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8.1 Clustering

Consider the problem of unsupervised learning. We are given a set of examples, and we would
like to partition them into classes of similar examples. For example, given a webpage X about
“The reality dysfunction”, one would like to find all webpages on this topic (or closely related
topics). Similarly, a webpage about “All quiet on the western front” should be in the same group
as webpage as “Storm of steel” (since both are about soldier experiences in World War I).

The hope is that all such webpages of interest would be in the same cluster as X, if the clustering
is good.

More formally, the input is a set of examples, usually interpreted as points in high dimensions.
For example, given a webpage W, we represent it as a point in high dimensions, by setting the ith
coordinate to 1 if the word wi appears somewhere in the document, where we have a prespecified
list of 10, 000 words that we care about. Thus, the webpage W can be interpreted as a point of the
{0, 1}10,000 hypercube; namely, a point in 10, 000 dimensions.

Let X be the resulting set of n points in d dimensions.
To be able to partition points into similar clusters, we need to define a notion of similarity.

Such a similarity measure can be any distance function between points. For example, consider the
“regular” Euclidean distance between points, where

d(p, q) =

√√
d∑

i=1

(pi − qi)2,

where p = (p1, . . . , pd) and q = (q1, . . . , qd).
As another motivating example, consider the facility location problem. We are given a set X of

n cities and distances between them, and we would like to build k hospitals, so that the maximum
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distance of a city from its closest hospital is minimized. (So that the maximum time it would take
a patient to get to the its closest hospital is bounded.)

Intuitively, what we are interested in is selecting good representatives for the input point-set X.
Namely, we would like to find k points in X such that they represent X “well”.

Formally, consider a subset S of k points of X, and a p a point of X. The distance of p from
the set S is

d(p, S ) = min
q∈S

d(p, q);

namely, d(p, S ) is the minimum distance of a point of S to p. If we interpret S as a set of centers
then d(p, S ) is the distance of p to its closest center.

Now, the price of clustering X by the set S is

ν(X, S ) = max
p∈X

d(p, S ).

This is the maximum distance of a point of X from its closest
center in S .

It is somewhat illuminating to consider the problem in the
plane. We have a set X of n points in the plane, we would like to
find k smallest discs centered at input points, such that they cover
all the points of P. Consider the example on the right.

Figure 8.1: The marked point
is the bottleneck point.

In this example, assume that we would like to cover it by
3 disks. One possible solution is being shown in Figure 8.1.
The quality of the solution is the radius r of the largest disk.
As such, the clustering problem here can be interpreted as the
problem of computing an optimal cover of the input point set by
k discs/balls of minimum radius. This is known as the k-center
problem.

It is known that k-center clustering is NP-H, even to ap-
proximate within a factor of (roughly) 1.8. Interestingly, there
is a simple and elegant 2-approximation algorithm. Namely,

one can compute in polynomial time, k centers, such that they induce balls of radius at most twice
the optimal radius.

Here is the formal definition of the k-center clustering problem.

Problem: k-center clustering

Instance: A set P a of n points, a distance function d(p, q), for
p, q ∈ P, with triangle inequality holding for d(·, ·)„ and a parameter
k.
Output: A subset S that realizes ropt(P, k) = min

S⊆P,|S |=k
DS (P), where

DS (P) = maxx∈X d(S , x) and d(S , x) = mins∈S d(s, x).

8.1.1 The approximation algorithm for k-center clustering
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To come up with the idea behind the algorithm, imagine that
we already have a solution with m = 3 centers. We would like
to pick the next m + 1 center. Inspecting the examples above, one
realizes that the solution is being determined by a bottleneck point;
see Figure 8.1. That is, there is a single point which determine the
quality of the clustering, which is the point furthest away from the
set of centers. As such, the natural step is to find a new center that
would better serve this bottleneck point. And, what can be a better
service for this point, than make it the next center? (The resulting clustering using the new center
for the example is depicted on the right.)

