
Chapter 18

Fast Fourier Transform
By Sariel Har-Peled, December 7, 2009¬ Version: 0.11

“But now, reflecting further, there begins to creep into his breast a touch of fellow-feeling for his imita-
tors. For it seems to him now that there are but a handful of stories in the world; and if the young are to
be forbidden to prey upon the old then they must sit for ever in silence.”

– – J.M. Coetzee

18.1 Introduction
In this chapter, we will address the problem of multiplying two polynomials quickly.

Definition 18.1.1 A polynomial p(x) of degree n is a function of the form p(x) =
∑n

j=0 a jx j =

a0 + x(a1 + x(a2 + . . . + xan)).

Note, that given x0, the polynomial can be evaluated at x0 at O(n) time.
There is a “dual” (and equivalent) representation of a polynomial. We sample its value in

enough points, and store the values of the polynomial at those points. The following theorem
states this formally. We omit the proof as you should have seen it already at some earlier math
class.

Theorem 18.1.2 For any set
{
(x0, y0), (x1, y1), . . . , (xn−1, yn−1)

}
of n point-value pairs such that all

the xk values are distinct, there is a unique polynomial p(x) of degree n − 1, such that yk = p(xk),
for k = 0, . . . , n − 1.

An explicit formula for p(x) as a function of those point-value pairs is

p(x) =

n−1∑
i=0

yi

∏
j,i(x − x j)∏
j,i(xi − x j)

.

Note, that the ith term in this summation is zero for X = x1, . . . , xi−1, xi+1, . . . , xn−1, and is equal to
yi for x = xi.

It is easy to verify that given n point-value pairs, we can compute p(x) in O(n2) time (using the
above formula).

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

The point-value pairs representation has the advantage that we can multiply two polynomials
quickly. Indeed, if we have two polynomials p and q of degree n − 1, both represented by 2n (we
are using more points than we need) point-value pairs{

(x0, y0), (x1, y1), . . . , (x2n−1, y2n−1)
}

for p(x)

and
{
(x0, y′0), (x1, y′1), . . . , (x2n−1, y′2n−1)

}
for q(x).

Let r(x) = p(x)q(x) be the product of these two polynomials. Computing r(x) directly requires
O(n2) using the naive algorithm. However, in the point-value representation we have, that the
representation of r(x) is{

(x0, r(x0)), . . . , (x2n−1, r(x2n−1))
}

=
{
(x0, p(x0)q(x0)), . . . , (x2n−1, p(x2n−1)q(x2n−1))

}
=

{
(x0, y0y′0), . . . , (x2n−1, y2n−1y′2n−1)

}
.

Namely, once we computed the representation of p(x) and q(x) using point-value pairs, we can
multiply the two polynomials in linear time. Furthermore, we can compute the standard represen-
tation of r(x) from this representation.

Thus, if could translate quickly (i.e., O(n log n) time) from the standard representation of a
polynomial to point-value pairs representation, and back (to the regular representation) then we
could compute the product of two polynomials in O(n log n) time. The Fast Fourier Transform
is a method for doing exactly this. It is based on the idea of choosing the xi values carefully and
using divide and conquer.

18.2 Computing a polynomial quickly on n values
In the following, we are going to assume that the polynomial we work on has degree n − 1, where
n = 2k. If this is not true, we can pad the polynomial with terms having zero coefficients.

Assume that we magically were able to find a set of numbers A = {x1, . . . , xn}, so that they have

the following property: |SQ(A)| = n/2, where SQ(A) =

{
x2

∣∣∣∣ x ∈ A
}
. Namely, when we square the

numbers of A, we remain with only n/2 distinct values, although we started with n values. It is
quite easy to find such a set.

What is much harder is to find a set that have this property repeatedly. Namely, SQ(SQ(A))
would have n/4 distinct values, SQ(SQ(SQ(A))) would have n/8 values, and SQi(A) would have
n/2i distinct values.

