
Chapter 9

Randomized Algorithms
By Sariel Har-Peled, December 7, 2009¬ Version: 0.26

9.1 Some Probability

Definition 9.1.1 (Informal.) A random variable is a measurable function from a probability space
to (usually) real numbers. It associates a value with each possible atomic event in the probability
space.

Definition 9.1.2 The conditional probability of X given Y is

Pr
[
X = x |Y = y

]
=

Pr
[
(X = x) ∩ (Y = y)

]
Pr

[
Y = y

] .

An equivalent and useful restatement of this is that

Pr
[
(X = x) ∩ (Y = y)

]
= Pr

[
X = x |Y = y

]
∗ Pr

[
Y = y

]
.

Definition 9.1.3 Two events X and Y are independent, if Pr
[
X = x ∩ Y = y

]
= Pr[X = x]·Pr

[
Y = y

]
.

In particular, if X and Y are independent, then

Pr
[
X = x

∣∣∣∣ Y = y
]

= Pr[X = x] .

Lemma 9.1.4 (Linearity of expectation.) For any two random variables X and Y, we have E[X + Y] =

E[X] + E[Y].

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

Proof: For the simplicity of exposition, assume that X and Y receive only integer values. We
have that

E[X + Y] =
∑

x

∑
y

(x + y) Pr
[
(X = x) ∩ (Y = y)

]
=

∑
x

∑
y

x ∗ Pr
[
(X = x) ∩ (Y = y)

]
+

∑
x

∑
y

y ∗ Pr
[
(X = x) ∩ (Y = y)

]
=

∑
x

x ∗
∑

y

Pr
[
(X = x) ∩ (Y = y)

]
+

∑
y

y ∗
∑

x

Pr
[
(X = x) ∩ (Y = y)

]
=

∑
x

x ∗ Pr[X = x] +
∑

y

y ∗ Pr
[
Y = y

]
= E[X] + E[Y] .

9.2 Sorting Nuts and Bolts
Problem 9.2.1 (Sorting Nuts and Bolts) You are given a set of n nuts and n bolts. Every nut
have a matching bolt, and all the n pairs of nuts and bolts have different sizes. Unfortunately,
you get the nuts and bolts separated from each other and you have to match the nuts to the bolts.
Furthermore, given a nut and a bolt, all you can do is to try and match one bolt against a nut (i.e.,
you can not compare two nuts to each other, or two bolts to each other).

When comparing a nut to a bolt, either they match, or one is smaller than other (and you known
the relationship after the comparison).

How to match the n nuts to the n bolts quickly? Namely, while performing a small number of
comparisons.

MatchNutsAndBolts(N: nuts, B: bolts)
Pick a random nut npivot from N
Find its matching bolt bpivot in B
BL ← All bolts in B smaller than npivot

NL ← All nuts in N smaller than bpivot

BR ← All bolts in B larger than npivot

NR ← All nuts in N larger than bpivot

MatchNutsAndBolts(NR,BR)
MatchNutsAndBolts(NL,BL)

The naive algorithm is of course to compare each
nut to each bolt, and match them together. This would
require a quadratic number of comparisons. Another
option is to sort the nuts by size, and the bolts by size
and then “merge” the two ordered sets, matching them
by size. The only problem is that we can not sorts only
the nuts, or only the bolts, since we can not compare
them to each other. Indeed, we sort the two sets si-
multaneously, by simulating QuickSort. The resulting
algorithm is depicted on the right.

9.2.1 Running time analysis

Definition 9.2.2 Let RT denote the random variable which is the running time of the algorithm.
Note, that the running time is a random variable as it might be different between different execu-
tions on the same input.

2

Definition 9.2.3 For a randomized algorithm, we can speak about the expected running time.
Namely, we are interested in bounding the quantity E[RT] for the worst input.

Definition 9.2.4 The expected running-time of a randomized algorithm for input of size n is

T (n) = max
U is an input of size n

E
[
RT(U)

]
,

where RT(U) is the running time of the algorithm for the input U.

Definition 9.2.5 The rank of an element x in a set S , denoted by rank(x), is the number of elements
in S of size smaller or equal to x. Namely, it is the location of x in the sorted list of the elements
of S .

Theorem 9.2.6 The expected running time of MatchNutsAndBolts (and thus also of QuickSort)
is T (n) = O(n log n), where n is the number of nuts and bolts. The worst case running time of this
algorithm is O(n2).

Proof: Clearly, we have that Pr
[
rank(npivot) = k

]
= 1

n . Furthermore, if the rank of the pivot is k
then

T (n) = E
k=rank(npivot)

[O(n) + T (k − 1) + T (n − k)] = O(n) + E
k
[T (k − 1) + T (n − k)]

= T (n) = O(n) +

n∑
k=1

Pr[Rank(Pivot) = k] ∗(T (k − 1) + T (n − k))

= O(n) +

n∑
k=1

1
n
·(T (k − 1) + T (n − k)) ,

by the definition of expectation. It is not easy to verify that the solution to the recurrence T (n) =

O(n) +
∑n

k=1
1
n ·(T (k − 1) + T (n − k)) is O(n log n).

9.2.1.1 Alternative incorrect solution

The algorithm MatchNutsAndBolts is lucky if n
4 ≤ rank(npivot) ≤ 3

4n. Thus, Pr
[
“lucky”

]
= 1/2.

