
Chapter 19

Sorting Networks
By Sariel Har-Peled, December 7, 2009¬

19.1 Model of Computation

It is natural to ask if one can perform a computational task considerably faster by using a different
architecture (i.e., a different computational model).

The answer to this question is a resounding yes. A cute example is the Macaroni sort. We are
given a set S = {s1, . . . , S n} of n real numbers in the range (say) [1, 2]. We get a lot of Macaroni
(this are longish and very narrow tubes of pasta), and cut the ith piece to be of length si, for
i = 1, . . . , n. Next, take all these pieces of pasta in your hand, make them stand up vertically, with
their bottom end lying on a horizontal surface. Next, lower your handle till it hit the first (i.e.,
tallest) piece of pasta. Take it out, measure it height, write down its number, and continue in this
fashion till you have extracted all the pieces of pasta. Clearly, this is a sorting algorithm that works
in linear time. But we know that sorting takes Ω(n log n) time. Thus, this algorithm is much faster
than the standard sorting algorithms.

This faster algorithm was achieved by changing the computation model. We allowed new
“strange” operations (cutting a piece of pasta into a certain length, picking the longest one in
constant time, and measuring the length of a pasta piece in constant time). Using these operations
we can sort in linear time.

If this was all we can do with this approach, that would have
only been a curiosity. However, interestingly enough, there are
natural computation models which are considerably stronger than
the standard model of computation. Indeed, consider the task of
computing the output of the circuit on the right (here, the input is
boolean values on the input wires on the left, and the output is the single output on the right).

Clearly, this can be solved by ordering the gates in the “right” order (this can be done by
topological sorting), and then computing the value of the gates one by one in this order, in such a

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

way that a gate being computed knows the values arriving on its input wires. For the circuit above,
this would require 8 units of time, since there are 8 gates.

However, if you consider this circuit more carefully, one real-
ized that we can compute this circuit in 4 time units. By using the
fact that several gates are independent of each other, and we can
compute them in parallel, as depicted on the right. In fact, circuits
are inherently parallel and we should be able to take advantage of
this fact.

So, let us consider the classical problem of sorting n numbers. The question is whether we can
sort them in sublinear time by allowing parallel comparisons. To this end, we need to precisely
define our computation model.

19.2 Sorting with a circuit – a naive solution

Comparator

�

� �������	��

���������

�������	�������������We are going to design a circuit, where the inputs are the num-
bers and we compare two numbers using a comparator gate. Such
a gate has two inputs and two outputs, and it is depicted on the
right.

y

x′ = min(x, y)

y′ = max(x, y)

x
We usually depict such a gate as a vertical segment connecting

two wires, as depicted on the right. This would make drawing and
arguing about sorting networks easier.

Our circuits would be depicted by horizontal lines, with
vertical segments (i.e., gates) connecting between them. For
example, see complete sorting network depicted on the right.

The inputs come on the wires on the left, and are output
on the wires on the right. The largest number is output on
the bottom line. Somewhat surprisingly, one can generate
circuits from a known sorting algorithm.

19.2.1 Definitions
Definition 19.2.1 A comparison network is a DAG (directed
acyclic graph), with n inputs and n outputs, which each gate
has two inputs and two outputs.

Definition 19.2.2 The depth of a wire is 0 at the input. For a gate with two inputs of depth d1 and
d2 the depth on the output wire is 1 + max(d1, d2).

The depth of a comparison network is the maximum depth of an output wire.

Definition 19.2.3 A sorting network is a comparison network such that for any input, the output is
monotonically sorted. The size of a sorting network is the number of gates in the sorting network.
The running time of a sorting network is just its depth.

2

19.2.2 Sorting network based on insertion sort

In fact, consider the sorting cir-
cuit on the left. Clearly, this is
just the inner loop of the stan-
dard insertion sort. In fact, if
we repeat this loop, we get the

sorting network showing on the right. Its easy argue that this
circuit sorts correctly all inputs.

1 2 3 4 5 6 7 8 9

(i) (ii)

Figure 19.1: The sorting network inspired by in-
sertion sort.

An alternative way of drawing this sorting
network is despited in Figure 19.1 (ii). The
next natural question, is how much time does
it take for this circuit to sort the n numbers.
Observe, that the running time of the algo-
rithm is how many different time ticks we have
to wait till the result stabilizes in all the gates.
In our example, the alternative drawing imme-
diately tell us how to schedule the computa-
tion of the gates. See Figure 19.1 (ii).

In particular, the above discussion implies the following result.

Lemma 19.2.4 The sorting network based on insertion sort has O(n2) gates, and requires 2n − 1
time units to sort n numbers.

19.3 The Zero-One Principle
The zero-one principle states that if a comparison network sort correctly all binary inputs (i.e.,
every number is either 0 or 1) then it sorts correctly all inputs. We (of course) need to prove that
the zero-one principle is true.

