
Chapter 12

Network Flow
By Sariel Har-Peled, December 7, 2009¬ Version: 0.25

12.1 Network Flow
We would like to transfer as much “merchandise” as possible from one point to another. For
example, we have a wireless network, and one would like to transfer a large file from s to t. The
network have limited capacity, and one would like to compute the maximum amount of information
one can transfer.

Specifically, there is a network and capacities associated with each connection in the network.
The question is how much “flow” can you transfer from a source s into a sink t. Note, that here
we think about the flow as being splitable, so that it can travel from the source to the sink along
several parallel paths simultaneously. So, think about our network as being a network of pipe
moving water from the source the sink (the capacities are how much water can a pipe transfer in
a given unit of time). On the other hand, in the internet traffic is packet based and splitting is less
easy to do.

s

13

4
10

14

t
7

4

12
20

9

16
u v

w x

Definition 12.1.1 Let G = (V, E) be a directed graph. For
every edge (u→ v) ∈ E(G) we have an associated edge ca-
pacity c(u, v), which is a non-negative number. If the edge
(u→ v) < G then c(u, v) = 0. In addition, there is a source
vertex s and a target sink vertex t.

The entities G, s, t and c(·) together form a flow network
or just a network. An example of such a flow network is
depicted on the right.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

s 11
/1

6

t
10

8/13

1/4

4/
9 7/7

15/20

12/12

4/
4

11/14

u v

w x

We would like to transfer as much flow from the source s
to the sink t. Specifically, all the flow starts from the source
vertex, and ends up in the sink. The flow on an edge is a non-
negative quantity that can not exceed the capacity constraint
for this edge. One possible flow is depicted on the left figure,
where the numbers a/b on an edge denote a flow of a units
on an edge with capacity at most b.

We next formalize our notation of a flow.

Definition 12.1.2 (flow) A flow in a network is a function f (·, ·) on the edges of G such that:

(A) Bounded by capacity: For any edge (u→ v) ∈ E, we have f (u, v) ≤ c(u, v).

Specifically, the amount of flow between u and v on the edge (u→ v) never exceeds its capac-
ity c(u, v).

(B) Anti symmetry: For any u, v we have f (u, v) = − f (v, u).

(C) There are two special vertices: (i) the source vertex s (all flow starts from the source), and the
sink vertex t (all the flow ends in the sink).

(D) Conservation of flow: For any vertex u ∈ V \ {s, t}, we have
∑

v

f (u, v) = 0.­

(Namely, for any internal node, all the flow that flows into a vertex leaves this vertex.)

The amount of flow (or just flow) of f , called the value of f , is | f | =
∑
v∈V

f (s, v).

Note, that a flow on edge can be negative (i.e., there is a positive flow flowing on this edge in
the other direction).

Problem 12.1.3 (Maximum flow.) Given a network G find the maximum flow in G. Namely,
compute a legal flow f such that | f | is maximized.

12.2 Some properties of flows, max flows, and residual net-
works

For two sets X,Y ⊆ V , let f (X,Y) =
∑

x∈X,y∈Y f (x, y). We will slightly abuse the notations and refer
to f

(
{v} , S

)
by f (v, S), where v ∈ V(G).

Observation 12.2.1 | f | = f (s,V).

Lemma 12.2.2 For a flow f , the following properties holds:

(i) ∀u ∈ V(G) we have f (u, u) = 0,

(ii) ∀X ⊆ V we have f (X, X) = 0,

­This law for electric circuits is known as Kirchhoff’s Current Law.

2

(iii) ∀X,Y ⊆ V we have f (X,Y) = − f (Y, X),

(iv) ∀X,Y,Z ⊆ V such that X∩Y = ∅ we have that f (X∪Y,Z) = f (X,Z)+ f (Y,Z) and f (Z, X∪Y) =

f (Z, X) + f (Z,Y).

(v) For all u ∈ V \ {s, t}, we have f (u,V) = f (V, u) = 0.

Proof: Property (i) holds since (u→ u) it not an edge in the graph, and as such its flow is zero. As
for property (ii), we have

f (X, X) =
∑

{u,v}⊆X,u,v

(f (u, v) + f (v, u)) +
∑
u∈X

f (u, u) =
∑

{u,v}⊆X,u,v

(f (u, v) − f (u, v)) +
∑
u∈X

0 = 0,

by the anti-symmetry property of flow (Definition 12.1.2 (B)).
Property (iii) holds immediately by the anti-symmetry of flow, as f (X,Y) =

∑
x∈X,y∈Y f (x, y) =

−
∑

x∈X,y∈Y f (y, x) = − f (Y, X).
(iv) This case follows immediately from definition.
Finally (v) is just a restatement of the conservation of flow property.

Claim 12.2.3 | f | = f (V, t).

Proof: We have:

| f | = f (s,V) = f
(
V \(V \ {s}) ,V

)
= f (V,V) − f (V \ {s} ,V)
= − f (V \ {s} ,V) = f (V,V \ {s})
= f (V, t) + f (V,V \ {s, t})

= f (V, t) +
∑

u∈V\{s,t}

f (V, u)

= f (V, t) +
∑

u∈V\{s,t}

0

= f (V, t),

since f (V,V) = 0 by Lemma 12.2.2 (i) and f (V, u) = 0 by Lemma 12.2.2 (iv).

