Chapter 10

Randomized Algorithms II

By Sariel Har-Peled, December 7, 2009¹

Version: 0.1

10.1 QuickSort with High Probability

One can think about **QuickSort** as playing a game in rounds. Every round, **QuickSort** picks a pivot, splits the problem into two subproblems, and continue playing the game recursively on both subproblems.

If we track a single element in the input, we see a sequence of rounds that involve this element. The game ends, when this element find itself alone in the round (i.e., the subproblem is to sort a single element).

Thus, to show that **QuickSort** takes $O(n \log n)$ time, it is enough to show, that every element in the input, participates in at most $32 \ln n$ rounds with high enough probability.

Indeed, let X_i be the event that the *i*th element participates in more than $32 \ln n$ rounds.

Let C_{QS} be the number of comparisons performed by **QuickSort**. A comparison between a pivot and an element will be always charged to the element. And as such, the number of comparisons overall performed by **QuickSort** is bounded by $\sum_i r_i$, where r_i is the number of rounds the *i*th element participated in (the last round where it was a pivot is ignored). We have that

$$\alpha = \mathbf{Pr}[C_{QS} \ge 32n \ln n] \le \mathbf{Pr}\left[\bigcup_{i} X_{i}\right] \le \sum_{i=1}^{n} \mathbf{Pr}[X_{i}].$$

Here, we used the *union rule*, that states that for any two events *A* and *B*, we have that $\Pr[A \cup B] \le \Pr[A] + \Pr[B]$. Assume, for the time being, that $\Pr[X_i] \le 1/n^3$. This implies that

$$\alpha \leq \sum_{i=1}^{n} \Pr[X_i] \leq \sum_{i=1}^{n} 1/n^3 = \frac{1}{n^2}$$

Namely, **QuickSort** performs at most $32n \ln n$ comparisons with high probability. It follows, that **QuickSort** runs in $O(n \log n)$ time, with high probability, since the running time of **QuickSort** is proportional to the number of comparisons it performs.

^①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

To this end, we need to prove that $\mathbf{Pr}[X_i] \leq 1/n^3$.

10.1.1 Proving that an elements participates in small number of rounds.

Consider a run of **QuickSort** for an input made out of *n* numbers. Consider a specific element *x* in this input, and let S_1, S_2, \ldots be the subsets of the input that are in the recursive calls that include the element *x*. Here S_j is the set of numbers in the *j*th round (i.e., this is the recursive call at depth *j* which includes *x* among the numbers it needs to sort).

The element *x* would be considered to be *lucky*, in the *j*th iteration, if the call to the **QuickSort**, splits the current set S_j into two parts, where both parts contains at most $(3/4) |S_j|$ of the elements.

Let Y_j be an indicator variable which is 1 iff x is lucky in *j*th round. Formally, $Y_j = 1$ iff $|S_j|/4 \le |S_{j+1}| \le 3 |S_j|/4$. By definition, we have that

$$\mathbf{Pr}\Big[Y_j\Big] = \frac{1}{2}.$$

Furthermore, Y_1, Y_2, \ldots, Y_m are all independent variables.

Note, that *x* can participate in at most

$$\rho = \log_{4/3} n \le 3.5 \ln n \tag{10.1}$$

rounds, since at each successful round, the number of elements in the subproblem shrinks by at least a factor 3/4, and $|S_1| = n$. As such, if there are ρ successful rounds in the first *k* rounds, then $|S_k| \le (3/4)^{\rho} n \le 1$.

Thus, the question of how many rounds x participates in, boils down to how many coin flips one need to perform till one gets ρ heads. Of course, in expectation, we need to do this 2ρ times. But what if we want a bound that holds with high probability, how many rounds are needed then?

In the following, we require the following lemma, which we will prove in Section 10.2.

Lemma 10.1.1 In a sequence of M coin flips, the probability that the number of ones is smaller than $L \leq M/4$ is at most $\exp(-M/8)$.

To use Lemma 10.1.1, we set

$$M = 32 \ln n \ge 8\rho,$$

see Eq. (10.1). Let Y_j be the variable which is one if x is lucky in the *j*th level of recursion, and zero otherwise. We have that $\Pr[Y_j = 0] = \Pr[Y_j = 1] = 1/2$ and that Y_1, Y_2, \ldots, Y_M are independent. By Lemma 10.1.1, we have that the probability that there are only $\rho \le M/4$ ones in Y_1, \ldots, Y_M , is smaller than

$$\exp\left(-\frac{M}{8}\right) \le \exp(-\rho) \le \frac{1}{n^3}$$

We have that the probability that x participates in M recursive calls of QuickSort to be at most $1/n^3$.

There are *n* input elements. Thus, the probability that depth of the recursion in **QuickSort** exceeds $32 \ln n$ is smaller than $(1/n^3) * n = 1/n^2$. We thus established the following result.