In fact, it is easy to show that there is no such set of real numbers (verify...). But let us for the
time being ignore this technicality, and fly, for a moment, into the land of fantasy, and assume that
we do have such a set of numbers, so that |SQi(A)| = n/2i numbers, for i = 0, . . . , k. Let us call
such a set of numbers collapsible.

Given a set of numbers A = {x0, . . . , xn} and a polynomial p(x), let

p(A) = 〈(x0, p(x0)), . . . , (xn, p(xn))〉 .

Furthermore, let us rewrite p(x) =
∑n−1

i=0 aixi as p(x) = u(x2) + x · v(x2), where

u(y) =

n/2−1∑
i=0

a2iyi and v(y) =

n/2−1∑
i=0

a1+2iyi.

2

Algorithm FFTAlg (p, X)
input: p(x): A polynomial of degree n: p(x) =

∑n−1
i=0 aixi

X: A collapsible set of n elements.
output: p(X)

begin
u(y) =

∑n/2−1
i=0 a2iyi

v(y) =
∑n/2−1

i=0 a1+2iyi.

Y = SQ(A) =

{
x2

∣∣∣∣ x ∈ A
}
.

U =FFTAlg(u, Y) /* U = u(Y) */

V =FFTAlg (v, Y) /* V = v(Y) */

Out ← ∅
for x ∈ A do

/* p(x) = u(x2) + x ∗ v(x2) */

/* U[x2] is the value u(x2) */
(x, p(x))←

(
x,U[x2] + x · V[x2]

)
Out ← Out ∪ {(x, p(x))}

return Out
end

Namely, we put all the even degree terms of p(x) into u(x), and all the odd degree terms into v(x).
The maximum degree of the two polynomials u(y) and v(y) is n/2.

We are now ready for the kill: To compute p(A) for A, which is a collapsible set, we have to
compute u(SQ(A)), v(SQ(A)). Namely, once we have the value-point pairs of u(SQ(A)), v(SQ(A))
we can in linear time compute p(A). But, SQ(A) have n/2 values because we assumed that A is
collapsible. Namely, to compute n point-value pairs of p(·), we have to compute n/2 point-value
pairs of two polynomials of degree n/2.

The algorithm is depicted in Figure 18.2.
What is the running time of FFTAlg? Well, clearly, all the operations except the recursive calls

takes O(n) time (Note that we can fetch U[x2] in O(1) time from U by using hashing). As for the
recursion, we call recursively on a polynomial of degree n/2 with n/2 values (A is collapsible!).
Thus, the running time is T (n) = 2T (n/2) + O(n) which is O(n log n) – exactly what we wanted.

18.2.1 Generating Collapsible Sets

Nice! But how do we resolve this “technicality” of not having collapsible set? It turns out that if
work over the complex numbers instead of over the real numbers, then generating collapsible sets
is quite easy. Describing complex numbers is outside the scope of this writeup, and we assume that
you already have encountered them before. Everything you can do over the real numbers you can
do over the complex numbers, and much more (complex numbers are your friend). In particular, let
γ denote a nth root of unity. There are n such roots, and let γ j(n) denote the jth root. In particular,

3

let
γ j(n) = cos((2π j)/n) + i sin((2π j)/n) = γ j.

Let A(n) = {γ0(n), . . . , γn−1(n)}. It is easy to verify that |SQ(A(n))| has exactly n/2 elements. In
fact, SQ(A(n)) = A(n/2), as can be easily verified. Namely, if we pick n to be a power of 2, then
A(n) is the required collapsible set.

Theorem 18.2.1 Given polynomial p(x) of degree n, where n is a power of two, then we can
compute p(X) in O(n log n) time, where X = A(n) is the set of n different powers of the nth root of
unity over the complex numbers.

We can now multiply two polynomials quickly by transforming them to the point-value pairs
representation over the nth root of unity, but we still have to transform this representation back to
the regular representation.