Lemma 19.3.1 If a comparison network transforms the input sequence a = 〈a1, a2, . . . , an〉 into the
output sequence b = 〈b1, b2, . . . , bn〉, then for any monotonically increasing function f , the network
transforms the input sequence f (a) = 〈 f (a1), . . . , f (an)〉 into the sequence f (b) = 〈 f (b1), . . . , f (bn)〉.

Proof: Consider a single comparator with inputs x and y, and outputs x′ = min(x, y) and y′ =

max(x, y). If f (x) = f (y) then the claim trivially holds for this comparator. If f (x) < f (y) then
clearly

max(f (x), f (y)) = f (max(x, y)) and
min(f (x), f (y)) = f (min(x, y)) ,

since f (·) is monotonically increasing. As such, for the input 〈x, y〉, for x < y, we have output
〈x, y〉. Thus, for the input 〈 f (x), f (y)〉 the output is 〈 f (x), f (y)〉. Similarly, if x > y, the output is
〈y, x〉. In this case, for the input 〈 f (x), f (y)〉 the output is 〈 f (y), f (x)〉. This establish the claim for
a single comparator.

3

Now, we claim by induction that if a wire carry a value ai, when the sorting network get input
a1, . . . , an, then for the input f (a1), . . . , f (an) this wire would carry the value f (ai).

This is proven by induction on the depth on the wire at each point. If the point has depth 0,
then its an input and the claim trivially hold. So, assume it holds for all points in our circuits of
depth at most i, and consider a point p on a wire of depth i + 1. Let G be the gate which this wire is
an output of. By induction, we know the claim holds for the inputs of G (which have depth at most
i). Now, we the claim holds for the gate G itself, which implies the claim apply the above claim to
the gate G, which implies the claim holds at p.

Theorem 19.3.2 If a comparison network with n inputs sorts all 2n binary strings of length n
correctly, then it sorts all sequences correctly.

Proof: Assume for the sake of contradiction, that it sorts incorrectly the sequence a1, . . . , an. Let
b1, . . . bn be the output sequence for this input.

Let ai < ak be the two numbers that outputted in incorrect order (i.e. ak appears before ai in the
output). Let

f (x) =

0 x ≤ ai

1 x > ai.

Clearly, by the above lemma (Lemma 19.3.1), for the input

〈 f (a1), . . . , f (an)〉 ,

which is a binary sequence, the circuit would output 〈 f (b1), . . . , f (bn)〉. But then, this sequence
looks like

000..0???? f (ak)???? f (ai)??1111

but f (ai) = 0 and f (a j) = 1. Namely, the output is a sequence of the form ????1????0????, which
is not sorted.

Namely, we have a binary input (i.e., 〈 f (b1), . . . , f (bn)〉) for which the comparison network
does not sort it correctly. A contradiction to our assumption.

19.4 A bitonic sorting network
Definition 19.4.1 A bitonic sequence is a sequence which is first increasing and then decreasing,
or can be circularly shifted to become so.

Example 19.4.2 The sequences (1, 2, 3, π, 4, 5, 4, 3, 2, 1) and (4, 5, 4, 3, 2, 1, 1, 2, 3) are bitonic, while
the sequence (1, 2, 1, 2) is not bitonic.

Observation 19.4.3 A binary bitonic sequence (i.e., bitonic sequence made out only of zeroes and
ones) is either of the form 0i1 j0k or of the form 1i0 j1k, where 0i (resp, 1i) denote a sequence of i
zeros (resp., ones).

Definition 19.4.4 A bitonic sorter is a comparison network that sorts all bitonic sequences cor-
rectly.

4

���������	��

�
 ������������� ���

�
���������� �"!#�%$
&'�(�*)

�
 ��������� ��� ���

�����+���	��
 �
 ������� �,!#�-$

���������	��

� �������	�
����
����

� �����

(i) (ii) (iii)

Figure 19.2: Depicted are the (i) recursive construction of BitonicSorter[n], (ii) opening up the
recursive construction, and (iii) the resulting comparison network.

Definition 19.4.5 A half-cleaner is a comparison network, connecting line i
with line i + n/2. In particular, let Half-Cleaner[n] denote the half-cleaner
with n inputs. Note, that the depth of a Half-Cleaner[n] is one.

111..111 000..000000..000

000..000111..111 111..111 111

000..000

000..000

111..111 111000..000

000..000 111

000..000

half−

cleaner

It is beneficial to consider what a half-cleaner do to an input
which is a (binary) bitonic sequence. Clearly, in the specific ex-
ample, depicted on the left, we have that the left half size is clean
and all equal to 0. Similarly, the right size of the output is bitonic.

In fact, it is easy to prove by simple (but tedious) case analysis
that the following lemma holds.

