
Chapter 20

Linear Programming
By Sariel Har-Peled, December 7, 2009¬

20.1 Introduction and Motivation

In the VCR/guns/nuclear-bombs/napkins/star-wars/professors/butter/mice problem, the benevolent
dictator, Biga Piguinus, of Penguina (a country in south Antarctica having 24 million penguins
under its control) has to decide how to allocate her empire resources to the maximal benefit of
her penguins. In particular, she has to decide how to allocate the money for the next year budget.
For example, buying a nuclear bomb has a tremendous positive effect on security (the ability to
destruct yourself completely together with your enemy induces a peaceful serenity feeling in most
people). Guns, on the other hand, have a weaker effect. Penguina (the state) has to supply a certain
level of security. Thus, the allocation should be such that:

xgun + 1000 ∗ xnuclear−bomb ≥ 1000,

where xguns is the number of guns constructed, and xnuclear−bomb is the number of nuclear-bombs
constructed. On the other hand,

100 ∗ xgun + 1000000 ∗ xnuclear−bomb ≤ xsecurity

where xsecurity is the total Penguina is willing to spend on security, and 100 is the price of producing
a single gun, and 1, 000, 000 is the price of manufacturing one nuclear bomb. There are a lot of
other constrains of this type, and Biga Piguinus would like to solve them, while minimizing the
total money allocated for such spending (the less spent on budget, the larger the tax cut).

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

a11x1 + . . . + a1nxn ≤ b1

a21x1 + . . . + a2nxn ≤ b2

. . .
am1x1 + . . . + amnxn ≤ bm

max c1x1 + . . . + cnxn.

More formally, we have a (potentially large) number of variables:
x1, . . . , xn and a (potentially large) system of linear inequalities. We
will refer to such an inequality as a constraint. We would like to
decide if there is an assignment of values to x1, . . . , xn where all
these inequalities are satisfied. Since there might be infinite number
of such solutions, we want the solution that maximizes some linear
quantity. See the instance on the right.

The linear target function we are trying to maximize is known as the objective function of
the linear program. Such a problem is an instance of linear programming. We refer to linear
programming as LP.

20.1.1 History

Linear programming can be traced back to the early 19th century. It started in earnest in 1939
when L. V. Kantorovich noticed the importance of certain type of Linear Programming problems.
Unfortunately, for several years, Kantorovich work was unknown in the west and unnoticed in the
east.

Dantzig, in 1947, invented the simplex method for solving LP problems for the US Air force
planning problems.

T. C. Koopmans, in 1947, showed that LP provide the right model for the analysis of classical
economic theories.

In 1975, both Koopmans and Kantorovich got the Nobel prize of economics. Dantzig probably
did not get it because his work was too mathematical. Thats how it goes.

20.1.2 Network flow via linear programming

To see the impressive expressive power of linear programming, we next show that network flow
can be solved using linear programming. Thus, we are given an instance of max flow; namely, a
network flow G = (V,E) with source s and sink t, and capacities c(·) on the edges. We would like
to compute the maximum flow in G.

∀ (u→ v) ∈ E 0 ≤ xu→v

xu→v ≤ c(u→ v)

∀v ∈ V \ {s, t}
∑

(u→v)∈E

xu→v −
∑

(v→w)∈E

xv→w ≤ 0∑
(u→v)∈E

xu→v −
∑

(v→w)∈E

xv→w ≥ 0

maximizing
∑

(s→u)∈E xs→u

To this end, for an edge (u→ v) ∈ E, let
xu→v be a variable which is the amount of flow
assign to (u→ v) in the maximum flow. We
demand that 0 ≤ xu→v and xu→v ≤ c(u→ v)
(flow is non negative on edges, and it comply
with the capacity constraints). Next, for any
vertex v which is not the source or the sink,
we require that

∑
(u→v)∈E xu→v =

∑
(v→w)∈E xv→w

(this is conservation of flow). Note, that an
equality constraint a = b can be rewritten as two inequality constraints a ≤ b and b ≤ a. Finally,
under all these constraints, we are interest in the maximum flow. Namely, we would like to max-
imize the quantity

∑
(s→u)∈E xs→u. Clearly, putting all these constraints together, we get the linear

program depicted on the right.
It is not too hard to write down min-cost network flow using linear programming.