18.3 Recovering the polynomial

This part of the writeup is somewhat more technical. Putting it shortly, we are going apply the
FFTAlg algorithm once again to recover the original polynomial. The details follow.

It turns out that we can interpret the FFT as a matrix multiplication operator. Indeed, if we have
p(x) =

∑n−1
i=0 aixi then evaluating p(·) onA(n) is equivalent to:

y0

y1

y2
...

yn−1

=

1 γ0 γ2
0 γ3

0 · · · γn−1
0

1 γ1 γ2
1 γ3

1 · · · γn−1
1

1 γ2 γ2
2 γ3

2 · · · γn−1
2

1 γ3 γ2
3 γ3

3 · · · γn−1
3

...
...

...
... · · ·

...
1 γn−1 γ2

n−1 γ3
n−1 · · · γn−1

n−1

︸ ︷︷ ︸
the matrix V

a0

a1

a2

a3
...

an−1

,

where γ j = γ j(n) = (γ1(n)) j is the jth power of the nth root of unity, and y j = p(γ j).
This matrix V is very interesting, and is called the Vandermonde matrix. Let V−1 be the inverse

matrix of this Vandermonde matrix. And let multiply the above formula from the left. We get:

a0

a1

a2

a3
...

an−1

= V−1

y0

y1

y2
...

yn−1

Namely, we can recover the polynomial p(x) from the point-value pairs{

(γ0, p(γ0)), (γ1, p(γ1)), . . . , (γn−1, p(γn−1))
}

4

by doing a single matrix multiplication of V−1 by the vector [y0, y1, . . . , yn−1]. However, multiplying
a vector with n entries with a matrix of size n × n takes O(n2) time. Thus, we had not benefitted
anything so far.

However, since the Vandermonde matrix is so well behaved, it is not too hard to figure out the
inverse matrix.

Claim 18.3.1

V−1 =
1
n

1 β0 β2
0 β3

0 · · · βn−1
0

1 β1 β2
1 β3

1 · · · βn−1
1

1 β2 β2
2 β3

2 · · · βn−1
2

1 β3 β2
3 β3

3 · · · βn−1
3

...
...

...
... · · ·

...
1 βn−1 β2

n−1 β3
n−1 · · · βn−1

n−1

,

where β j = (γ j(n))−1.

Proof: Consider the (u, v) entry in the matrix C = V−1V . We have

Cu,v =

n−1∑
j=0

(βu) j(γ j)v

n
.

We need to use the fact here that γ j = (γ1) j as can be easily verified. Thus,

Cu,v =

n−1∑
j=0

(βu) j((γ1) j)v

n
=

n−1∑
j=0

(βu) j((γ1)v) j

n
=

n−1∑
j=0

(βuγv) j

n
.

Clearly, if u = v then

Cu,u =
1
n

n−1∑
j=0

(βuγu) j =
1
n

n−1∑
j=0

(1) j =
n
n

= 1.

If u , v then,
βuγv = (γu)−1γv = (γ1)−uγv

1 = (γ1)v−u = γv−u.

And

Cu,v =
1
n

n−1∑
j=0

(γv−u) j =
γn

v−u − 1
γv−u − 1

=
1 − 1
γv−u − 1

= 0,

this follows by the formula for the sum of a geometric series, and the fact that γv−u is an nth root
of unity, and as such if we raise it to power n we get 1.

We just proved that the matrix C have ones on the diagonal and zero everywhere else. Namely,
it is the identity matrix, establishing our claim that the given matrix is indeed the inverse matrix to
the Vandermonde matrix.

Not to mention famous, beautiful and well known – in short a celebrity matrix.

5

Let us recap, given n point-value pairs {(γ0, y0), . . . , (γn−1, yn−1)} of a polynomial p(x) =
∑n−1

i=0 aixi

over the set of nth roots of unity, then we can recover the coefficients of the polynomial by multi-
plying the vector [y0, y1, . . . , yn] by the matrix V−1. Namely,

a0

a1

a2
...

an−1

=

1
n

1 β0 β2
0 β3

0 · · · βn−1
0

1 β1 β2
1 β3

1 · · · βn−1
1

1 β2 β2
2 β3

2 · · · βn−1
2

1 β3 β2
3 β3

3 · · · βn−1
3

...
...

