Chapter 10

Randomized Algorithms II

By Sariel Har-Peled, December 7, 2009 ${ }^{(1)}$
Version: 0.1

10.1 QuickSort with High Probability

One can think about QuickSort as playing a game in rounds. Every round, QuickSort picks a pivot, splits the problem into two subproblems, and continue playing the game recursively on both subproblems.

If we track a single element in the input, we see a sequence of rounds that involve this element. The game ends, when this element find itself alone in the round (i.e., the subproblem is to sort a single element).

Thus, to show that QuickSort takes $O(n \log n)$ time, it is enough to show, that every element in the input, participates in at most $32 \ln n$ rounds with high enough probability.

Indeed, let X_{i} be the event that the i th element participates in more than $32 \ln n$ rounds.
Let $C_{Q S}$ be the number of comparisons performed by QuickSort. A comparison between a pivot and an element will be always charged to the element. And as such, the number of comparisons overall performed by QuickSort is bounded by $\sum_{i} r_{i}$, where r_{i} is the number of rounds the i th element participated in (the last round where it was a pivot is ignored). We have that

$$
\alpha=\operatorname{Pr}\left[C_{Q S} \geq 32 n \ln n\right] \leq \operatorname{Pr}\left[\bigcup_{i} X_{i}\right] \leq \sum_{i=1}^{n} \operatorname{Pr}\left[X_{i}\right] .
$$

Here, we used the union rule, that states that for any two events A and B, we have that $\operatorname{Pr}[A \cup B] \leq$ $\operatorname{Pr}[A]+\operatorname{Pr}[B]$. Assume, for the time being, that $\operatorname{Pr}\left[X_{i}\right] \leq 1 / n^{3}$. This implies that

$$
\alpha \leq \sum_{i=1}^{n} \operatorname{Pr}\left[X_{i}\right] \leq \sum_{i=1}^{n} 1 / n^{3}=\frac{1}{n^{2}} .
$$

Namely, QuickSort performs at most $32 n \ln n$ comparisons with high probability. It follows, that QuickSort runs in $O(n \log n)$ time, with high probability, since the running time of QuickSort is proportional to the number of comparisons it performs.

[^0]To this end, we need to prove that $\operatorname{Pr}\left[X_{i}\right] \leq 1 / n^{3}$.

10.1.1 Proving that an elements participates in small number of rounds.

Consider a run of QuickSort for an input made out of n numbers. Consider a specific element x in this input, and let S_{1}, S_{2}, \ldots be the subsets of the input that are in the recursive calls that include the element x. Here S_{j} is the set of numbers in the j th round (i.e., this is the recursive call at depth j which includes x among the numbers it needs to sort).

The element x would be considered to be lucky, in the j th iteration, if the call to the QuickSort, splits the current set S_{j} into two parts, where both parts contains at most (3/4) $\left|S_{j}\right|$ of the elements.

Let Y_{j} be an indicator variable which is 1 iff x is lucky in j th round. Formally, $Y_{j}=1 \mathrm{iff}$ $\left|S_{j}\right| / 4 \leq\left|S_{j+1}\right| \leq 3\left|S_{j}\right| / 4$. By definition, we have that

$$
\operatorname{Pr}\left[Y_{j}\right]=\frac{1}{2}
$$

Furthermore, $Y_{1}, Y_{2}, \ldots, Y_{m}$ are all independent variables.
Note, that x can participate in at most

$$
\begin{equation*}
\rho=\log _{4 / 3} n \leq 3.5 \ln n \tag{10.1}
\end{equation*}
$$

rounds, since at each successful round, the number of elements in the subproblem shrinks by at least a factor $3 / 4$, and $\left|S_{1}\right|=n$. As such, if there are ρ successful rounds in the first k rounds, then $\left|S_{k}\right| \leq(3 / 4)^{\rho} n \leq 1$.

Thus, the question of how many rounds x participates in, boils down to how many coin flips one need to perform till one gets ρ heads. Of course, in expectation, we need to do this 2ρ times. But what if we want a bound that holds with high probability, how many rounds are needed then?

