
Chapter 21

Linear Programming II
By Sariel Har-Peled, December 7, 2009¬

21.1 The Simplex Algorithm in Detail

Simplex(L̂ a LP)
Transform L̂ into slack form.
Let L be the resulting slack form.
Compute L′ ← Feasible(L) (as described above)
x← LPStartSolution(L′)
x′ ← SimplexInner(L′, x) (*)
if objective function value of x′ is > 0 then

return “No solution”
x′′ ← SimplexInner(L, x′)
return x′′

Figure 21.1: The Simplex algorithm.

The Simplex algorithm is presented
on the right. We assume that we are given
SimplexInner, a black box that solves a
LP if the trivial solution of assigning zero
to all the nonbasic variables is feasible.
We remind the reader that L′ = Feasible(L)
returns a new LP for which we have an
easy feasible solution. This is done by in-
troducing a new variable x0 into the LP,
where the original LP L̂ is feasible if and
only if the new LP L has a feasible so-
lution with x0 = 0. As such, we set the
target function in L to be minimizing x0.

We now apply SimplexInner to L′ and the easy solution computed for L′ by LPStartSolu-
tion(L′). If x0 > 0 in the optimal solution for L′ then there is no feasible solution for L, and we
exit. Otherwise, we found a feasible solution to L, and we use it as the starting point for Simplex-
Inner when it is applied to L.

Thus, in the following, we have to describe SimplexInner - a procedure to solve an LP in slack
form, when we start from a feasible solution defined by the nonbasic variables assigned value zero.

One technicality that is ignored above, is that the starting solution we have for L′, generated
by LPStartSolution(L) is not legal as far as the slack form is concerned, because the non-basic
variable x0 is assigned a non-zero value. However, this can be easily resolve by immediately pivot
on x0 when we execute (*) in Figure 21.1. Namely, we first try to decrease x0 as much as possible.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

B - Set of indices of basic variables
N - Set of indices of nonbasic variables
n = |N | - number of original variables
b, c - two vectors of constants
m = |B| - number of basic variables (i.e.,
number of inequalities)
A =

{
ai j

}
- The matrix of coefficients

N ∪ B = {1, . . . , n + m}
v - objective function constant.

Max z = v +
∑
j∈N

c jx j,

s.t. xi = bi −
∑
j∈N

ai jx j f or i ∈ B,

xi ≥ 0, ∀i = 1, . . . , n + m.

(i) (ii)

Figure 21.2: A linear program in slack form is specified by a tuple (N, B, A, b, c, v).

21.2 The SimplexInner Algorithm
We next describe the SimplexInner algorithm.

We remind the reader that the LP is given to us in slack form, see Figure 21.2. Furthermore, we
assume that the trivial solution x = τ, which is assigning all nonbasic variables zero, is feasible. In
particualr, we immediately get the objective value for this solution from the notation which is v.

Assume, that we have a nonbasic variable xe that appears in the objective function, and further-
more its coefficient ce is positive in (the objective function), which is z = v +

∑
j∈N c jx j. Formally,

we pick e to be one of the indices of {
j
∣∣∣ c j > 0, j ∈ N

}
.

The variable xe is the entering variable variable (since it is going to join the set of basic variables).
Clearly, if we increase the value of xe (from the current value of 0 in τ) then one of the basic

variables is going to vanish (i.e., become zero). Let xl be this basic variable. We increase the value
of xe (the entering variable) till xl (the leaving variable) becomes zero.

Setting all nonbasic variables to zero, and letting xe grow, implies that xi = bi − aiexe, for all
i ∈ B.

All those variables must be non-negative, and thus we require that ∀i ∈ B it holds xi = bi −

aiexe ≥ 0. Namely, xe ≤ (bi/aie) or alternatively,
1
xe
≥

aie

bi
. Namely,

1
xe
≥ max

i∈B

aie

bi
and, the largest

value of xe which is still feasible is

U =

(
max

i∈B

aie

bi

)−1

.

We pick l (the index of the leaving variable) from the set all basic variables that vanish to zero
when xe = U. Namely, l is from the set{

j

∣∣∣∣∣∣ a je

b j
= U where j ∈ B

}
.

Now, we know xe and xl. We rewrite the equation for xl in the LP so that it has xe on the left
size. Formally, we do

xl = bl −
∑
j∈N

al jx j ⇒ xe =
bl

ale
−

∑
j∈N∪{l}

al j

ale
x j, where all = 1.

2

We need to remove all the appearances on the right side of the LP of xe. This can be done by
substituting xe into the other equalities, using the above equality. Alternatively, we do beforehand
Gaussian elimination, to remove any appearance of xe on the right side of the equalities in the LP
(and also from the objective function) replaced by appearances of xl on the left side, which we then
transfer to the right side.

