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10.1 QuickSort with High Probability
One can think about QuickSort as playing a game in rounds. Every round, QuickSort picks a
pivot, splits the problem into two subproblems, and continue playing the game recursively on both
subproblems.

If we track a single element in the input, we see a sequence of rounds that involve this element.
The game ends, when this element find itself alone in the round (i.e., the subproblem is to sort a
single element).

Thus, to show that QuickSort takes O(n log n) time, it is enough to show, that every element in
the input, participates in at most 32 ln n rounds with high enough probability.

Indeed, let Xi be the event that the ith element participates in more than 32 ln n rounds.
Let CQS be the number of comparisons performed by QuickSort. A comparison between a

pivot and an element will be always charged to the element. And as such, the number of compar-
isons overall performed by QuickSort is bounded by

∑
i ri, where ri is the number of rounds the

ith element participated in (the last round where it was a pivot is ignored). We have that

α = Pr
[
CQS ≥ 32n ln n

]
≤ Pr

⋃
i

Xi

 ≤ n∑
i=1

Pr[Xi] .

Here, we used the union rule, that states that for any two events A and B, we have that Pr[A ∪ B] ≤
Pr[A] + Pr[B]. Assume, for the time being, that Pr[Xi] ≤ 1/n3. This implies that

α ≤

n∑
i=1

Pr[Xi] ≤
n∑

i=1

1/n3 =
1
n2 .

Namely, QuickSort performs at most 32n ln n comparisons with high probability. It follows,
that QuickSort runs in O(n log n) time, with high probability, since the running time of QuickSort
is proportional to the number of comparisons it performs.
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To this end, we need to prove that Pr[Xi] ≤ 1/n3.

10.1.1 Proving that an elements participates in small number of rounds.
Consider a run of QuickSort for an input made out of n numbers. Consider a specific element x in
this input, and let S 1, S 2, . . . be the subsets of the input that are in the recursive calls that include
the element x. Here S j is the set of numbers in the jth round (i.e., this is the recursive call at depth
j which includes x among the numbers it needs to sort).

The element x would be considered to be lucky, in the jth iteration, if the call to the QuickSort,
splits the current set S j into two parts, where both parts contains at most (3/4)

∣∣∣S j

∣∣∣ of the elements.
Let Y j be an indicator variable which is 1 iff x is lucky in jth round. Formally, Y j = 1 iff∣∣∣S j

∣∣∣ /4 ≤ ∣∣∣S j+1

∣∣∣ ≤ 3
∣∣∣S j

∣∣∣ /4. By definition, we have that

Pr
[
Y j

]
=

1
2
.

Furthermore, Y1,Y2, . . . ,Ym are all independent variables.
Note, that x can participate in at most

ρ = log4/3 n ≤ 3.5 ln n (10.1)

rounds, since at each successful round, the number of elements in the subproblem shrinks by at
least a factor 3/4, and |S 1| = n. As such, if there are ρ successful rounds in the first k rounds, then
|S k| ≤ (3/4)ρn ≤ 1.

Thus, the question of how many rounds x participates in, boils down to how many coin flips
one need to perform till one gets ρ heads. Of course, in expectation, we need to do this 2ρ times.
But what if we want a bound that holds with high probability, how many rounds are needed then?

In the following, we require the following lemma, which we will prove in Section 10.2.

Lemma 10.1.1 In a sequence of M coin flips, the probability that the number of ones is smaller
than L ≤ M/4 is at most exp(−M/8).

To use Lemma 10.1.1, we set
M = 32 ln n ≥ 8ρ,

see Eq. (10.1). Let Y j be the variable which is one if x is lucky in the jth level of recursion, and zero
otherwise. We have that Pr

[
Y j = 0

]
= Pr

[
Y j = 1

]
= 1/2 and that Y1,Y2, . . . ,YM are independent.

By Lemma 10.1.1, we have that the probability that there are only ρ ≤ M/4 ones in Y1, . . . ,YM, is
smaller than

exp
(
−

M
8

)
≤ exp(−ρ) ≤

1
n3 .