In the following, we require the following lemma, which we will prove in Section 10.2 .
Lemma 10.1.1 In a sequence of M coin flips, the probability that the number of ones is smaller than $L \leq M / 4$ is at most $\exp (-M / 8)$.

To use Lemma 10.1.1, we set

$$
M=32 \ln n \geq 8 \rho
$$

see Eq. 10.1). Let Y_{j} be the variable which is one if x is lucky in the j th level of recursion, and zero otherwise. We have that $\operatorname{Pr}\left[Y_{j}=0\right]=\operatorname{Pr}\left[Y_{j}=1\right]=1 / 2$ and that $Y_{1}, Y_{2}, \ldots, Y_{M}$ are independent. By Lemma 10.1.1, we have that the probability that there are only $\rho \leq M / 4$ ones in Y_{1}, \ldots, Y_{M}, is smaller than

$$
\exp \left(-\frac{M}{8}\right) \leq \exp (-\rho) \leq \frac{1}{n^{3}}
$$

We have that the probability that x participates in M recursive calls of QuickSort to be at most $1 / n^{3}$.

There are n input elements. Thus, the probability that depth of the recursion in QuickSort exceeds $32 \ln n$ is smaller than $\left(1 / n^{3}\right) * n=1 / n^{2}$. We thus established the following result.

Theorem 10.1.2 With high probability (i.e., $1-1 / n^{2}$) the depth of the recursion of QuickSort is $\leq 32 \ln n$. Thus, with high probability, the running time of QuickSort is $O(n \log n)$.

Of course, the same result holds for the algorithm MatchNutsAndBolts for matching nuts and bolts.

10.2 Chernoff inequality

10.2.1 Preliminaries

Theorem 10.2.1 (Markov's Inequality.) For a non-negative variable X, and $t>0$, we have:

$$
\operatorname{Pr}[X \geq t] \leq \frac{\mathbf{E}[X]}{t}
$$

Proof: Assume that this is false, and there exists $t_{0}>0$ such that $\operatorname{Pr}\left[X \geq t_{0}\right]>\frac{\mathbf{E}[X]}{t_{0}}$. However,

$$
\begin{aligned}
\mathbf{E}[X] & =\sum_{x} x \cdot \operatorname{Pr}[X=x] \\
& =\sum_{x<t_{0}} x \cdot \operatorname{Pr}[X=x]+\sum_{x \geq t_{0}} x \cdot \operatorname{Pr}[X=x] \\
& \geq 0+t_{0} \cdot \operatorname{Pr}\left[X \geq t_{0}\right] \\
& >0+t_{0} \cdot \frac{\mathbf{E}[X]}{t_{0}}=\mathbf{E}[X],
\end{aligned}
$$

a contradiction.
We remind the reader that two random variables X and Y are independent if for any x, y we have that

$$
\operatorname{Pr}[(X=x) \cap(Y=y)]=\operatorname{Pr}[X=x] \cdot \operatorname{Pr}[Y=y] .
$$

The following claim is easy to verify, and we omit the easy proof.
Claim 10.2.2 If X and Y are independent, then $\mathbf{E}[X Y]=\mathbf{E}[X] \mathbf{E}[Y]$.
If X and Y are independent then $Z=e^{X}$ and $W=e^{Y}$ are also independent variables.

10.2.2 Chernoff inequality

Theorem 10.2.3 (Chernoff inequality.) Let X_{1}, \ldots, X_{n} be n independent random variables, such that $\operatorname{Pr}\left[X_{i}=1\right]=\operatorname{Pr}\left[X_{i}=-1\right]=\frac{1}{2}$, for $i=1, \ldots$, . Let $Y=\sum_{i=1}^{n} X_{i}$. Then, for any $\Delta>0$, we have

$$
\operatorname{Pr}[Y \geq \Delta] \leq \exp \left(-\Delta^{2} / 2 n\right)
$$

Proof: Clearly, for an arbitrary t, to be specified shortly, we have

$$
\begin{equation*}
\operatorname{Pr}[Y \geq \Delta]=\operatorname{Pr}[t Y \geq t \Delta]=\operatorname{Pr}[\exp (t Y) \geq \exp (t \Delta)] \leq \frac{\mathbf{E}[\exp (t Y)]}{\exp (t \Delta)} \tag{10.2}
\end{equation*}
$$

where the first part follows since $\exp (\cdot)$ preserve ordering, and the second part follows by Markov's inequality (Theorem 10.2.1).