2

20.2 The Simplex Algorithm

20.2.1 Linear program where all the variables are positive

max
n∑

j=1

c jx j

subject to
n∑

j=1

ai jx j ≤ bi

for i = 1, 2, . . . ,m

We are given a LP, depicted on the left, where a
variable can have any real value. As a first step to
solving it, we would like to rewrite it, such that ev-
ery variable is non-negative. This is easy to do, by
replacing a variable xi by two new variables x′i and x′′i ,
where xi = x′i − x′′i , x′i ≥ 0 and x′′i ≥ 0. For example,
the (trivial) linear program containing the single con-
straint 2x + y ≥ 5 would be replaced by the following

LP: 2x′ − 2x′′ + y′ − y′′ ≥ 5, x′ ≥ 0, y′ ≥ 0, x′′ ≥ 0 and y′′ ≥ 0.

Lemma 20.2.1 Given an instance I of LP, one can rewrite it into an equivalent LP, such that all
the variables must be non-negative. This takes linear time in the size of I.

20.2.2 Standard form

Using Lemma 20.2.1, we can now require a LP to be specified using only positive variables. This
is known as standard form.

A linear program in standard form.

max
n∑

j=1

c jx j

subject to
n∑

j=1

ai jx j ≤ bi for i = 1, 2, . . . ,m

x j ≥ 0 for j = 1, . . . , n.

A linear program in standard form.
(Matrix notation.)

max cT x
subject to Ax ≤ b.

x ≥ 0.

Here the matrix notation rises, by setting

c =

c1
...

cn

 , b =

b1
...

bm

 , A =

a11 a12 . . . a1(n−1) a1n

a21 a22 . . . a2(n−1) a2n
...

...
a(m−1)1 a(m−1)2 . . . a(m−1)(n−1) a(m−1)n

am1 am2 . . . am(n−1) amn

, and x =

x1

x2
...

xn−1

xn

.

Note, that c, b and A are prespecified, and x is the vector of unknowns that we have to solve the LP
for.

In the following in order to solve the LP, we are going to do a long sequence of rewritings till
we reach the optimal solution.

3

20.2.3 Slack Form

We next rewrite the LP into slack form. It is a more convenient form for describing the Simplex
algorithm for solving LP.

max cT x
subject to Ax = b.

x ≥ 0.

Specifically, one can rewrite a LP, so that every inequality be-
comes equality, and all variables must be positive; namely, the new
LP will have a form depicted on the right (using matrix notation). To
this end, we introduce new variables (slack variables) rewriting the
inequality

n∑
i=1

aixi ≤ b

as

xn+1 = b −
n∑

i=1

aixi

xn+1 ≥ 0.

Intuitively, the value of the slack variable xn+1 encodes how far is the original inequality for
holding with equality.

In fact, now we have a special variable for each inequality in the LP (this is xn+1 in the above
example). This variables are special, and would be called basic variables. All the other variables
on the right side are nonbasic variables (original isn’t it?). A LP in this form is in slack form.

The slack form is defined by a tuple (N, B, A, b, c, v).

Linear program in slack form.

max z = v +
∑
j∈N

c jx j,

s.t. xi = bi −
∑
j∈N

ai jx j f or i ∈ B,

xi ≥ 0, ∀i = 1, . . . , n + m.

B - Set of indices of basic variables
N - Set of indices of nonbasic variables
n = |N| - number of original variables
b, c - two vectors of constants
m = |B| - number of basic variables

(i.e., number of inequalities)
A =
{
ai j

}
- The matrix of coefficients

N ∪ B = {1, . . . , n + m}
v - objective function constant.

Exercise 20.2.2 Show that any linear program can be transformed into equivalent slack form.

Example 20.2.3 Consider the following LP which is in slack form, and its translation into the
tuple (N, B, A, b, c, v).

The word convenience is used here in the most liberal interpretation possible.

4

max z = 29 −
1
9

x3 −
1
9

x5 −
2
9

x6

x1 = 8 +
1
6

x3 +
1
6

x5 −
1
3

x6

x2 = 4 −
8
3

x3 −
2
3

x5 +
1
3

x6

x4 = 18 −
1
2

x3 +
1
2

x5

B = {1, 2, 4} ,N = {3, 5, 6}

A =

 a13 a15 a16
a23 a25 a26
a43 a45 a46

 =

 −1/6 −1/6 1/3
8/3 2/3 −1/3
1/2 −1/2 0

b =

 b1
b2
b4

 =

 8
4
18

 c =

 c3
c5
c6

 =

 −1/9
−1/9
−2/9

 v = 29.

Note that indices depend on the sets N and B, and also that the entries in A are negation of what
they appear in the slack form.

