)
.

It is important to observe that any linear program can be written as the problem of seperating
red points from blue points. As such, the Preceptron algorithm can be used to solve sovle linear
programs...

24.2 Learning A Circle
Given a set of red points, and blue points in the plane, we want to learn a circle that contains all
the red points, and does not contain the blue points.

σ

How to compute the circle σ ?
It turns out we need a simple but very clever trick. For every point (x, y) ∈ P map it to the point(

x, y, x2 + y2
)
. Let z(P) =

{(
x, y, x2 + y2

) ∣∣∣∣ (x, y) ∈ P
}

be the resulting point set.
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Theorem 24.2.1 Two sets of points R and B are separable by a circle in two dimensions, if and
only if z(R) and z(B) are separable by a plane in three dimensions.

Proof: Let σ ≡ (x − a)2 + (y − b)2 = r2 be the circle containing all the points of R and having all
the points of B outside. Clearly, (x − a)2 + (y − b)2 ≤ r2 for all the points of R. Equivalently

−2ax − 2by +
(
x2 + y2

)
≤ r2 − a2 − b2.

Setting z = x2 + y2 we get that

h ≡ −2ax − 2by + z − r2 + a2 + b2 ≤ 0.

Namely, p ∈ σ if and only if h(z(p)) ≤ 0. We just proved that if the point set is separable by a
circle, then the lifted point set z(R) and z(B) are separable by a plane.

As for the other direction, assume that z(R) and z(B) are separable in 3d and let

h ≡ ax + by + cz + d = 0

be the separating plane, such that all the point of z(R) evaluate to a negative number by h. Namely,
for (x, y, x2 + y2) ∈ z(R) we have ax + by + c(x2 + y2) + d ≤ 0

and similarly, for (x, y, x2 + y2) ∈ B we have ax + by + c(x2 + y2) + d ≥ 0.

Let U(h) =
{
(x, y)

∣∣∣∣ h
(
(x, y, x2 + y2)

)
≤ 0

}
. Clearly, if U(h) is a circle, then this implies that

R ⊂ U(h) and B ∩ U(h) = ∅, as required.
So, U(h) are all the points in the plane, such that

ax + by + c
(
x2 + y2

)
≤ −d.

Equivalently (
x2 +

a
c

x
)
+

(
y2 +

b
c

y
)
≤ −

d
c(

x +
a
2c

)2
+

(
y +

b
2c

)2

≤
a2 + b2

4c2 −
d
c

but this defines the interior of a circle in the plane, as claimed.
This example show that linear separability is a powerful technique that can be used to learn

complicated concepts that are considerably more complicated than just hyperplane separation. This
lifting technique showed above is calledlinearizion the kernel technique or linearizion.

24.3 A Little Bit On VC Dimension
As we mentioned, inherent to the learning algorithms, is the concept of how complex is the function
we are trying to learn. VC-dimension is one of the most natural ways of capturing this notion. (VC
= Vapnik, Chervonenkis,1971).

A matter of expersivity. What is harder to learn:

1. A rectangle in the plane.
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2. A halfplane.

3. A convex polygon with k sides.

Let X =
{
p1,p2, . . . , pm

}
be a set of m points in the plane, and let R be the set of all halfplanes.

A half-plane r defines a binary vector

r(X) = (b1, . . . , bm)

where bi = 1 if and only if pi is inside r.
Let

U(X,R) = {r(X) | r ∈ R } .

A set X of m elements is shattered by R if

|U(X,R)| = 2m.

What does this mean?
The VC-dimension of a set of ranges R is the size of the largest set that it can shatter.

24.3.1 Examples
What is the VC dimensions of circles in the plane?

Namely, X is set of n points in the plane, and R is a set of all circles.
X = {p, q, r, s}
What subsets of X can we generate by circle?

p

q

r

s

{}, {r}, {p}, {q}, {s},{p, s}, {p, q}, {p, r},{r, q}{q, s} and {r, p, q}, {p, r, s}{p, s, q},{s, q, r} and {r, p, q, s}
We got only 15 sets. There is one set which is not there. Which one?
The VC dimension of circles in the plane is 3.

Lemma 24.3.1 (Sauer Lemma) If R has VC dimension d then |U(X,R)| = O
(
md

)
, where m is the

size of X.
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