Namely, we always pick the bottleneck point, which is furthest away for the current set of
centers, as the next center to be added to the solution.

Algorithm AprxKCenter (P, k)
P = {p1, . . . , pn}

S = {p1}, u1 ← p1

while |S | < k do
i← |S |
for j = 1 . . . n do

d j ← min
(
d j,d(p j, ui)

)
ri+1 ← max(d1, . . . , dn)
ui+1 ←point of P realizing ri

S ← S ∪ {ui+1}

return S

The resulting approximation algorithm is depicted
on the right. Observe, that the quantity ri+1 denotes the
(minimum) radius of the i balls centered at u1, . . . , ui

such that they cover P (where all these balls have the
same radius). (Namely, there is a point p ∈ P such
that d(p, {u!, . . . , ui}) = ri+1.

It would be convenient, for the sake analysis, to
imagine that we run AprxKCenter one additional it-
eration, so that the quantity rk+1 is well defined.

Observe, that the running time of the algorithm
AprxKCenter is O(nk) as can be easily verified.

Lemma 8.1.1 We have that r2 ≥ . . . ≥ rk ≥ rk+1.

Proof: At each iteration the algorithm adds one new center, and as such the distance of a point
to the closest center can not increase. In particular, the distance of the furthest point to the centers
does not increase.

Observation 8.1.2 The radius of the clustering generated by AprxKCenter is rk+1.

Lemma 8.1.3 We have that rk+1 ≤ 2ropt(P, k), where ropt(P, k) is the radius of the optimal solution
using k balls.

Proof: Consider the k balls forming the optimal solution: D1, . . . ,Dk and consider the k center
points contained in the solution S computed by AprxKCenter.

If every disk Di contain at least one point of S , then we are done, since every
point of P is in distance at most 2ropt(P, k) from one of the points of S . Indeed, if
the ball Di, centered at q, contains the point u ∈ S , then for any point p ∈ P∩Di,
we have that

d(p, u) ≤ d(p, q) + d(q, u) ≤ 2ropt.

3



q

ropt

x y

Otherwise, there must be two points x and y of S contained in the same
ball Di of the optimal solution. Let Di be centered at a point q.

We claim distance between x and y is at least rk+1. Indeed, imagine that x
was added at the αth iteration (that is, uα = x), and y was added in a later βth
iteration (that is, uβ = y), where α < β. Then,

rβ = d
(
y,

{
u1, . . . , uβ−1

})
≤ d(x, y),

since x = uα and y = uβ. But rβ ≥ rk+1, by Lemma 8.1.1. Applying the triangle inequality again,
we have that rk+1 ≤ rβ ≤ d(x, y) ≤ d(x, q) + d(q, y) ≤ 2ropt, implying the claim.

Theorem 8.1.4 One can approximate the k-center clustering up to a factor of two, in time O(nk).

Proof: The approximation algorithm is AprxKCenter. The approximation quality guarantee fol-
lows from Lemma 8.1.3, since the furthest point of P from the k-centers computed is rk+1, which
is guaranteed to be at most 2ropt.

8.2 Subset Sum
Problem: Subset Sum

Instance: X = {x1, . . . , xn} – n integer positive numbers, t - target number
Question: Is there a subset of X such the sum of its elements is t?

SolveSubsetSum (X, t, M)
b[0 . . . Mn] - boolean array initialized to FALSE.

// b[x] is TRUE if x can be realized by a subset of X.
b[0]← TRUE.
for i = 1, . . . , n do

for j = Mn down to xi do
b[ j]← B[ j − xi] ∨ B[ j]

return B[t]

Subset Sum is (of course) NP-
C, as we already proved. It
can be solved in polynomial time if
the numbers of X are small. In par-
ticular, if xi ≤ M, for i = 1, . . . , n,
then t ≤ Mn (otherwise, there is
no solution). Its reasonably easy to
solve in this case, as the algorithm
on the right shows. The running
time of the resulting algorithm is
O(Mn2).