Definition 12.2.4 Given capacity c and flow f , the residual capacity of an edge (u→ v) is

c f (u, v) = c(u, v) − f (u, v).

Intuitively, the residual capacity c f (u, v) on an edge (u→ v) is the amount of unused capacity on
(u→ v). We can next construct a graph with all edges that are not being fully used by f , and as
such can serve to improve f .

Definition 12.2.5 Given f , G = (V, E) and c, as above, the residual graph (or residual network)
of G and f is the the graph G f =

(
V, E f

)
where

E f =

{
(u, v) ∈ V × V

∣∣∣∣ c f (u, v) > 0
}
.

3

s 11
/1

6

t
10

8/13

1/4

4/
9 7/7

15/20

12/12

4/
4

11/14

u v

w x

s

t

u v

w x

5

11
5

3

5

7

5

12

4

3

11

8

4

11

15

(i) (ii)

Figure 12.1: (i) A flow network, and (ii) the resulting residual network. Note, that f (u,w) =

− f (w, u) = −1 and as such c f (u,w) = 10 − (−1) = 11.

Note, that by the definition of E f , it might be that an edge (u→ v) that appears in E might
induce two edges in E f . Indeed, consider an edge (u→ v) such that f (u, v) < c(u, v) and (v→ u)
is not an edge of G. Clearly, c f (u, v) = c(u, v) − f (u, v) > 0 and (u→ v) ∈ E f . Also,

c f (v, u) = c(v, u) − f (v, u) = 0 − (− f (u, v)) = f (u, v),

since c(v, u) = 0 as (v→ u) is not an edge of G. As such, (v→ u) ∈ E f . This just states that we
can always reduce the flow on the edge (u→ v) and this is interpreted as pushing flow on the edge
(v→ u). See Figure 12.1 for an example of a residual network.

Since every edge of G induces at most two edges in G f , it follows that G f has at most twice
the number of edges of G; formally,

∣∣∣E f

∣∣∣ ≤ 2 |E|.

Lemma 12.2.6 Given a flow f defined over a network G, then the residual network G f together
with c f form a flow network.

Proof: One just need to verify that c f (·) is always a non-negative function, which is true by the
definition of E f .

The following lemma testifies that we can improve a flow f on G by finding a any legal flow h
in the residual netowrk G f .

Lemma 12.2.7 Given a flow network G(V, E), a flow f in G, and h be a flow in G f , where G f is
the residual network of f . . Then f + h is a (legal) flow in G and its capacity is | f + h| = | f | + |h|.

Proof: By definition, we have (f + h)(u, v) = f (u, v) + h(u, v) and thus (f + h)(X,Y) = f (X,Y) +

h(X,Y). We just need to verify that f + h is a legal flow, by verifying the properties required to it
by Definition 12.1.2.

Anti symmetry holds since (f + h)(u, v) = f (u, v) + h(u, v) = − f (v, u)− h(v, u) = −(f + h)(v, u).
Next, we verify that the flow f + h is bounded by capacity. Indeed,

(f + h)(u, v) ≤ f (u, v) + h(u, v) ≤ f (u, v) + c f (u, v) = f (u, v) + (c(u, v) − f (u, v)) = c(u, v).

For u ∈ V − s − t we have (f + h)(u,V) = f (u,V) + h(u,V) = 0 + 0 = 0 and as such f + h
comply with the conservation of flow requirement.

Finally, the total flow is

| f + h| = (f + h)(s,V) = f (s,V) + h(s,V) = | f | + |h| .

4

Definition 12.2.8 For G and a flow f , a path p in G f between s and t is an augmenting path.

�

��

�

���

�
�

�

�

	

Figure 12.2: An augmenting
path for the flow of Figure 12.1.

Note, that all the edges of p has positive capacity in G f ,
since otherwise (by definition) they would not appear in E f .
As such, given a flow f and an augmenting path p, we can
improve f by pushing a positive amount of flow along the
augmenting path p. An augmenting path is depicted on the
right, for the network flow of Figure 12.1.

Definition 12.2.9 For an augmenting path p let c f (p) be the
maximum amount of flow we can push through p. We call
c f (p) the residual capacity of p. Formally,

c f (p) = min
(u→v)∈p

c f (u, v).

We can now define a flow that realizes the flow along p. Indeed:

fp(u, v) =


c f (p) if (u→ v) is in p
−c f (p) i f (v→ u) is in p

0 otherwise.

�

�

���������

���	�

��
��
��

� � �

���
���

�

��

�

�����

�����
���

���
��� �����

������
 �

Figure 12.3: The flow resulting from apply-
ing the residual flow fp of the path p of Fig-
ure 12.2 to the flow of Figure 12.1.

Lemma 12.2.10 For an augmenting path p, the
flow fp is a flow in G f and

∣∣∣ fp

∣∣∣ = c f (p) > 0.

