
Chapter 14

Network Flow III - Applications
By Sariel Har-Peled, December 7, 2009¬ Version: 0.1

14.1 Edge disjoint paths

14.1.1 Edge-disjoint paths in a directed graphs
Question 14.1.1 Given a graph G (either directed or undirected), two vertices s and t, and a
parameter k, the task is to compute k paths from s to t in G, such that they are edge disjoint;
namely, these paths do not share an edge.

To solve this problem, we will convert G (assume G is a directed graph for the time being)
into a network flow graph H, such that every edge has capacity 1. Find the maximum flow in G
(between s and t). We claim that the value of the maximum flow in the network H, is equal to the
number of edge disjoint paths in G.

Lemma 14.1.2 If there are k edge disjoint paths in G between s and t, then the maximum flow in
H is at least k.

Proof: Given k such edge disjoint paths, push one unit of flow along each such path. The resulting
flow is legal in h and it has value k.

Definition 14.1.3 (0/1-flow.) A flow f is 0/1-flow if every edge has either no flow on it, or one
unit of flow.

Lemma 14.1.4 Let f be a 0/1 flow in a network H with flow value µ. Then there are µ edge
disjoint paths between s and t in H.

Proof: By induction on the number of edges in H that has one unit of flow assigned to them by
f . If µ = 0 then there is nothing to prove.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

Otherwise, start traversing the graph H from s traveling only along edges with flow 1 assigned
to them by f . We mark such an edge as used, and do not allow one to travel on such an edge again.
There are two possibilities:

(i) We reached the target vertex t. In this case, we take this path, add it to the set of output
paths, and reduce the flow along the edges of the generated path π to 0. Let H′ be the resulting
flow network and f ′ the resulting flow. We have | f ′| = µ − 1, H′ has less edges, and by induction,
it has µ − 1 edge disjoint paths in H′ between s and t. Together with π this forms µ such paths.

(ii) We visit a vertex v for the second time. In this case, our traversal contains a cycle C, of
edges in H that have flow 1 on them. We set the flow along the edges of C to 0 and use induction
on the remaining graph (since it has less edges with flow 1 on them). The value of the flow f did
not change by removing C, and as such it follows by induction that there are µ edge disjoint paths
between s and t in H.

Since the graph G is simple, there are at most n = |V(H)| edges that leave s. As such, the
maximum flow in H is n. Thus, applying the Ford-Fulkerson algorithm, takes O(mn) time. The
extraction of the paths can also be done in linear time by applying the algorithm in the proof of
Lemma 14.1.4. As such, we get:

Theorem 14.1.5 Given a directed graph G with n vertices and m edges, and two vertices s and t,
one can compute the maximum number of edge disjoint paths between s and t in H, in O(mn) time.

As a consequence we get the following cute result:

Lemma 14.1.6 In a directed graph G with nodes s and t the maximum number of edge disjoint
s − t paths is equal to the minimum number of edges whose removal separates s from t.

Proof: Let U be a collection of edge-disjoint paths from s to t in G. If we remove a set F of
edges from G and separate s from t, then it must be that every path in U uses at least one edge of F.
Thus, the number of edge-disjoint paths is bounded by the number of edges needed to be removed
to separate s and t. Namely, |U | ≤ |F|.

As for the other direction, let F be a set of edges thats its removal separates s and t. We claim
that the set F form a cut in G between s and t. Indeed, let S be the set of all vertices in G that
are reachable from s without using an edge of F. Clearly, if F is minimal then it must be all the
edges of the cut (S ,T) (in particular, if F contains some edge which is not in (S ,T) we can remove
it and get a smaller separating set of edges). In particular, the smallest set F with this separating
property has the same size as the minimum cut between s and t in G, which is by the max-flow
mincut theorem, also the maximum flow in the graph G (where every edge has capacity 1).

But then, by Theorem 14.1.5, there are |F| edge disjoint paths in G (since |F| is the amount of
the maximum flow).

14.1.2 Edge-disjoint paths in undirected graphs
We would like to solve the s-t disjoint path problem for an undirected graph.

Problem 14.1.7 Given undirected graph G, s and t, find the maximum number of edge-disjoint
paths in G between s and t.

2

The natural approach is to duplicate every edge in the undirected graph G, and get a (new)
directed graph H. Next, apply the algorithm of Section 14.1.1 to H.