We have that the probability that x participates in M recursive calls of QuickSort to be at most
1/n3.

There are n input elements. Thus, the probability that depth of the recursion in QuickSort
exceeds 32 ln n is smaller than (1/n3) ∗ n = 1/n2. We thus established the following result.

Theorem 10.1.2 With high probability (i.e., 1 − 1/n2) the depth of the recursion of QuickSort is
≤ 32 ln n. Thus, with high probability, the running time of QuickSort is O(n log n).

2



Of course, the same result holds for the algorithm MatchNutsAndBolts for matching nuts and
bolts.

10.2 Chernoff inequality

10.2.1 Preliminaries
Theorem 10.2.1 (Markov’s Inequality.) For a non-negative variable X, and t > 0, we have:

Pr[X ≥ t] ≤ E[X]
t

.

Proof: Assume that this is false, and there exists t0 > 0 such that Pr[X ≥ t0] > E[X]
t0

. However,

E[X] =
∑

x

x · Pr[X = x]

=
∑
x<t0

x · Pr[X = x] +
∑
x≥t0

x · Pr[X = x]

≥ 0 + t0 · Pr[X ≥ t0]

> 0 + t0 ·
E[X]

t0
= E[X] ,

a contradiction.
We remind the reader that two random variables X and Y are independent if for any x, y we

have that
Pr

[
(X = x) ∩ (Y = y)

]
= Pr[X = x] · Pr

[
Y = y

]
.

The following claim is easy to verify, and we omit the easy proof.

Claim 10.2.2 If X and Y are independent, then E[XY] = E[X] E[Y].
If X and Y are independent then Z = eX and W = eY are also independent variables.

10.2.2 Chernoff inequality
Theorem 10.2.3 (Chernoff inequality.) Let X1, . . . , Xn be n independent random variables, such
that Pr[Xi = 1] = Pr[Xi = −1] = 1

2 , for i = 1, . . . , n. Let Y =
∑n

i=1 Xi. Then, for any ∆ > 0, we have

Pr[Y ≥ ∆] ≤ exp
(
−∆2/2n

)
.

Proof: Clearly, for an arbitrary t, to be specified shortly, we have

Pr[Y ≥ ∆] = Pr
[
tY ≥ t∆

]
= Pr

[
exp(tY) ≥ exp(t∆)

]
≤

E
[

exp(tY)
]

exp(t∆)
, (10.2)

where the first part follows since exp(·) preserve ordering, and the second part follows by Markov’s
inequality (Theorem 10.2.1).
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Observe that, by the definition of E[·] and by the Taylor expansion of exp(·), we have

E
[

exp(tXi)
]

=
1
2

et +
1
2

e−t =
et + e−t

2

=
1
2

(
1 +

t
1!

+
t2

2!
+

t3

3!
+ · · ·

)
+

1
2

(
1 −

t
1!

+
t2

2!
−

t3

3!
+ · · ·

)
=

(
1 +

t2

2!
+ + · · · +

t2k

(2k)!
+ · · ·

)
.

Now, (2k)! = k!(k + 1)(k + 2) · · · 2k ≥ k!2k, and thus

E
[
exp(tXi)

]
=

∞∑
i=0

t2i

(2i)!
≤

∞∑
i=0

t2i

2i(i!)
=

∞∑
i=0

1
i!

(
t2

2

)i

= exp
(
t2

2

)
,

again, by the Taylor expansion of exp(·). Next, by the independence of the Xis, we have

E
[
exp(tY)

]
= E

exp

∑
i

tXi

 = E

∏
i

exp(tXi)

 =

n∏
i=1

E
[
exp(tXi)

]
≤

n∏
i=1

exp
(
t2

2

)
= exp

(
nt2

2

)
.

We have, by Eq. (10.2), that

Pr[Y ≥ ∆] ≤
E
[

exp(tY)
]

exp(t∆)
≤

exp
(

nt2
2

)
exp(t∆)

= exp
(
nt2

2
− t∆

)
.