20.2.4 The Simplex algorithm by example
Before describing the Simplex algorithm in detail, it would be beneficial to derive it on an example.
So, consider the following LP.

max 5x1 + 4x2 + 3x3

s.t. 2x1 + 3x2 + x3 ≤ 5
4x1 + x2 + 2x3 ≤ 11
3x1 + 4x2 + 2x3 ≤ 8
x1, x2,x3 ≥ 0

Next, we introduce slack variables, for example, rewriting 2x1 + 3x2 + x3 ≤ 5 as the constraints:
w1 ≥ 0 and w1 = 5 − 2x1 − 3x2 − x3. The resulting LP in slack form is

max z = 5x1 + 4x2 + 3x3

s.t. w1 = 5 − 2x1 − 3x2 − x3

w2 = 11 − 4x1 − x2 − 2x3

w3 = 8 − 3x1 − 4x2 − 2x3

x1, x2,x3,w1,w2,w3 ≥ 0

Here w1,w2,w3 are the slack variables. Note also that they are currently also the basic variables.
Consider the slack representation trivial solution, where all the non-basic variables are assigned
zero; namely, x1 = x2 = x3 = 0. We then have that w1 = 5, w2 = 11 and w3 = 8. Fortunately for
us, this is a feasible solution, and the associated objective value is z = 0.

We are interested in further improving the value of the objective function (i.e., z), while still
having a feasible solution. Inspecting carefully the above LP, we realize that all the basic variables
w1 = 5, w2 = 11 and w3 = 8 have values which are strictly larger than zero. Clearly, if we change
the value of one non-basic variable a bit, all the basic variables would remain positive (we are
thinking about the above system as being function of the nonbasic variables x1, x2 and x3). So,
consider the objective function z = 5x1 + 4x2 + 3x3. Clearly, if we increase the value of x1, from
its current zero value, then the value of the objective function would go up, since the coefficient of
x1 for z is a positive number (5 in our example).

Deciding how much to increase the value of x1 is non-trivial. Indeed, as we increase the value
of x1, the the solution might stop being feasible (although the objective function values goes up,

5

which is a good thing). So, let us increase x1 as much as possible without violating any constraint.
In particular, for x2 = x3 = 0 we have that

w1 = 5 − 2x1 − 3x2 − x3 = 5 − 2x1

w2 = 11 − 4x1 − x2 − 2x3 = 11 − 4x1

w3 = 8 − 3x1 − 4x2 − 2x3 = 8 − 3x1.

We want to increase x1 as much as possible, as long as w1,w2,w3 are non-negative. Formally, the
constraints are that w1 = 5 − 2x1 ≥ 0, w2 = 11 − 4x1 ≥ 0, and w3 = 8 − 3x1 ≥ 0.

This implies that whatever value we pick for x1 it must comply with the inequalities x1 ≤ 2.5,
x1 ≤ 11/4 = 2.75 and x1 ≤ 8/3 = 2.66. We select as the value of x1 the largest value that still
comply with all these conditions. Namely, x1 = 2.5. Putting it into the system, we now have a
solution which is

x1 = 2.5, x2 = 0, x3 = 0, w1 = 0, w2 = 1, w3 = 0.5 ⇒ z = 5x1 + 4x2 + 3x3 = 12.5.

As such, all the variables are non-negative and this solution is feasible. Furthermore, this is a better
solution than the previous one, since the old solution had (the objective function) value z = 0.

What really happened? One zero nonbasic variable (i.e., x1) became non-zero, and one basic
variable became zero (i.e., w1). It is natural now to want to exchange between the nonbasic variable
x1 (since it is no longer zero) and the basic variable w1. This way, we will preserve the invariant,
that the current solution we maintain is the one where all the nonbasic variables are assigned zero.

So, consider the equality in the LP that involves w1, that is w1 = 5 − 2x1 − 3x2 − x3. We can
rewrite this equation, so that x1 is on the left side:

x1 = 2.5 − 0.5w1 − 1.5x2 − 0.5 x3. (20.1)

The problem is that x1 still appears in the right size of the equations for w2 and w3 in the LP. We
observe, however, that any appearance of x1 can be replaced by substituting it by the expression on
the right side of Eq. (20.1). Collecting similar terms, we get the equivalent LP.

max z = 12.5 − 2.5w1 − 3.5x2 + 0.5x3

x1 = 2.5 − 0.5w1 − 1.5x2 − 0.5x3

w2 = 1 + 2w1 + 5x2

w3 = 0.5 + 1.5w1 + 0.5x2 − 0.5x3.

Note, that the nonbasic variables are now {w1, x2, x3} and the basic variables are {x1,w2,w3}. In
particular, the trivial solution, of assigning zero to all the nonbasic variables is still feasible; namely
we set w1 = x2 = x3 = 0. Furthermore, the value of this solution is 12.5.