So compute for H the maximum flow f (where every edge has capacity 1). The problem is the
flow f might use simultaneously the two edges (u→ v) and (v→ u). Observe, however, that in
such case we can remove both edges from the flow f . In the resulting flow is legal and has the same
value. As such, if we repeatedly remove those “double edges” from the flow f , the resulting flow
f ′ has the same value. Next, we extract the edge disjoint paths from the graph, and the resulting
paths are now edge disjoint in the original graph.

Lemma 14.1.8 There are k edge-disjoint paths in an undirected graph G from s to t if and only if
the maximum value of an s − t flow in the directed version H of G is at least k. Furthermore, the
Ford-Fulkerson algorithm can be used to find the maximum set of disjoint s-t paths in G in O(mn)
time.

14.2 Circulations with demands

14.2.1 Circulations with demands

−3

−3

2

4

3 3

2
2

2

Figure 14.1: Instance of
circulation with demands.

We next modify and extend the network flow problem. Let
G = (V, E) be a directed graph with capacities on the edges. Each
vertex v has a demand dv:
• dv > 0: sink requiring dv flow into this

node.

• dv < 0: source with −dv units of flow leav-
ing it.

• dv = 0: regular node.
Let S denote all the source vertices and T denote all the sink/target

vertices.
For a concrete example of an instance of circulation with de-

mands, see figure on the right.

−3

−3

2

4

3 3

2
2

2

1/
2/

2/
2/

2/

Figure 14.2: A valid cir-
culation for the instance
of Figure 14.1.

Definition 14.2.1 A circulation with demands {dv} is a function f
that assigns nonnegative real values to the edges of G, such that:

• Capacity condition: ∀e ∈ E we have f (e) ≤ c(e).

• Conservation condition: ∀v ∈ V we have f in(v) − f out(v) = dv.

Here, for a vertex v, let f in(v) denotes the flow into v and f out(v)
denotes the flow out of v.

Problem 14.2.2 Is there a circulation that comply with the demand
requirements?

See Figure 14.1 and Figure 14.2 for an example.

3

Lemma 14.2.3 If there is a feasible circulation with demands {dv}, then
∑

v dv = 0.

Proof: Since it is a circulation, we have that dv = f in(v) − f out(v). Summing over all vertices:∑
v dv =

∑
v f in(v) −

∑
v f out(v). The flow on every edge is summed twice, one with positive sign,

one with negative sign. As such,∑
v

dv =
∑

v

f in(v) −
∑

v

f out(v) = 0,

which implies the claim.

In particular, this implies that there is a feasible solution only if

D =
∑

v,dv>0

dv =
∑

v,dv<0

−dv.

14.2.1.1 The algorithm for computing a circulation

The algorithm performs the following steps:

• G = (V, E) - input flow network with demands on vertices.

• Check that D =
∑

v,dv>0 dv =
∑

v,dv<0 −dv.

• Create a new super source s, and connect it to all the vertices v with dv < 0. Set the capacity
of the edge s→ v to be −dv.

• Create a new super target t. Connect to it all the vertices u with du > 0. Set capacity on the
new edge u→ t to be du.

• On the resulting network flow network H (which is a standard instance of network flow).
Compute maximum flow on H from s to t. If it is equal to D, then there is a valid circulation,
and it is the flow restricted to the original graph. Otherwise, there is no valid circulation.

Theorem 14.2.4 There is a feasible circulation with demands {dv} in G if and only if the maximum
s-t flow in H has value D. If all capacities and demands in G are integers, and there is a feasible
circulation, then there is a feasible circulation that is integer valued.

14.3 Circulations with demands and lower bounds
Assume that in addition to specifying a circulation and demands on a network G, we also specify
for each edge a lower bound on how much flow should be on each edge. Namely, for every edge
e ∈ E(G), we specify `(e) ≤ c(e), which is a lower bound to how much flow must be on this edge.
As before we assume all numbers are integers.

We need now to compute a flow f that fill all the demands on the vertices, and that for any edge
e, we have `(e) ≤ f (e) ≤ c(e). The question is how to compute such a flow?