Next, we select the value of t that minimizes the right term in the above inequality. Easy calculation
shows that the right value is t = ∆/n. We conclude that

Pr[Y ≥ ∆] ≤ exp
n
2

(
∆

n

)2

−
∆

n
∆

 = exp
(
−

∆2

2n

)
.

Note, the above theorem states is that

Pr[Y ≥ ∆] =

n∑
i=∆

Pr[Y = i] =

n∑
i=n/2+∆/2

(
n
i

)
2n ≤ exp

(
−

∆2

2n

)
,

since Y = ∆ means that we got n/2 + ∆/2 times +1s and n/2 − ∆/2 times (−1)s.
By the symmetry of Y , we get the following corollary.

Corollary 10.2.4 Let X1, . . . , Xn be n independent random variables, such that Pr[Xi = 1] = Pr[Xi = −1] =
1
2 , for i = 1, . . . , n. Let Y =

∑n
i=1 Xi. Then, for any ∆ > 0, we have

Pr[|Y | ≥ ∆] ≤ 2 exp
(
−

∆2

2n

)
.
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By easy manipulation, we get the following result.

Corollary 10.2.5 Let X1, . . . , Xn be n independent coin flips, such that Pr[Xi = 1] = Pr[Xi = 0] =
1
2 , for i = 1, . . . , n. Let Y =

∑n
i=1 Xi. Then, for any ∆ > 0, we have

Pr
[ n

2
− Y ≥ ∆

]
≤ exp

(
−

2∆2

n

)
and Pr

[
Y −

n
2
≥ ∆

]
≤ exp

(
−

2∆2

n

)
.

In particular, we have Pr
[∣∣∣∣∣Y − n

2

∣∣∣∣∣ ≥ ∆

]
≤ 2 exp

(
−

2∆2

n

)
.

Proof: Transform Xi into the random variable Zi = 2Xi − 1, and now use Theorem 10.2.3 on
the new random variables Z1, . . . ,Zn.

Lemma 10.1.1 (Restatement.) In a sequence of M coin flips, the probability that the number of
ones is smaller than L ≤ M/4 is at most exp(−M/8).

Proof: Let Y =
∑m

i=1 Xi the sum of the M coin flips. By the above corollary, we have:

Pr[Y ≤ L] = Pr
[M

2
− Y ≥

M
2
− L

]
= Pr

[M
2
− Y ≥ ∆

]
,

where ∆ = M/2 − L ≥ M/4. Using the above Chernoff inequality, we get

Pr[Y ≤ L] ≤ exp
(
−

2∆2

M

)
≤ exp(−M/8).

10.2.2.1 The Chernoff Bound — General Case

Here we present the Chernoff bound in a more general settings.

Problem 10.2.6 Let X1, . . . Xn be n independent Bernoulli trials, where

Pr[Xi = 1] = pi and Pr[Xi = 0] = 1 − pi

Y =
∑

i

Xi µ = E[Y] .

Question: what is the probability that Y ≥ (1 + δ)µ.

Theorem 10.2.7 (Chernoff inequality) For any δ > 0,

Pr
[
Y > (1 + δ)µ

]
<

(
eδ

(1 + δ)1+δ

)µ
.

Or in a more simplified form, for any δ ≤ 2e − 1,

Pr
[
Y > (1 + δ)µ

]
< exp

(
−µδ2/4

)
, (10.3)

and
Pr

[
Y > (1 + δ)µ

]
< 2−µ(1+δ),

for δ ≥ 2e − 1.
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Theorem 10.2.8 Under the same assumptions as the theorem above, we have

Pr
[
Y < (1 − δ)µ

]
≤ exp

(
−µ

δ2

2

)
.

The proofs of those more general form, follows the proofs shown above, and are omitted. The
interested reader can get the proofs from:

http://www.uiuc.edu/~sariel/teach/2002/a/notes/07_chernoff.ps
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