
Chapter 23

Approximate Max Cut
By Sariel Har-Peled, December 7, 2009¬

23.1 Problem Statement
Given an undirected graph G = (V,E) and nonnegative weights ωi j, for all i j ∈ E, the maximum
cut problem (MAX CUT) is that of finding the set of vertices S that maximizes the weight of the
edges in the cut

(
S , S

)
; that is, the weight of the edges with one endpoint in S and the other in

S . For simplicity, we usually set ωi j = O for i j < E and denote the weight of a cut
(
S , S

)
by

w
(
S , S

)
=

∑
i∈S , j∈S

ωi j.

This problem is NP-C, and hard to approximate within a certain constant.
Given a graph with vertex set V = {1, . . . , n} and nonnegative weights ωi j, the weight of the

maximum cut w(S , S ) is given by the following integer quadratic program:

(Q) max
1
2

∑
i< j

ωi j(1 − yiy j)

subject to: yi ∈ {−1, 1} ∀i ∈ V.

Indeed, set S =
{
i
∣∣∣∣ yi = 1

}
. Clearly, ω

(
S , S

)
= 1

2

∑
i< j ωi j(1 − yiy j).

Solving quadratic integer programming is of course NP-H. Thus, we will relax it, by think-
ing about the numbers yi as unit vectors in higher dimensional space. If so, the multiplication of
the two vectors, is now replaced by dot product. We have:

(P) max γ =
1
2

∑
i< j

ωi j

(
1 −

〈
vi, v j

〉)
subject to: vi ∈ S

(n) ∀i ∈ V,

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/


where S(n) is the n dimensional unit sphere in IRn+1. This is an instance of semi-definite program-
ming, which is a special case of convex programming, which can be solved in polynomial time
(solved here means approximated within a factor of (1 + ε) of optimal, for any arbitrarily small
ε > 0, in polynomial time). Namely, the solver finds a feasible solution with a the target function
being arbitrarily close to the optimal solution. Observe that (P) is a relaxation of (Q), and as such
the optimal solution of (P) has value larger than the optimal value of (Q).

The intuition is that vectors that correspond to vertices that should be on one side of the cut,
and vertices on the other sides, would have vectors which are faraway from each other in (P). Thus,
we compute the optimal solution for (P), and we uniformly generate a random vector ~r on the unit
sphere S(n). This induces a hyperplane h which passes through the origin and is orthogonal to ~r.
We next assign all the vectors that are on one side of h to S , and the rest to S .

Summarizing, the algorithm is as follows: First, we solve (P), next, we pick a random vector ~r
uniformly on the unit sphere S(n). Finally, we set

S =
{
vi

∣∣∣∣ 〈vi,~r
〉
≥ 0

}
.

23.1.1 Analysis
The intuition of the above rounding procedure, is that with good probability, vectors in the solution
of (P) that have large angle between them would be separated by this cut.

Lemma 23.1.1 We have Pr
[
sign

(〈
vi,~r

〉)
, sign

(〈
v j,~r

〉)]
=

1
π

arccos
(〈

vi, v j

〉)
.

Proof: Let us think about the vectors vi, v j and~r as being in the plane. To
see why this is a reasonable assumption, consider the plane g spanned
by vi and v j, and observe that for the random events we consider, only
the direction of ~r matter, which can be decided by projecting ~r on g, and
normalizing it to have length 1. Now, the sphere is symmetric, and as
such, sampling ~r randomly from S(n), projecting it down to g, and then
normalizing it, is equivalent to just choosing uniformly a vector from the
unit circle.

Now, sign
(〈

vi,~r
〉)
, sign

(〈
v j,~r

〉)
happens only if ~r falls in the dou-

ble wedge formed by the lines perpendicular to vi and v j. The angle of
this double wedge is exactly the angle between vi and v j. Now, since vi

and v j are unit vectors, we have
〈
vi, v j

〉
= cos(τ), where τ = ∠viv j. Thus,

Pr
[
sign

(〈
vi,~r

〉)
, sign

(〈
v j,~r

〉)]
=

2τ
2π
=

1
π
· arccos

(〈
vi, v j

〉)
,

as claimed.

Theorem 23.1.2 Let W be the random variable which is the weight of the cut generated by the
algorithm. We have

E[W] =
1
π

∑
i< j

ωi j arccos
(〈

vi, v j

〉)
.

2



Proof: Let Xi j be an indicator variable which is 1 if and only if the edge i j is in the cut. We
have

E
[
Xi j

]
= Pr

[
sign

(〈
vi,~r

〉)
, sign

(〈
v j,~r

〉)]
=

1
π

arccos
(〈

vi, v j

〉)
,

by Lemma 23.1.1. Clearly, W =
∑

i< j ωi jXi j, and by linearity of expectation, we have

E[W] =
∑
i< j

ωi j E
[
Xi j

]
=

1
π

∑
i< j

ωi j arccos
(〈

vi, v j

〉)
.

Lemma 23.1.3 For −1 ≤ y ≤ 1, we have
arccos(y)

π
≥ α ·

1
2

(1 − y), where α = min
0≤ψ≤π

2
π

ψ

1 − cos(ψ)
.

Proof: Set y = cos(ψ). The inequality now becomes ψ

π
≥ α 1

2 (1 − cosψ). Reorganizing, the
inequality becomes 2

π

ψ

1−cosψ ≥ α, which trivially holds by the definition of α.

Lemma 23.1.4 α > 0.87856.

Proof: Using simple calculus, one can see that α achieves its value for ψ = 2.331122..., the nonzero
root of cosψ + ψ sinψ = 1.