Observe that, by the definition of $\mathbf{E}[\cdot]$ and by the Taylor expansion of $\exp (\cdot)$, we have

$$
\begin{aligned}
\mathbf{E}\left[\exp \left(t X_{i}\right)\right]= & \frac{1}{2} e^{t}+\frac{1}{2} e^{-t}=\frac{e^{t}+e^{-t}}{2} \\
= & \frac{1}{2}\left(1+\frac{t}{1!}+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+\cdots\right) \\
& +\frac{1}{2}\left(1-\frac{t}{1!}+\frac{t^{2}}{2!}-\frac{t^{3}}{3!}+\cdots\right) \\
= & \left(1+\frac{t^{2}}{2!}++\cdots+\frac{t^{2 k}}{(2 k)!}+\cdots\right) .
\end{aligned}
$$

Now, $(2 k)!=k!(k+1)(k+2) \cdots 2 k \geq k!2^{k}$, and thus

$$
\mathbf{E}\left[\exp \left(t X_{i}\right)\right]=\sum_{i=0}^{\infty} \frac{t^{2 i}}{(2 i)!} \leq \sum_{i=0}^{\infty} \frac{t^{2 i}}{2^{i}(i!)}=\sum_{i=0}^{\infty} \frac{1}{i!}\left(\frac{t^{2}}{2}\right)^{i}=\exp \left(\frac{t^{2}}{2}\right),
$$

again, by the Taylor expansion of $\exp (\cdot)$. Next, by the independence of the $X_{i} \mathrm{~s}$, we have

$$
\begin{aligned}
\mathbf{E}[\exp (t Y)] & =\mathbf{E}\left[\exp \left(\sum_{i} t X_{i}\right)\right]=\mathbf{E}\left[\prod_{i} \exp \left(t X_{i}\right)\right]=\prod_{i=1}^{n} \mathbf{E}\left[\exp \left(t X_{i}\right)\right] \\
& \leq \prod_{i=1}^{n} \exp \left(\frac{t^{2}}{2}\right)=\exp \left(\frac{n t^{2}}{2}\right)
\end{aligned}
$$

We have, by Eq. 10.2, that

$$
\operatorname{Pr}[Y \geq \Delta] \leq \frac{\mathbf{E}[\exp (t Y)]}{\exp (t \Delta)} \leq \frac{\exp \left(\frac{n t^{2}}{2}\right)}{\exp (t \Delta)}=\exp \left(\frac{n t^{2}}{2}-t \Delta\right)
$$

Next, we select the value of t that minimizes the right term in the above inequality. Easy calculation shows that the right value is $t=\Delta / n$. We conclude that

$$
\operatorname{Pr}[Y \geq \Delta] \leq \exp \left(\frac{n}{2}\left(\frac{\Delta}{n}\right)^{2}-\frac{\Delta}{n} \Delta\right)=\exp \left(-\frac{\Delta^{2}}{2 n}\right)
$$

Note, the above theorem states is that

$$
\operatorname{Pr}[Y \geq \Delta]=\sum_{i=\Delta}^{n} \operatorname{Pr}[Y=i]=\sum_{i=n / 2+\Delta / 2}^{n} \frac{\binom{n}{i}}{2^{n}} \leq \exp \left(-\frac{\Delta^{2}}{2 n}\right)
$$

since $Y=\Delta$ means that we got $n / 2+\Delta / 2$ times +1 s and $n / 2-\Delta / 2$ times (-1) s.
By the symmetry of Y, we get the following corollary.
Corollary 10.2.4 Let X_{1}, \ldots, X_{n} be n independent random variables, such that $\operatorname{Pr}\left[X_{i}=1\right]=\operatorname{Pr}\left[X_{i}=-1\right]=$ $\frac{1}{2}$, for $i=1, \ldots, n$. Let $Y=\sum_{i=1}^{n} X_{i}$. Then, for any $\Delta>0$, we have

$$
\operatorname{Pr}[|Y| \geq \Delta] \leq 2 \exp \left(-\frac{\Delta^{2}}{2 n}\right)
$$