...
... · · ·

...
1 βn−1 β2

n−1 β3
n−1 · · · βn−1

n−1

︸ ︷︷ ︸
V−1

y0

y1

y2

y3
...

yn−1

.

Let us write a polynomial W(x) =

n−1∑
i=0

(yi/n)xi. It is clear that ai = W(βi). That is to recover the

coefficients of p(·), we have to compute a polynomial W(·) on n values: β0, . . . , βn−1.
The final stroke, is to observe that {β0, . . . , βn−1} = {γ0, . . . , γn−1}; indeed βn

i = (γ−1
i)n = (γn

i)−1 =

1−1 = 1. Namely, we can apply the FFTAlg algorithm on W(x) to compute a0, . . . , an−1.
We conclude:

Theorem 18.3.2 Given n point-value pairs of a polynomial p(x) of degree n − 1 over the set of n
powers of the nth roots of unity, we can recover the polynomial p(x) in O(n log n) time.

Theorem 18.3.3 Given two polynomials of degree n, they can be multiplied in O(n log n) time.

18.4 The Convolution Theorem
Given two vectors:

A = [a0, a1, . . . , an]
B = [b0, . . . , bn]

A · B = 〈A, B〉 =

n∑
i=0

aibi.

Let Ar denote the shifting of A by n − r locations to the left (we pad it with zeros; namely, a j = 0
for j < {0, . . . , n}).

Ar =
[
an−r, an+1−r, an+2−r, . . . , a2n−r

]
where a j = 0 if j <

[
0, . . . , n

]
.

Observation 18.4.1 An = A.

Example 18.4.2 For A = [3, 7, 9, 15], n = 3
A2 = [7, 9, 15, 0],
A5 = [0, 0, 3, 7].

6

Definition 18.4.3 Let ci = Ai · B =
∑2n−i

j=n−i a jb j−n+i, for i = 0, . . . , 2n. The vector [c0, . . . , c2n] is the
convolution of A and B.

Question 18.4.4 How to compute the convolution of two vectors of length n?

Definition 18.4.5 The resulting vector [c0, . . . , c2n] is known as the convolution of A and B.

Let p(x) =
∑n

i=0 αixi, and q(x) =
∑n

i=0 βixi. The coefficient of xi in r(x) = p(x)q(x) is:

di =

i∑
j=0

α jβi− j

On the other hand, we would like to compute ci = Ai · B =
∑2n−i

j=n−i a jb j−n+i, which seems to be a
very similar expression. Indeed, setting αi = ai and βl = bn−l−1 we get what we want.

To understand whats going on, observe that the coefficient of x2 in the product of the two
respective polynomials p(x) = a0 + a1x + a2x2 + a3x3 and q(x) = b0 + b1x + b2x2 + b3x3 is the sum
of the entries on the anti diagonal in the following matrix, where the entry in the ith row and jth
column is aib j.

a0+ a1x +a2x2 +a3x3

b0 a2b0x2

+b1x a1b1x2

+b2x2 a0b2x2

+b3x3

Theorem 18.4.6 Given two vectors A = [a0, a1, . . . , an], B = [b0, . . . , bn] one can compute their
convolution in O(n log n) time.

Proof: Let p(x) =
∑n

i=0 an−ixi and let q(x) =
∑n

i=0 bixi. Compute r(x) = p(x)q(x) in O(n log n)
time using the convolution theorem. Let c0, . . . , c2n be the coefficients of r(x). It is easy to verify,
as described above, that [c0, . . . , c2n] is the convolution of A and B.

7

	Fast Fourier Transform
	Introduction
	Computing a polynomial quickly on n values
	Generating Collapsible Sets

	Recovering the polynomial
	The Convolution Theorem