Intuitively, for the algorithm to be fast, we want the split to be as balanced as possible. The less
balanced the cut is, the worst the expected running time. As such, the “Worst” lucky position is
when rank(npivot) = n/4 and we have that

T (n) ≤ O(n) + Pr
[
“lucky”

]
∗ (T (n/4) + T (3n/4)) + Pr

[
“unlucky”

]
∗ T (n).

Namely, T (n) = O(n) + 1
2 ∗

(
T (n

4) + T (3
4n)

)
+ 1

2T (n). Rewriting, we get the recurrence T (n) =

O(n) + T (n/4) + T ((3/4)n), and its solution is O(n log n).
While this is a very intuitive and elegant solution that bounds the running time of QuickSort,

it is also incomplete. The interested reader should try and make this argument complete. After
completion the argument is as involved as the previous argument. Nevertheless, this argumentation
gives a good back of the envelope analysis for randomized algorithms which can be applied in a
lot of cases.

3

9.2.2 What are randomized algorithms?
Randomized algorithms are algorithms that use random numbers (retrieved usually from some
unbiased source of randomness [say a library function that returns the result of a random coin
flip]) to make decisions during the executions of the algorithm. The running time becomes a
random variable. Analyzing the algorithm would now boil down to analyzing the behavior of the
random variable RT(n), where n denotes the size of the input.In particular, the expected running
time E[RT(n)] is a quantity that we would be interested in.

It is useful to compare the expected running time of a randomized algorithm, which is

T (n) = max
U is an input of size n

E[RT(U)] ,

to the worst case running time of a deterministic (i.e., not randomized) algorithm, which is

T (n) = max
U is an input of size n

RT(U),

FlipCoins
while RandBit= 1 do

nothing;

Caveat Emptor:­Note, that a randomized algorithm might
have exponential running time in the worst case (or even un-
bounded) while having good expected running time. For ex-
ample, consider the algorithm FlipCoins depicted on the right.
The expected running time of FlipCoins is a geometric random variable with probability 1/2, as
such we have that E

[
RT(FlipCoins)

]
= O(2). However, FlipCoins can run forever if it always

gets 1 from the RandBit function.
This is of course a ludicrous argument. Indeed, the probability that FlipCoins runs for long

decreases very quickly as the number of steps increases. It can happen that it runs for long, but it
is extremely unlikely.

Definition 9.2.7 The running time of a randomized algorithm Alg is O(f (n)) with high probability
if

Pr
[
RT(Alg(n)) ≥ c · f (n)

]
= o(1).

Namely, the probability of the algorithm to take more than O(f (n)) time decreases to 0 as n goes to
infinity. In our discussion, we would use the following (considerably more restrictive definition),
that requires that

Pr
[
RT(Alg(n)) ≥ c · f (n)

]
≤

1
nd ,

where c and d are appropriate constants. For technical reasons, we also require that E
[
RT(Alg(n))

]
=

O(f (n)).

9.3 Analyzing QuickSort
The previous analysis works also for QuickSort. However, there is an alternative analysis which
is also very interesting and elegant. Let a1, ..., an be the n given numbers (in sorted order – as they
appear in the output).

­Caveat Emptor - let the buyer beware (i.e., one buys at one’s own risk)

4

It is enough to bound the number of comparisons performed by QuickSort to bound its running
time, as can be easily verified. Observe, that two specific elements are compared to each other by
QuickSort at most once, because QuickSort performs only comparisons against the pivot, and
after the comparison happen, the pivot does not being passed to the two recursive subproblems.

Let Xi j be an indicator variable if QuickSort compared ai to a j in the current execution, and
zero otherwise. The number of comparisons performed by QuickSort is exactly Z =

∑
i< j Xi j.

Observation 9.3.1 The element ai is compared to a j iff one of them is picked to be the pivot and
they are still in the same subproblem.

Also, we have that µ = E
[
Xi j

]
= Pr

[
Xi j = 1

]
. To quantify this probability, observe that if the

pivot is smaller than ai or larger than a j then the subproblem still contains the block of elements
ai, . . . , a j. Thus, we have that

µ = Pr
[
ai or a j is first pivot ∈ ai, . . . , a j

]
=

2
j − i + 1

.

Another (and hopefully more intuitive) explanation for the above phenomena is the following:
Imagine, that before running QuickSort we choose for every element a random priority, which
is a real number in the range [0, 1]. Now, we reimplement QuickSort such that it always pick
the element with the lowest random priority (in the given subproblem) to be the pivot. One can
verify that this variant and the standard implementation have the same running time. Now, ai gets
compares to a j if and only if all the elements ai+1, . . . , a j−1 have random priority larger than both
the random priority of ai and the random priority of a j. But the probability that one of two elements
would have the lowest random-priority out of j − i + 1 elements is 2 ∗ 1/(j − i + 1), as claimed.

Thus, the running time of QuickSort is

E
[
RT(n)

]
= E

∑
i< j

Xi j

 =
∑
i< j

E
[
Xi j

]
=

∑
i< j

2
j − i + 1

=
∑

∆= j−i+1

2
n − ∆ + 1

∆

≤ 2n
n∑

∆=2

1
∆

= 2nHn ≤ 2n(ln n + 1),

by linearity of expectations, where Hn ≤ ln n + 1 is the nth harmonic number,
In fact, the running time of QuickSort is O(n log n) with high-probability. We need some more

tools before we can show that.

5

	Randomized Algorithms
	Some Probability
	Sorting Nuts and Bolts
	Running time analysis
	What are randomized algorithms?

	Analyzing QuickSort