In the end of this process, we have a new equivalent LP where the basic variables are B′ =

(B \ {l}) ∪ {e} and the non-basic variables are N′ = (N \ {e}) ∪ {l}.
In end of this pivoting stage the LP objective function value had increased, and as such, we

made progress. Note, that the linear system is completely defined by which variables are basic,
and which are non-basic. Furthermore, pivoting never returns to a combination (of basic/non-basic
variable) that was already visited. Indeed, we improve the value of the objective function in each
pivoting stage. Thus, we can do at most(

n + m
n

)
≤

(n + m
n
· e

)n

pivoting steps. And this is close to tight in the worst case (there are examples where 2n pivoting
steps are needed.

Each pivoting step takes polynomial time in n and m. Thus, the overall running time of Simplex
is exponential in the worst case. However, in practice, Simplex is extremely fast.

21.2.1 Degeneracies
If you inspect carefully the Simplex algorithm, you would notice that it might get stuck if one of
the bis is zero. This corresponds to a case where > m hyperplanes passes through the same point.
This might cause the effect that you might not be able to make any progress at all in pivoting.

There are several solutions, the simplest one is to add tiny random noise to each coefficient.
You can even do this symbolically. Intuitively, the degeneracy, being a local phenomena on the
polytope disappears with high probability.

The larger danger, is that you would get into cycling; namely, a sequence of pivoting operations
that do not improve the objective function, and the bases you get are cyclic (i.e., infinite loop).

There is a simple scheme based on using the symbolic perturbation, that avoids cycling, by
carefully choosing what is the leaving variable. We omit all further details here.

There is an alternative approach, called Bland’s rule, which always choose the lowest index
variable for entering and leaving out of the possible candidates. We will not prove the correctness
of this approach here.

21.2.2 Correctness of linear programming
Theorem 21.2.1 (Fundamental theorem of Linear Programming.) For an arbitrary linear pro-
gram, the following statements are true:

1. If there is no optimal solution, the problem is either infeasible or unbounded.

2. If a feasible solution exists, then a basic feasible solution exists.

3. If an optimal solution exists, then a basic optimal solution exists.

3

Proof: Proof is constructive by running the simplex algorithm.

21.2.3 On the ellipsoid method and interior point methods

The Simplex algorithm has exponential running time in the worst case.
The ellipsoid method is weakly polynomial (namely, it is polynomial in the number of bits of

the input). Khachian in 1979 came up with it. It turned out to be completely useless in practice.
In 1984, Karmakar came up with a different method, called the interior-point method which is

also weakly polynomial. However, it turned out to be quite useful in practice, resulting in an arm
race between the interior-point method and the simplex method.

The question of whether there is a strongly polynomial time algorithm for linear programming,
is one of the major open questions in computer science.

21.3 Duality and Linear Programming
Every linear program L has a dual linear program L′. Solving the dual problem is essentially
equivalent to solving the primal linear program (i.e., the original) LP.

21.3.1 Duality by Example

max z = 4x1 + x2 + 3x3

s.t. x1 + 4x2 ≤ 1
3x1 − x2 + x3 ≤ 3
x1, x2, x3 ≥ 0

Figure 21.3: The linear pro-
gram L.

Consider the linear program L depicted on the right (Fig-
ure 21.3). Note, that any feasible solution, gives us a lower
bound on the maximal value of the target function, denoted by
η. In particular, the solution x1 = 1, x2 = x3 = 0 is feasible, and
implies z = 4 and thus η ≥ 4.

Similarly, x1 = x2 = 0, x3 = 3 is feasible and implies that
η ≥ z = 9.

We might be wondering how close is this solution to the op-
timal solution? In particular, if this solution is very close to the optimal solution, we might be
willing to stop and be satisfied with it.

Let us add the first inequality (multiplied by 2) to the second inequality (multiplied by 3).
Namely, we add the inequality 2(x1 + 4x2) ≤ 2(1) to the inequality +3(3x1 − x2 + x3) ≤ 3(3). The
resulting inequality is

11x1 + 5x2 + 3x3 ≤ 11. (21.1)

Note, that this inequality must hold for any feasible solution of L. Now, the objective function is
z = 4x1 + x2 + 3x3 and x1,x2 and x3 are all non-negative, and the inequality of Eq. (21.1) has larger
coefficients that all the coefficients of the target function, for the corresponding variables. It thus
follows, that for any feasible solution, we have z ≤ 11x1 + 5x2 + 3x3 ≤ 11.