Theorem 23.1.5 The above algorithm computes in expectation a cut with total weight α · Opt ≥
0.87856Opt, where Opt is the weight of the maximal cut.

Proof: Consider the optimal solution to (P), and lets its value be γ ≥ Opt. We have

E[W] =
1
π

∑
i< j

ωi j arccos
(〈

vi, v j

〉)
≥

∑
i< j

ωi jα
1
2

(
1 −

〈
vi, v j

〉)
= αγ ≥ α · Opt,

by Lemma 23.1.3.

23.2 Semi-definite programming

Let us define a variable xi j =
〈
vi, v j

〉
, and consider the n by n matrix M formed by those variables,

where xii = 1 for i = 1, . . . , n. Let V be the matrix having v1, . . . , vn as its columns. Clearly, M =
VT V . In particular, this implies that for any non-zero vector v ∈ IRn, we have vT Mv = vT AT Av =
(Av)T (Av) ≥ 0. A matrix that has this property, is called positive semidefinite. Interestingly,
any positive semidefinite matrix P can be represented as a product of a matrix with its transpose;
namely, P = BT B. Furthermore, given such a matrix P of size n × n, we can compute B such that
P = BT B in O(n3) time. This is know as Cholesky decomposition.

Observe, that if a semidefinite matrix P = BT B has a diagonal where all the entries are one,
then B has columns which are unit vectors. Thus, if we solve (P) and get back a semi-definite
matrix, then we can recover the vectors realizing the solution, and use them for the rounding.

In particular, (P) can now be restated as

(S D) max
1
2

∑
i< j

ωi j(1 − xi j)

subject to: xii = 1 for i = 1, . . . , n(
xi j

)
i=1,...,n, j=1,...,n

is a positive semi-definite matrix.

3



We are trying to find the optimal value of a linear function over a set which is the intersection of
linear constraints and the set of positive semi-definite matrices.

Lemma 23.2.1 Let U be the set of n × n positive semidefinite matrices. The set U is convex.

Proof: Consider A, B ∈ U, and observe that for any t ∈ [0, 1], and vector v ∈ IRn, we have:

vT
(
tA + (1 − t)B

)
v = vT

(
tAv + (1 − t)Bv

)
= tvT Av + (1 − t)vT Bv ≥ 0 + 0 ≥ 0,

since A and B are positive semidefinite.

Positive semidefinite matrices corresponds to ellipsoids. Indeed, consider the set xT Ax = 1: the
set of vectors that solve this equation is an ellipsoid. Also, the eigenvalues of a positive semidefinite
matrix are all non-negative real numbers. Thus, given a matrix, we can in polynomial time decide
if it is positive semidefinite or not (by computing the eigenvalues of the matrix).

Thus, we are trying to optimize a linear function over a convex domain. There is by now
machinery to approximately solve those problems to within any additive error in polynomial time.
This is done by using the interior point method, or the ellipsoid method. See [BV04, GLS88] for
more details. The key ingredient that is required to make these methods work, is the ability to
decide in polynomial time, given a solution, whether its feasible or not. As demonstrated above,
this can be done in polynomial time.

23.3 Bibliographical Notes
The approximation algorithm presented is from the work of Goemans and Williamson [GW95].
Håstad [Hås01] showed that MAX CUT can not be approximated within a factor of 16/17 ≈
0.941176. Recently, Khot et al. [KKMO04] showed a hardness result that matches the constant of
Goemans and Williamson (i.e., one can not approximate it better than α, unless P = NP). However,
this relies on two conjectures, the first one is the “Unique Games Conjecture”, and the other one is
“Majority is Stablest”. The “Majority is Stablest” conjecture was recently proved by Mossel et al.
[MOO05]. However, it is not clear if the “Unique Games Conjecture” is true, see the discussion in
[KKMO04].

The work of Goemans and Williamson was very influential and spurred wide research on using
SDP for approximation algorithms. For an extension of the MAX CUT problem where negative
weights are allowed and relevant references, see the work by Alon and Naor [AN04].

Bibliography
[AN04] N. Alon and A. Naor. Approximating the cut-norm via grothendieck’s inequality. In

Proc. 36th Annu. ACM Sympos. Theory Comput., pages 72–80, 2004.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge, 2004.

[GLS88] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial
Optimization, volume 2 of Algorithms and Combinatorics. Springer-Verlag, Berlin
Heidelberg, 2nd edition, 1988. 2nd edition 1994.

4

http://www.math.tau.ac.il/~nogaa/
http://www.stanford.edu/~boyd/cvxbook/


[GW95] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maxi-
mum cut and satisfiability problems using semidefinite programming. J. Assoc. Com-
put. Mach., 42(6):1115–1145, November 1995.

[Hås01] J. Håstad. Some optimal inapproximability results. J. Assoc. Comput. Mach.,
48(4):798–859, 2001.

[KKMO04] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability results
for max cut and other 2-variable csps. In Proc. 45th Annu. IEEE Sympos. Found.
Comput. Sci., pages 146–154, 2004. To appear in SICOMP.

[MOO05] E. Mossel, R. O’Donnell, and K. Oleszkiewicz. Noise stability of functions with
low influences invariance and optimality. In Proc. 46th Annu. IEEE Sympos. Found.
Comput. Sci., pages 21–30, 2005.

5

http://www.acm.org/jacm/
http://www.acm.org/jacm/
http://www.acm.org/jacm/
http://www.acm.org/jacm/

	Approximate Max Cut
	Problem Statement
	Analysis

	Semi-definite programming
	Bibliographical Notes

	Bibliography