By easy manipulation, we get the following result.
Corollary 10.2.5 Let X_{1}, \ldots, X_{n} be n independent coin flips, such that $\operatorname{Pr}\left[X_{i}=1\right]=\operatorname{Pr}\left[X_{i}=0\right]=$ $\frac{1}{2}$, for $i=1, \ldots, n$. Let $Y=\sum_{i=1}^{n} X_{i}$. Then, for any $\Delta>0$, we have

$$
\operatorname{Pr}\left[\frac{n}{2}-Y \geq \Delta\right] \leq \exp \left(-\frac{2 \Delta^{2}}{n}\right) \quad \text { and } \quad \operatorname{Pr}\left[Y-\frac{n}{2} \geq \Delta\right] \leq \exp \left(-\frac{2 \Delta^{2}}{n}\right)
$$

In particular, we have $\operatorname{Pr}\left[\left|Y-\frac{n}{2}\right| \geq \Delta\right] \leq 2 \exp \left(-\frac{2 \Delta^{2}}{n}\right)$.
Proof: Transform X_{i} into the random variable $Z_{i}=2 X_{i}-1$, and now use Theorem 10.2.3 on the new random variables Z_{1}, \ldots, Z_{n}.

Lemma 10.1. (Restatement.) In a sequence of M coin flips, the probability that the number of ones is smaller than $L \leq M / 4$ is at most $\exp (-M / 8)$.

Proof: Let $Y=\sum_{i=1}^{m} X_{i}$ the sum of the M coin flips. By the above corollary, we have:

$$
\operatorname{Pr}[Y \leq L]=\operatorname{Pr}\left[\frac{M}{2}-Y \geq \frac{M}{2}-L\right]=\operatorname{Pr}\left[\frac{M}{2}-Y \geq \Delta\right],
$$

where $\Delta=M / 2-L \geq M / 4$. Using the above Chernoff inequality, we get

$$
\operatorname{Pr}[Y \leq L] \leq \exp \left(-\frac{2 \Delta^{2}}{M}\right) \leq \exp (-M / 8)
$$

10.2.2.1 The Chernoff Bound - General Case

Here we present the Chernoff bound in a more general settings.
Problem 10.2.6 Let $X_{1}, \ldots X_{n}$ be n independent Bernoulli trials, where

$$
\begin{aligned}
\operatorname{Pr}\left[X_{i}=1\right] & =p_{i} \text { and } \quad \operatorname{Pr}\left[X_{i}=0\right]=1-p_{i} \\
Y & =\sum_{i} X_{i} \quad \mu=\mathbf{E}[Y] .
\end{aligned}
$$

Question: what is the probability that $Y \geq(1+\delta) \mu$.
Theorem 10.2.7 (Chernoff inequality) For any $\delta>0$,

$$
\operatorname{Pr}[Y>(1+\delta) \mu]<\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}
$$

Or in a more simplified form, for any $\delta \leq 2 e-1$,

$$
\begin{equation*}
\operatorname{Pr}[Y>(1+\delta) \mu]<\exp \left(-\mu \delta^{2} / 4\right) \tag{10.3}
\end{equation*}
$$

and

$$
\operatorname{Pr}[Y>(1+\delta) \mu]<2^{-\mu(1+\delta)}
$$

for $\delta \geq 2 e-1$.

Theorem 10.2.8 Under the same assumptions as the theorem above, we have

$$
\operatorname{Pr}[Y<(1-\delta) \mu] \leq \exp \left(-\mu \frac{\delta^{2}}{2}\right)
$$

The proofs of those more general form, follows the proofs shown above, and are omitted. The interested reader can get the proofs from:
http://www.uiuc.edu/~sariel/teach/2002/a/notes/07_chernoff.ps

[^0]: ${ }^{(1)}$ This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