Theorem 10.1.2 With high probability (i.e., $1 - 1/n^2$) the depth of the recursion of QuickSort is $\leq 32 \ln n$. Thus, with high probability, the running time of QuickSort is $O(n \log n)$.

Of course, the same result holds for the algorithm MatchNutsAndBolts for matching nuts and bolts.

10.2 Chernoff inequality

10.2.1 Preliminaries

Theorem 10.2.1 (*Markov's Inequality.*) For a non-negative variable X, and t > 0, we have:

$$\Pr[X \ge t] \le \frac{\mathbf{E}[X]}{t}.$$

Proof: Assume that this is false, and there exists $t_0 > 0$ such that $\Pr[X \ge t_0] > \frac{\mathbb{E}[X]}{t_0}$. However,

$$\mathbf{E}[X] = \sum_{x} x \cdot \mathbf{Pr}[X = x]$$

$$= \sum_{x < t_0} x \cdot \mathbf{Pr}[X = x] + \sum_{x \ge t_0} x \cdot \mathbf{Pr}[X = x]$$

$$\ge 0 + t_0 \cdot \mathbf{Pr}[X \ge t_0]$$

$$> 0 + t_0 \cdot \frac{\mathbf{E}[X]}{t_0} = \mathbf{E}[X],$$

a contradiction.

We remind the reader that two random variables X and Y are *independent* if for any x, y we have that

$$\mathbf{Pr}[(X = x) \cap (Y = y)] = \mathbf{Pr}[X = x] \cdot \mathbf{Pr}[Y = y].$$

The following claim is easy to verify, and we omit the easy proof.

Claim 10.2.2 If X and Y are independent, then $\mathbf{E}[XY] = \mathbf{E}[X]\mathbf{E}[Y]$. If X and Y are independent then $Z = e^X$ and $W = e^Y$ are also independent variables.

10.2.2 Chernoff inequality

Theorem 10.2.3 (*Chernoff inequality.*) Let X_1, \ldots, X_n be *n* independent random variables, such that $\mathbf{Pr}[X_i = 1] = \mathbf{Pr}[X_i = -1] = \frac{1}{2}$, for $i = 1, \ldots, n$. Let $Y = \sum_{i=1}^n X_i$. Then, for any $\Delta > 0$, we have

$$\mathbf{Pr}[Y \ge \Delta] \le \exp(-\Delta^2/2n).$$

Proof: Clearly, for an arbitrary *t*, to be specified shortly, we have

$$\mathbf{Pr}[Y \ge \Delta] = \mathbf{Pr}[tY \ge t\Delta] = \mathbf{Pr}[\exp(tY) \ge \exp(t\Delta)] \le \frac{\mathbf{E}[\exp(tY)]}{\exp(t\Delta)}, \quad (10.2)$$

where the first part follows since $exp(\cdot)$ preserve ordering, and the second part follows by Markov's inequality (Theorem 10.2.1).

Observe that, by the definition of $\mathbf{E}[\cdot]$ and by the Taylor expansion of $\exp(\cdot)$, we have

$$\mathbf{E}\Big[\exp(tX_i)\Big] = \frac{1}{2}e^t + \frac{1}{2}e^{-t} = \frac{e^t + e^{-t}}{2}$$
$$= \frac{1}{2}\left(1 + \frac{t}{1!} + \frac{t^2}{2!} + \frac{t^3}{3!} + \cdots\right)$$
$$+ \frac{1}{2}\left(1 - \frac{t}{1!} + \frac{t^2}{2!} - \frac{t^3}{3!} + \cdots\right)$$
$$= \left(1 + \frac{t^2}{2!} + \cdots + \frac{t^{2k}}{(2k)!} + \cdots\right).$$

Now, $(2k)! = k!(k+1)(k+2)\cdots 2k \ge k!2^k$, and thus

$$\mathbf{E}\Big[\exp(tX_i)\Big] = \sum_{i=0}^{\infty} \frac{t^{2i}}{(2i)!} \le \sum_{i=0}^{\infty} \frac{t^{2i}}{2^i(i!)} = \sum_{i=0}^{\infty} \frac{1}{i!} \left(\frac{t^2}{2}\right)^i = \exp\left(\frac{t^2}{2}\right),$$

again, by the Taylor expansion of $exp(\cdot)$. Next, by the independence of the X_i s, we have

$$\mathbf{E}\left[\exp(tY)\right] = \mathbf{E}\left[\exp\left(\sum_{i} tX_{i}\right)\right] = \mathbf{E}\left[\prod_{i} \exp(tX_{i})\right] = \prod_{i=1}^{n} \mathbf{E}\left[\exp(tX_{i})\right]$$
$$\leq \prod_{i=1}^{n} \exp\left(\frac{t^{2}}{2}\right) = \exp\left(\frac{nt^{2}}{2}\right).$$