Note, that M my be prohibitly large, and as such, this algorithm is not polynomial in n. In
particular, if M = 2n then this algorithm is prohibitly slow. Since the relevant decision problem
is NPC, it is unlikely that an efficient algorithm exist for this problem. But still, we would like to
be able to solve it quickly and efficiently. So, if we want an efficient solution, we would have to
change the problem slightly. As a first step, lets turn it into an optimization problem.

Problem: Subset Sum Optimization

Instance: (X, t): A set X of n positive integers, and a target number t
Output: The largest number γopt one can represent as a subset sum of
X which is smaller or equal to t
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Intuitively, we would like to find a subset of X such that it sum is smaller than t but very close
to t.

Next, we turn problem into an approximation problem.

Problem: Subset Sum Approx

Instance: (X, t, ε): A set X of n positive integers, a target number t,
and parameter ε > 0
Output: A number z that one can represent as a subset sum of X, such
that (1 − ε)γopt ≤ z ≤ γopt ≤ t.

The challenge is to solve this approximation problem efficiently. To demonstrate that there
is hope that can be done, consider the following simple approximation algorithm, that achieves a
constant factor approximation.

Lemma 8.2.1 If there is a subset sum that adds up to t one can find a subset sum that adds up to
at least γopt/2 in O(n log n) time.

Proof: Add the numbers from largest to smallest, whenever adding a number will make the sum
exceed t, we throw it away. We claim that the generate sum γopt/2 ≤ s ≤ t. Clearly, if the total sum
of the numbers is smaller than t, then no number is being rejected and s = γopt.

Otherwise, let u be the first number being reject, and let s′ be the partial subset sum, just before
u is being rejected. Clearly, s′ > u > 0, s′ < t, and s′+u > t. This implies t < s′+u < s′+ s′ ≤ 2s′,
which implies that s′ ≥ t/2. Namely, the subset sum output is larger than t/2.

8.2.1 On the complexity of ε-approximation algorithms
Definition 8.2.2 (PTAS.) For a maximization problem PROB, an algorithm A(I, ε) (i.e., A re-
ceives as input an instance of PROB, and an approximation parameter ε > 0) is a polynomial time
approximation scheme (PTAS) if for any instance I we have

(1 − ε)
∣∣∣opt(I)

∣∣∣ ≤ ∣∣∣A(I, ε)
∣∣∣ ≤ ∣∣∣opt(I)

∣∣∣ ,
where |opt(I)| denote the price of the optimal solution for I, and |A(I, ε)| denotes the price of the
solution outputted by A. Furthermore, the running time of the algorithm A is polynomial in n (the
input size), when ε is fixed.

For a minimization problem, the condition is that |opt(I)| ≤ |A(I, ε)| ≤ (1 + ε)|opt(I)|.

Example 8.2.3 An approximation algorithm with running time O(n1/ε) is a PTAS, while an algo-
rithm with running time O(1/εn) is not.

Definition 8.2.4 (FPTAS.) An approximation algorithm is fully polynomial time approximation
scheme (FPTAS) if it is a PTAS, and its running time is polynomial both in n and 1/ε.

Example 8.2.5 A PTAS with running time O(n1/ε) is not a FPTAS, while a PTAS with running
time O(n2/ε3) is a FPTAS.
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8.2.2 Approximating subset-sum

ExactSubsetSum (S ,t)
n← |S |
L0 ← {0}
for i = 1 . . . n do

Li ← Li−1 ∪ (Li−1 + xi)
Remove from Li all elements > t

return largest element in Ln

Let S = {a1, . . . , an} be a set of numbers. For
a number x, let x + S denote the translation of S
by x; namely, x+S = {a1 + x, a2 + x, . . . an + x}.
Our first step in deriving an approximation al-
gorithm for Subset Sum is to come up with a
slightly different algorithm for solving the prob-
lem exactly. The algorithm is depicted on the
right.