As such, the optimal value of the LP L is somewhere between 9 and 11.
We can extend this argument. Let us multiply the first inequality by y1 and second inequality

by y2 and add them up. We get:

4

max
n∑

j=1

c jx j

s.t.
n∑

j=1

ai jx j ≤ bi,

for i = 1, . . . ,m,
x j ≥ 0,

for j = 1, . . . , n.

min
m∑

i=1

biyi

s.t.
m∑

i=1

ai jyi ≥ c j,

for j = 1, . . . , n,
yi ≥ 0,

for i = 1, . . . ,m.

max
m∑

i=1

(−bi)yi

s.t.
m∑

i=1

(−ai j)yi ≤ −c j,

for j = 1, . . . , n,
yi ≥ 0,

for i = 1, . . . ,m.
(a) primal program (b) dual program (c) dual program in standard form

Figure 21.5: Dual linear programs.

y1(x1 + 4x2) ≤ y1(1)
+ y2(3x1 - x2 + x3) ≤ y2(3)

(y1 + 3y2)x1 + (4y1 − y2)x2 + y2x3 ≤ y1 + 3y2.
(21.2)

Compare this to the target function z = 4x1 + x2 + 3x3. If this expression is bigger than the
target function in each variable, namely

min y1 + 3y2

s.t. y1 + 3y2 ≥ 4
4y1 − y2 ≥ 1
y2 ≥ 3
y1, y2 ≥ 0.

Figure 21.4: The dual LP L̂.
The primal LP is depicted in
Figure 21.3.

4 ≤ y1 + 3y2

1 ≤ 4y1 − y2

3 ≤ y2,

then, z = 4x1 + x2 + 3x3 ≤ (y1 + 3y2)x1 + (4y1 − y2)x2 + y2x3

≤ y1 + 3y2, the last step follows by Eq. (21.2).
Thus, if we want the best upper bound on η (the maximal value

of z) then we want to solve the LP L̂ depicted in Figure 21.4. This
is the dual program to L and its optimal solution is an upper bound
to the optimal solution for L.

21.3.2 The Dual Problem

Given a linear programming problem (i.e., primal problem, seen in Figure 21.5 (a), its associated
dual linear programs in Figure 21.5 (b). The standard form of the dual LP is depicted in Fig-
ure 21.5 (c). Interestingly, you can just compute the dual LP to the given dual LP. What you get
back is the original LP. This is demonstrated in Figure 21.6.

We just proved the following result.

Lemma 21.3.1 Let L be an LP, and let L′ be its dual. Let L′′ be the dual to L′. Then L and L′′ are
the same LP.

5

max
m∑

i=1

(−bi)yi

s.t.
m∑

i=1

(−ai j)yi ≤ −c j,

for j = 1, . . . , n,
yi ≥ 0,

for i = 1, . . . ,m.

min
n∑

j=1

−c jx j

s.t.
n∑

j=1

(−ai j)x j ≥ −bi,

for i = 1, . . . ,m,
x j ≥ 0,

for j = 1, . . . , n.

max
n∑

j=1

c jx j

s.t.
n∑

j=1

ai jx j ≤ bi,

for i = 1, . . . ,m,
x j ≥ 0,

for j = 1, . . . , n.

(a) dual program
(b) the dual program to the
dual program (c) ... which is the original LP.

Figure 21.6: The dual to the dual linear program. Computing the dual of (a) can be done mechani-
cally by following Figure 21.5 (a) and (b). Note, that (c) is just a rewriting of (b).

21.3.3 The Weak Duality Theorem
Theorem 21.3.2 If (x1, x2, . . . , xn) is feasible for the primal LP and (y1, y2, . . . , ym) is feasible for
the dual LP, then ∑

j

c jx j ≤
∑

i

biyi.

Namely, all the feasible solutions of the dual bound all the feasible solutions of the primal.

Proof: By substitution from the dual form, and since the two solutions are feasible, we know
that ∑

j

c jx j ≤
∑

j

 m∑
i=1

yiai j

 x j ≤
∑

i

∑
j

ai jx j

 yi ≤
∑

i

biyi .

Interestingly, if we apply the weak duality theorem on the dual program (namely, Figure 21.6

(a) and (b)), we get the inequality
m∑

i=1

(−bi)yi ≤

n∑
j=1

−c jx j, which is the original inequality in the

weak duality theorem. Thus, the weak duality theorem does not imply the strong duality theorem
which will be discussed next.

6

	Linear Programming II
	The Simplex Algorithm in Detail
	The SimplexInner Algorithm
	Degeneracies
	Correctness of linear programming
	On the ellipsoid method and interior point methods

	Duality and Linear Programming
	Duality by Example
	The Dual Problem
	The Weak Duality Theorem