We can now use such a path to get a larger flow:

Lemma 12.2.11 Let f be a flow, and let p be an
augmenting path for f . Then f + fp is a “better”
flow. Namely,

∣∣∣ f + fp

∣∣∣ = | f | +
∣∣∣ fp

∣∣∣ > | f |.
Namely, f + fp is flow with larger value than

f . Consider the flow in Figure 12.3.

�

��

�

�

�

���

	

�
�

�

�

�

�

���

�
	

���

�

�

�

�

Can we continue improving it? Well, if you inspect the resid-
ual network of this flow, depicted on the right. Observe that s is
disconnected from t in this residual network. So, we are unable to
push any more flow. Namely, we found a solution which is a local
maximum solution for network flow. But is that a global maxi-
mum? Is this the maximum flow we are looking for?

12.3 The Ford-Fulkerson method

5

Ford_Fulkerson(G, c)
begin

f ← Zero flow on G
while (G f has augmenting

path p) do
(* Recompute G f for
this check *)

f ← f + fp

return f
end

Given a network G with capacity constraints c, the
above discussion suggest a simple and natural method to
compute a maximum flow. This is known as the Ford-
Fulkerson method for computing maximum flow, and
is depicted on the left, we will refer to it as the Ford_Fulkerson
method.

It is unclear that this method (and the reason we do
not refer to it as an algorithm) terminates and reaches
the global maximum flow. We address these problems
shortly.

12.4 On maximum flows
We need several natural concepts.

Definition 12.4.1 A directed cut (S ,T) in a flow network G = (V, E) is a partition of V into S and
T = V − S , such that s ∈ S and t ∈ T . We usually will refer to a directed cut as just being a cut.

The net flow of f across a cut (S ,T) is f (S ,T) =
∑

s∈S ,t∈T f (s, t).
The capacity of (S ,T) is c(S ,T) =

∑
s∈S ,t∈T c(s, t).

The minimum cut is the cut in G with the minimum capacity.

Lemma 12.4.2 Let G, f ,s,t be as above, and let (S ,T) be a cut of G. Then f (S ,T) = | f |.

Proof: We have

f (S ,T) = f (S ,V) − f (S , S) = f (S ,V) = f (s,V) + f (S − s,V) = f (s,V) = | f | ,

since T = V \ S , and f (S − s,V) =
∑

u∈S−s f (u,V) = 0 by Lemma 12.2.2 (v) (note that u can not
be t as t ∈ T).

Claim 12.4.3 The flow in a network is upper bounded by the capacity of any cut (S ,T) in G.

Proof: Consider a cut (S ,T). We have | f | = f (S ,T) =
∑

u∈S ,v∈T f (u, v) ≤
∑

u∈S ,v∈T c(u, v) = c(S ,T).

In particular, the maximum flow is bounded by the capacity of the minimum cut. Surprisingly,
the maximum flow is exactly the value of the minimum cut.

Theorem 12.4.4 (Max-flow min-cut theorem.) If f is a flow in a flow network G = (V, E) with
source s and sink t, then the following conditions are equivalent:

(A) f is a maximum flow in G

(B) The residual network G f contains no augmenting paths.

(C) | f | = c(S ,T) for some cut (S ,T) of G. And (S ,T) is a minimum cut in G.

6

Proof: (A) ⇒ (B): By contradiction. If there was an augmenting path p then c f (p) > 0, and we
can generate a new flow f + fp, such that

∣∣∣ f + fp

∣∣∣ = | f | + c f (p) > | f | . A contradiction as f is a
maximum flow.

(B)⇒ (C): Well, it must be that s and t are disconnected in G f . Let

S =

{
v

∣∣∣∣ Exists a path between s and v in G f

}
and T = V \ S . We have that s ∈ S , t ∈ T , and for any u ∈ S and v ∈ T we have f (u, v) = c(u, v).
Indeed, if there were u ∈ S and v ∈ T such that f (u, v) < c(u, v) then (u→ v) ∈ E f , and v would
be reachable from s in G f , contradicting the construction of T .

This implies that | f | = f (S ,T) = c(S ,T). The cut (S ,T) must be a minimum cut, because
otherwise there would be cut (S ′,T ′) with smaller capacity c(S ′,T ′) < c(S ,T) = f (S ,T) = | f |, On
the other hand, by Lemma 12.4.3, we have | f | = f (S ′,T ′) ≤ c(S ′,T ′). A contradiction.

(C)⇒ (A) Well, for any cut (U,V), we know that | f | ≤ c(U,V). This implies that if | f | = c(S ,T)
then the flow can not be any larger, and it is thus a maximum flow.

The above max-flow min-cut theorem implies that if Ford_Fulkerson terminates, then it had
computed the maximum flow. What is still allusive is showing that the Ford_Fulkerson method
always terminates. This turns out to be correct only if we are careful about the way we pick the
augmenting path.

7

	Network Flow
	Network Flow
	Some properties of flows, max flows, and residual networks
	The Ford-Fulkerson method
	On maximum flows