Note, that while ExactSubsetSum performs
only n iterations, the lists Li that it constructs might have exponential size.

Trim (L′, δ)
L← Sort(L′)
L =< y1 . . . ym >

// yi ≤ yi+1, for i = 1, . . . , n − 1.
curr ← y1

Lout ← {y1}

for i = 2 . . .m do
if yi > curr · (1 + δ)

Append yi to Lout

curr ← yi

return Lout

Thus, if we would like to turn ExactSubsetSum
into a faster algorithm, we need to somehow to make
the lists Ll smaller. This would be done by removing
numbers which are very close together.

Definition 8.2.6 For two positive real numbers
z ≤ y, the number y is a δ-approximation to z
if

y
1 + δ

≤ z ≤ y.

The procedure Trim that trims a list L′ so that it
removes close numbers is depicted on the left.

Observation 8.2.7 If x ∈ L′ then there exists a number y ∈ Lout such that y ≤ x ≤ y(1 + δ), where
Lout ← Trim(L′, δ).

ApproxSubsetSum (S ,t)
//Assume S = {x1, . . . , xn}, where
// x1 ≤ x2 ≤ . . . ≤ xn

n← |S |, L0 ← {0}, δ = ε/2n
for i = 1 . . . n do

Ei ← Li−1 ∪ (Li−1 + xi)
Li ← Trim(Ei, δ)
Remove from Li all elements > t.

return largest element in Ln

We can now modify ExactSubsetSum to use Trim
to keep the candidate list shorter. The resulting algo-
rithm ApproxSubsetSum is depicted on the right.

Let Ei be the list generated by the algorithm in
the ith iteration, and Pi be the list of numbers with-
out any trimming (i.e., the set generated by Exact-
SubsetSum algorithm) in the ith iteration.

Claim 8.2.8 For any x ∈ Pi there exists y ∈ Li such
that y ≤ x ≤ (1 + δ)iy.

Proof: If x ∈ P1 the claim follows by Observation 8.2.7
above. Otherwise, if x ∈ Pi−1, then, by induction, there is y′ ∈ Li−1 such that y′ ≤ x ≤ (1 + δ)i−1y′.
Observation 8.2.7 implies that there exists y ∈ Li such that y ≤ y′ ≤ (1 + δ)y, As such,

y ≤ y′ ≤ x ≤ (1 + δ)i−1y′ ≤ (1 + δ)iy

as required.
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The other possibility is that x ∈ Pi \ Pi−1. But then x = α+ xi, for some α ∈ Pi−1. By induction,
there exists α′ ∈ Li−1 such that

α′ ≤ α ≤ (1 + δ)i−1α′.

Thus, α′ + xi ∈ Ei and by Observation 8.2.7, there is a x′ ∈ Li such that

x′ ≤ α′ + xi ≤ (1 + δ)x′.

Thus,

x′ ≤ α′ + xi ≤ α + xi = x ≤ (1 + δ)i−1α′ + xi ≤ (1 + δ)i−1(α′ + xi) ≤ (1 + δ)ix′.

Namely, for any x ∈ Pi \ Pi−1, there exists x′ ∈ Li, such that x′ ≤ x ≤ (1 + δ)ix′.

8.2.2.1 Bounding the running time of ApproxSubsetSum

We need the following two easy technical lemmas. We include their proofs here only for the sake
of completeness.

Lemma 8.2.9 For x ∈ [0, 1], it holds exp(x/2) ≤ (1 + x).

Proof: Let f (x) = exp(x/2) and g(x) = 1 + x. We have f ′(x) = exp(x/2) /2 and g′(x) = 1. As such,

f ′(x) =
exp(x/2)

2
≤

exp(1/2)
2

≤ 1 = g′(x), for x ∈ [0, 1].