Lemma 19.4.6 If the input to a half-cleaner (of size n) is a binary bitonic sequence then for the
output sequence we have that (i) the elements in the top half are smaller than the elements in
bottom half, and (ii) one of the halves is clean, and the other is bitonic.

Proof: If the sequence is of the form 0i1 j0k and the block of ones is completely on the left side
(i.e., its part of the first n/2 bits) or the right side, the claim trivially holds. So, assume that the
block of ones starts at position n/2 − β and ends at n/2 + α.

00 . . . 00 111 . . . 111

000 . . . 00011 . . . 11

HC

00 . . . 00 00 . . . 0011

111 . . . 111

α︷ ︸︸ ︷
︸ ︷︷ ︸

β

If n/2− α ≥ β then this is exactly the case depicted above and
claim holds. If n/2 − α < β then the second half is going to be all
ones, as depicted on the right. Implying the claim for this case.

A similar analysis holds if the sequence is of the form 1i0 j1k.

This suggests a simple recursive construction of BitonicSorter[n], see Figure 19.2.
Thus, we have the following lemma.

Lemma 19.4.7 BitonicSorter[n] sorts bitonic sequences of length n = 2k, it uses (n/2)k = n
2 lg n

gates, and it is of depth k = lg n.

5

���������	��

�
 ���������������

� ���������������

(i) (ii) (iii) (iv)

Figure 19.3: (i) Merger via flipping the lines of bitonic sorter. (ii) A BitonicSorter. (ii) The
Merger after we “physically” flip the lines, and (iv) An equivalent drawing of the resulting
Merger.

� �������	�
����
����
� �����

� �����������

� � � � ���!�#"%$ &('

� � � � ���!� "%$ &('

� �����������

(i) (ii)

Figure 19.4: (i) FlipCleaner[n], and (ii) Merger[n] described using FlipCleaner.

19.4.1 Merging sequence

Next, we deal with the following merging question. Given two sorted sequences of length n/2,
how do we merge them into a single sorted sequence?

The idea here is concatenate the two sequences, where the second sequence is being flipped
(i.e., reversed). It is easy to verify that the resulting sequence is bitonic, and as such we can sort it
using the BitonicSorter[n].

Specifically, given two sorted sequences a1 ≤ a2 ≤ . . . ≤ an and b1 ≤ b2 ≤ . . . ≤ bn, observe
that the sequence a1, a2, . . . , an, bn, bn−1, bn−2, . . . , b2, b1 is bitonic.

Thus, to merge two sorted sequences of length n/2, just flip one of them, and use BitonicSorter[n],
see Figure 19.3. This is of course illegal, and as such we take BitonicSorter[n] and physically flip
the last n/2 entries. The process is depicted in Figure 19.3. The resulting circuit Merger takes two
sorted sequences of length n/2, and return a sorted sequence of length n.

It is somewhat more convenient to describe the Merger using a FlipCleaner component. See
Figure 19.4

Lemma 19.4.8 The circuit Merger[n] gets as input two sorted sequences of length n/2 = 2k−1, it
uses (n/2)k = n

2 lg n gates, and it is of depth k = lg n, and it outputs a sorted sequence.

6

19.5 Sorting Network

� �����������
	��

�������������� ���

���������� ��� ���

We are now in the stage, where we can build a sorting network.
To this end, we just implement merge sort using the Merger[n]
component. The resulting component Sorter[n] is despited on the
right using a recursive construction.

Lemma 19.5.1 The circuit Sorter[n] is a sorting network (i.e., it
sorts any n numbers) using G(n) = O(n log2 n) gates. It has depth
O(log2 n). Namely, Sorter[n] sorts n numbers in O(log2 n) time.

Proof: The number of gates is

G(n) = 2G(n/2) + Gates(Merger[n]).

Which is G(n) = 2G(n/2) + O(n log n) = O(n log2 n).
As for the depth, we have that D(n) = D(n/2) + Depth(Merger[n]) = D(n/2) + O(log(n)), and

thus D(n) = O(log2 n), as claimed.

19.6 Faster sorting networks

Figure 19.5: Sorter[8].

One can build a sorting network of logarithmic depth (see
[AKS83]). The construction however is very complicated. A sim-
pler parallel algorithm would be discussed sometime in the next
lectures. BTW, the AKS construction [AKS83] mentioned above,
is better than bitonic sort for n larger than 28046.

Bibliography
[AKS83] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n) sorting network. In Proc. 15th

Annu. ACM Sympos. Theory Comput., pages 1–9, 1983.

7

	Sorting Networks
	Model of Computation
	Sorting with a circuit -- a naive solution
	Definitions
	Sorting network based on insertion sort

	The Zero-One Principle
	A bitonic sorting network
	Merging sequence

	Sorting Network
	Faster sorting networks

	Bibliography