We have, by Eq. (10.2), that

$$\mathbf{Pr}[Y \ge \Delta] \le \frac{\mathbf{E}\left[\exp(tY)\right]}{\exp(t\Delta)} \le \frac{\exp\left(\frac{nt^2}{2}\right)}{\exp(t\Delta)} = \exp\left(\frac{nt^2}{2} - t\Delta\right).$$

Next, we select the value of *t* that minimizes the right term in the above inequality. Easy calculation shows that the right value is $t = \Delta/n$. We conclude that

$$\mathbf{Pr}[Y \ge \Delta] \le \exp\left(\frac{n}{2}\left(\frac{\Delta}{n}\right)^2 - \frac{\Delta}{n}\Delta\right) = \exp\left(-\frac{\Delta^2}{2n}\right).$$

Note, the above theorem states is that

$$\mathbf{Pr}[Y \ge \Delta] = \sum_{i=\Delta}^{n} \mathbf{Pr}[Y=i] = \sum_{i=n/2+\Delta/2}^{n} \frac{\binom{n}{i}}{2^{n}} \le \exp\left(-\frac{\Delta^{2}}{2n}\right),$$

since $Y = \Delta$ means that we got $n/2 + \Delta/2$ times +1s and $n/2 - \Delta/2$ times (-1)s.

By the symmetry of *Y*, we get the following corollary.

Corollary 10.2.4 Let X_1, \ldots, X_n be n independent random variables, such that $\Pr[X_i = 1] = \Pr[X_i = -1] = \frac{1}{2}$, for $i = 1, \ldots, n$. Let $Y = \sum_{i=1}^n X_i$. Then, for any $\Delta > 0$, we have

$$\mathbf{Pr}[|Y| \ge \Delta] \le 2 \exp\left(-\frac{\Delta^2}{2n}\right).$$

By easy manipulation, we get the following result.

Corollary 10.2.5 Let X_1, \ldots, X_n be *n* independent coin flips, such that $\Pr[X_i = 1] = \Pr[X_i = 0] = \frac{1}{2}$, for $i = 1, \ldots, n$. Let $Y = \sum_{i=1}^n X_i$. Then, for any $\Delta > 0$, we have

$$\Pr\left[\frac{n}{2} - Y \ge \Delta\right] \le \exp\left(-\frac{2\Delta^2}{n}\right) \quad and \quad \Pr\left[Y - \frac{n}{2} \ge \Delta\right] \le \exp\left(-\frac{2\Delta^2}{n}\right).$$

In particular, we have $\Pr\left[\left|Y - \frac{n}{2}\right| \ge \Delta\right] \le 2 \exp\left(-\frac{2\Delta^2}{n}\right)$.

Proof: Transform X_i into the random variable $Z_i = 2X_i - 1$, and now use Theorem 10.2.3 on the new random variables Z_1, \ldots, Z_n .

Lemma 10.1.1 (Restatement.) In a sequence of M coin flips, the probability that the number of ones is smaller than $L \le M/4$ is at most $\exp(-M/8)$.

Proof: Let $Y = \sum_{i=1}^{m} X_i$ the sum of the *M* coin flips. By the above corollary, we have:

$$\mathbf{Pr}[Y \le L] = \mathbf{Pr}\left[\frac{M}{2} - Y \ge \frac{M}{2} - L\right] = \mathbf{Pr}\left[\frac{M}{2} - Y \ge \Delta\right],$$

where $\Delta = M/2 - L \ge M/4$. Using the above Chernoff inequality, we get

$$\Pr[Y \le L] \le \exp\left(-\frac{2\Delta^2}{M}\right) \le \exp(-M/8).$$

10.2.2.1 The Chernoff Bound — General Case

Here we present the Chernoff bound in a more general settings.

Problem 10.2.6 Let X_1, \ldots, X_n be *n* independent Bernoulli trials, where

$$\mathbf{Pr}[X_i = 1] = p_i \text{ and } \mathbf{Pr}[X_i = 0] = 1 - p_i$$
$$Y = \sum_i X_i \quad \mu = \mathbf{E}[Y].$$

Question: what is the probability that $Y \ge (1 + \delta)\mu$.

Theorem 10.2.7 (Chernoff inequality) For any $\delta > 0$,

$$\mathbf{Pr}[Y > (1+\delta)\mu] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}.$$

Or in a more simplified form, for any $\delta \leq 2e - 1$ *,*

$$\mathbf{Pr}[Y > (1+\delta)\mu] < \exp(-\mu\delta^2/4), \qquad (10.3)$$

and

$$\Pr[Y > (1 + \delta)\mu] < 2^{-\mu(1+\delta)}$$

for $\delta \geq 2e - 1$.

Theorem 10.2.8 Under the same assumptions as the theorem above, we have

$$\mathbf{Pr}[Y < (1-\delta)\mu] \le \exp\left(-\mu \frac{\delta^2}{2}\right).$$

The proofs of those more general form, follows the proofs shown above, and are omitted. The interested reader can get the proofs from:

http://www.uiuc.edu/~sariel/teach/2002/a/notes/07_chernoff.ps