Now, f (0) = g(0) = 1, which immediately implies the claim.

Lemma 8.2.10 For 0 < δ < 1, and x ≥ 1, we have log1+δ x = O
(
ln x
δ

)
.

Proof: We have, by Lemma 8.2.9, that log1+δ x =
ln x

ln(1 + δ)
≤

ln x
ln exp(δ/2)

= O
(
ln x
δ

)
.

Observation 8.2.11 In list generated by Trim, for any number x, there are no two numbers in the
trimmed list between x and (1 + δ)x.

Lemma 8.2.12 We have |Li| = O
(
(n/ε2) log n

)
, for i = 1, . . . , n.

Proof: The set Li−1+xi is a set of numbers between xi and ixi, because xi is larger than x1 . . . xi−1

and Li−1 contains subset sums of at most i− 1 numbers, each one of them smaller than xi. As such,
the number of different values in this range, stored in the list Li, after trimming is at most

log1+δ

ixi

xi
= O

(
ln i
δ

)
= O

(
ln n
δ

)
,

by Lemma 8.2.10. Thus,

|Li| ≤ |Li−1| + O
(
ln n
δ

)
≤ |Li−1| + O

(
n ln n
ε

)
= O

(
n2 log n

ε

)
.

Lemma 8.2.13 The running time of ApproxSubsetSum is O
(

n3

ε
log n

)
.

Proof: Clearly, the running time of ApproxSubsetSum is dominated by the total length of the lists

L1, . . . , Ln it creates. Lemma 8.2.12 implies that
∑

i

|Li| = O
(
n3

ε
log n

)
.
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8.2.2.2 The result

Theorem 8.2.14 ApproxSubsetSum returns a number u ≤ t, such that

γopt

1 + ε
≤ u ≤ γopt ≤ t,

where γopt is the optimal solution (i.e., largest realizable subset sum smaller than t).
The running time of ApproxSubsetSum is O((n3/ε) ln n).

Proof: The running time bound is by Lemma 8.2.13.
As for the other claim, consider the optimal solution opt ∈ Pn. By Claim 8.2.8, there exists

z ∈ Ln such that z ≤ opt ≤ (1 + δ)nz. However,

(1 + δ)n = (1 + ε/2n)n ≤ exp
(
ε

2

)
≤ 1 + ε,

since 1 + x ≤ ex for x ≥ 0. Thus, opt/(1 + ε) ≤ z ≤ opt ≤ t, implying that the output of
ApproxSubsetSum is within the required range.

8.3 Approximate Bin Packing
Consider the following problem.

Problem: Min Bin Packing

Instance: a1 . . . an – n numbers in [0, 1]
Output: Q: What is the minimum number of unit bins do you need to
use to store all the numbers in S ?

Bin Packing is NP-C because you can reduce Partition to it. Its natural to ask how one
can approximate the optimal solution to Bin Packing.

One such algorithm is next fit. Here, we go over the numbers one by one, and put a number in
the current bin if that bin can contain it. Otherwise, we create a new bin and put the number in this
bin. Clearly, we need at least

dAe bins where A =

n∑
i=1

ai

Every two consecutive bins contain numbers that add up to more than 1, since otherwise we would
have not created the second bin. As such, the number of bins used is 2 bAc. As such, the next fit
algorithm for bin packing achieves a 2 approximation.

A better strategy, is to sort the numbers from largest to smallest and insert them in this order,
where in each stage, we scan all current bins, and see if can insert the current number into one of
those bins. If we can not, we create a new bin for this number. This is known as first fit. We state
the approximation ratio for this algorithm without proof.

Theorem 8.3.1 Decreasing first fit is a 1.5-approximation to Min Bin Packing.
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8.4 Bibliographical notes
One can do 2-approximation for the k-center clustering in low dimensional Euclidean space can be
done in Θ(n log k) time [FG88]. In fact, it can be solved in linear time [Har04].
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