This rewriting step, we just did, is called pivoting. And the variable we pivoted on is x1, as x1

was transfered from being a nonbasic variable into a basic variable.
We would like to continue pivoting till we reach an optimal solution. We observe, that we

can not pivot on w1, since if we increase the value of w1 then the objective function value goes
down, since the coefficient of w1 is −2.5. Similarly, we can not pivot on x2 since its coefficient in
the objective function is −3.5. Thus, we can only pivot on x3 since its coefficient in the objective
function is 0.5, which is a positive number.

6

Checking carefully, it follows that the maximum we can increase x3 is to 1, since then w3

becomes zero. Thus, rewriting the equality for w3 in the LP; that is,

w3 = 0.5 + 1.5w1 + 0.5x2 − 0.5x3,

for x3, we have
x3 = 1 + 3w1 + x2 − 2w3,

Substituting this into the LP, we get the following LP.

max z = 13 − w1 − 3x2 − w3

s.t. x1 = 2 − 2w1 − 2x2 + w3

w2 = 1 + 2w1 + 5x2

x3 = 1 + 3w1 + x2 − 2w3

Can we further improve the current (trivial) solution that assigns zero to all the nonbasic vari-
ables? (Here the nonbasic variables are {w1, x2,w3}.)

The resounding answer is no. We had reached the optimal solution. Indeed, all the coefficients
in the objective function are negative (or zero). As such, the trivial solution (all nonbasic variables
get zero) is maximal, as they must all be non-negative, and increasing their value decreases the
value of the objective function. So we better stop.

The crucial observation underlining our reasoning is that at each stage we had replace the LP
by a completely equivalent LP. In particular, any feasible solution to the original LP would be
feasible for the final LP (and vice versa). Furthermore, they would have exactly the same objective
function value. However, in the final LP, we get an objective function that can not be improved for
any feasible point, an we stopped. Thus, we found the optimal solution to the linear program.

This gives a somewhat informal description of the simplex algorithm. At each step we pivot on
a nonbasic variable that improves our objective function till we reach the optimal solution. There is
a problem with our description, as we assumed that the starting (trivial) solution of assigning zero
to the nonbasic variables is feasible. This is of course might be false. Before providing a formal
(and somewhat tedious) description of the above algorithm, we show how to resolve this problem.

20.2.4.1 Starting somewhere

Max z = v +
∑
j∈N

c jx j,

s.t. xi = bi −
∑
j∈N

ai jx j f or i ∈ B,

xi ≥ 0, ∀i = 1, . . . , n + m.

We had transformed a linear programming problem
into slack form. Intuitively, what the Simplex algo-
rithm is going to do, is to start from a feasible solution
and start walking around in the feasible region till it
reaches the best possible point as far as the objective
function is concerned. But maybe the linear program L

is not feasible at all (i.e., no solution exists.). Let L be a linear program (in slack form depicted on
the left. Clearly, if we set all xi = 0 if i ∈ N then this determines the values of the basic variables. If
they are all positive, we are done, as we found a feasible solution. The problem is that they might
be negative.

7

min x0

s.t. xi = x0 + bi −
∑
j∈N

ai jx j f or i ∈ B,

xi ≥ 0, ∀i = 1, . . . , n + m.

We generate a new LP problem L′ from L.
This LP L′ = Feasible(L) is depicted on the right.
Clearly, if we pick x j = 0 for all j ∈ N (all
the nonbasic variables), and a value large enough
for x0 then all the basic variables would be non-
negatives, and as such, we have found a feasible solution for L′. Let LPStartSolution(L′) denote
this easily computable feasible solution.

We can now use the Simplex algorithm we described to find this optimal solution to L′ (because
we have a feasible solution to start from!).

Lemma 20.2.4 The LP L is feasible if and only if the optimal objective value of LP L′ is zero.

Proof: A feasible solution to L is immediately an optimal solution to L′ with x0 = 0, and vice
versa. Namely, given a solution to L′ with x0 = 0 we can transform it to a feasible solution to L by
removing x0.

One technicality that is ignored above, is that the starting solution we have for L′, generated
by LPStartSolution(L) is not legal as far as the slack form is concerned, because the non-basic
variable x0 is assigned a non-zero value. However, this can be easily resolve by immediately
pivoting on x0 when we run the Simplex algorithm. Namely, we first try to decrease x0 as much as
possible.

8

	Linear Programming
	Introduction and Motivation
	History
	Network flow via linear programming

	The Simplex Algorithm
	Linear program where all the variables are positive
	Standard form
	Slack Form
	The Simplex algorithm by example