Let use start from the most naive flow, which transfer on every edge, exactly its lower bound.
This is a valid flow as far as capacities and lower bounds, but of course, it might violate the

4

demands. Formally, let f0(e) = `(e), for all e ∈ E(G). Note that f0 does not even satisfy the
conservation rule:

Lv = f in
0 (v) − f out

0 (v) =
∑

e into v

`(e) −
∑

e out o f v

`(e).

If Lv = dv, then we are happy, since this flow satisfies the required demand. Otherwise, there is
imbalance at v, and we need to fix it.

Formally, we set a new demand d′v = dv − Lv for every node v, and the capacity of every edge e
to be c′(e) = c(e) − `(e). Let G′ denote the new network with those capacities and demands (note,
that the lower bounds had “disappeared”). If we can find a circulation f ′ on G′ that satisfies the
new demands, then clearly, the flow f = f0 + f ′, is a legal circulation, it satisfies the demands and
the lower bounds.

But finding such a circulation, is something we already know how to do, using the algorithm
of Theorem 14.2.4. Thus, it follows that we can compute a circulation with lower bounds.

Lemma 14.3.1 There is a feasible circulation in G if and only if there is a feasible circulation in
G′.

If all demands, capacities, and lower bounds in G are integers, and there is a feasible circula-
tion, then there is a feasible circulation that is integer valued.

Proof: Let f ′ be a circulation in G′. Let f (e) = f0(e) + f ′(e). Clearly, f satisfies the capacity
condition in G, and the lower bounds. Furthermore,

f in(v) − f out(v) =
∑

e into v

(`(e) + f ′(e)) −
∑

e out o f v

(
`(e) + f ′(e)

)
= Lv +(dv − Lv) = dv.

As such f satisfies the demand conditions on G.
Similarly, let f be a valid circulation in G. Then it is easy to check that f ′(e) = f (e) − `(e) is a

valid circulation for G′.

14.4 Applications

14.4.1 Survey design
We would like to design a survey of products used by consumers (i.e., “Consumer i: what did you
think of product j?”). The ith consumer agreed in advance to answer a certain number of questions
in the range [ci, c′i]. Similarly, for each product j we would like to have at least p j opinions about
it, but not more than p′j. Each consumer can be asked about a subset of the products which they
consumed. In particular, we assume that we know in advance all the products each consumer used,
and the above constraints. The question is how to assign questions to consumers, so that we get all
the information we want to get, and every consumer is being asked a valid number of questions.

The idea of our solution is to reduce the design of the survey to the problem of computing a
circulation in graph. First, we build a bipartite graph having consumers on one side, and products
on the other side. Next, we insert the edge between consumer i and product j if the product was
used by this consumer. The capacity of this edge is going to be 1. Intuitively, we are going to
compute a flow in this network which is going to be an integer number. As such, every edge would
be assigned either 0 or 1, where 1 is interpreted as asking the consumer about this product.

5

s

0, 1

ci, c
′
i

t

pj, p
′
j

The next step, is to connect a source to all the consumers,
where the edge (s→ i) has lower bound ci and upper bound
c′i . Similarly, we connect all the products to the destination t,
where (j→ t) has lower bound p j and upper bound p′j. We
would like to compute a flow from s to t in this network that
comply with the constraints. However, we only know how
to compute a circulation on such a network. To overcome
this, we create an edge with infinite capacity between t and
s. Now, we are only looking for a valid circulation in the
resulting graph G which complies with the aforementioned constraints. See figure on the right for
an example of G.

Given a circulation f in G it is straightforward to interpret it as a survey design (i.e., all middle
edges with flow 1 are questions to be asked in the survey). Similarly, one can verify that given
a valid survey, it can be interpreted as a valid circulation in G. Thus, computing circulation in G
indeed solves our problem.

We summarize:

Lemma 14.4.1 Given n consumers and u products with their constraints c1, c′1, c2, c′2, . . . , cn, c′n,
p1, p′1, . . . , pu, p′u and a list of length m of which products where used by which consumers. An
algorithm can compute a valid survey under these constraints, if such a survey exists, in time
O((n + u)m2).

6

	Network Flow III - Applications
	Edge disjoint paths
	Edge-disjoint paths in a directed graphs
	Edge-disjoint paths in undirected graphs

	Circulations with demands
	Circulations with demands

	Circulations with demands and lower bounds
	Applications
	Survey design

